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Abstract. Building on the work of Terwilliger, we find the structure of nonthin irreducibleT-modules of endpoint
1 for P- and Q-polynomial association schemes with classical parameters. The isomorphism class of such a given
module is determined by the intersection numbers of the scheme and one additional parameter which must be an
eigenvalue for the first subconstituent graph. We show that these modules always have what we call a ladder basis,
and find the structure explicitly for the bilinear, Hermitean, and alternating forms schemes.
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1. Introduction

The study of Terwilliger algebras for association schemes was begun by Terwilliger in
[4], where they are called subconstituent algebras. These noncommutative algebras are
generated by the Bose-Mesner algebra of the scheme, together with matrices containing
local information about the structure with respect to a fixed vertex. It is expected that these
algebras will contribute significantly to the classification of P- and Q-polynomial schemes.

The irreducible modules for thin P- and Q-polynomial schemes were thoroughly inves-
tigated by Terwilliger in [4]. Roughly speaking, he shows that such modules inherit the
P- and Q-polynomial property and have structures described by Askey–Wilson polynomials
related to those of the scheme. He also relates thinness to the combinatorial structure of the
scheme.

Little is known about nonthin irreducible modules, and their structures seem to be much
more complicated. For one particular family of schemes, the Doob schemes, all irreducible
modules were found by Tanabe [3]. However for the classical forms schemes (bilinear,
alternating, Hermitean, and quadratic forms), which for diameter≥6 are the other known
examples of nonthin P- and Q-polynomial association schemes [4], the irreducible modules
have not yet been determined.

Some basic theory for the case of endpoint 1, is found in Terwilliger’s unpublished lecture
notes [5]. In particular, he shows that the isomorphism classes of modules are determined
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by the eigenvalues of the subgraph on the first subconstituent, and that they are only a
little larger than thin modules, in the sense that they intersect the distancei subspaces in
dimension 2 for 2≤ i ≤ d − 1 and dimension 1 fori = 1 andi = d.

In this paper, we consider only schemes with classical parameters; for these schemes,
we describe the nonthin irreducible modules of endpoint 1. We show that for classical
parameters, there exists a particularly nice basis for any nonthin irreducible module of
endpoint 1, which we call aladder basis. Such bases were first shown to exist for modules
of the Doob schemes in [3]; part of the motivation for our work was a question of Terwilliger
as to whether such bases exist in general. In fact, we show something stronger: for classical
parameters, half of the elements of a ladder basis are multiples of elements of the basis
given in [5] (theTerwilliger basis). We also find the matrix for the action of the adjacency
matrix A1 on the module, with respect to both the Terwilliger and ladder bases.

All the known examples of P- and Q-polynomial schemes with diameter≥6 which are
not thin have classical parameters. They are also self-dual, and so have what we may call
dual classical parameters for the Q-polynomial, or dual, structure. Since our methods are
algebraic rather than combinatorial, the theorems have dual versions (describingA∗

1 instead
of A1) for schemes with dual classical parameters. However, we do not explore this further
in this paper.

Terwilliger algebras contain a lot of information about the scheme, possibly enough to re-
construct the scheme if it is P- and Q-polynomial. However, the determination of all nonthin
modules is extremely difficult in general. The advantage of investigating irreducible mod-
ules of endpoint 1 is that they are small enough to be manageable, but still can be expected
to reflect the nature of the local structure in the scheme. We hope that the investigation
of irreducible modules of small endpoint, together with combinatorial methods, will be
sufficient to finish the classification of P- and Q-polynomial schemes.

The organization of the paper is as follows. Section 2 gives definitions and a summary
of previous results from [4] and [5]. In Section 3, we define the term ladder basis, and give
necessary and sufficient conditions for existence. Section 4 shows that if the scheme has
classical parameters, any nonthin irreducibleT-module of endpoint 1 for the scheme has a
ladder basis. In Section 5, we explicitly find the action ofA1 on the module, with respect
to both the Terwilliger and ladder bases. The final section is devoted to examples: we find
the eigenvalues of the subgraph on the first subconstituent for the bilinear, alternating, and
Hermitean forms schemes, and use these to determine the nonthin irreducible endpoint 1
modules.

2. Terwilliger algebras

In this section, we review the definition and basic results for Terwilliger algebras from [4]
and [5]. The books [1] and [2] are basic references for P- and Q-polynomial association
schemes.

2.1. Definitions and notation

LetX = (X, {Ri }0≤i ≤d) be a commutative association scheme withd classes. As usual, let
Ai be the adjacency matrix for relationRi , A the linear span of{A0, A1, . . . , Ad} overC,
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that is, the Bose-Mesner algebra, and{Ei }d
i =0 the set of primitive idempotents ofA. Ei is

the projection onto thei th common eigenspace of the adjacency matrices.
Fix x ∈ X. Let 0i (x) be thei th subconstituent ofX , so0i (x) = {y ∈ X | (x, y) ∈ Ri }.

Define E∗
i = E∗

i (x) ∈ MatX(C) to be the|X| × |X| diagonal matrix with(y, y) entry 1
if (x, y) ∈ Ri and 0 otherwise. TheTerwilliger algebra T = T(x) is the subalgebra of
MatX(C) generated by{A0, . . . , Ad, E∗

0, . . . , E∗
d}.

Let V = C|X| be the unitary space overC with an orthonormal basis which we identify
with X, and inner product〈 , 〉. V is a module forT , called thestandard module. For
0 ≤ i ≤ d, V has a subspaceV∗

i = V∗
i (x) with basis0i (x); E∗

i is the orthogonal projection
ontoV∗

i .
T is semi-simple, soV decomposes into an orthogonal direct sum of irreducible

T-modules. In this paper, eachT-module will be considered as a submodule ofV ; we
can do this sinceV is faithful.

An irreducibleT-moduleW is thin if dim(E∗
i W) ≤ 1 for all i . Theendpointof W is

min{i : E∗
i W 6= 0} (note that this is called thedual endpointin [4]). There is a unique

irreducible T-module of endpoint 0, called thetrivial module; it is thin and has basis
{E∗

i 1 : 0 ≤ i ≤ d}, where1 is the vector of all 1’s.
Throughout the paper, we will assumeX = (X, {Ri }0≤i ≤d) is a P- and Q-polynomial

scheme of diameterd ≥ 3. As usual, we denote the intersection numbers byai , bi , and
ci , whereai = |0i (x) ∩ 01(y)|, bi = |0i +1(x) ∩ 01(y)|, andci = |0i −1(x) ∩ 01(y)| for
y ∈ 0i (x). We also letk = |01(x)|, the valency of the graph. Let{θi } be the eigenvalues
and {θ∗

i } the dual eigenvalues ofX , so A1 = ∑
θi Ei and E1 = 1

|X|
∑

θ∗
i Ai . It is well

known that there exists a nonzero constant Q such that [1]

(θi +3 − θi +2) − ρ(θi +2 − θi +1) + (θi +1 − θi ) = 0 (0 ≤ i ≤ d − 3)

(θ∗
i +3 − θ∗

i +2) − ρ(θ∗
i +2 − θ∗

i +1) + (θ∗
i +1 − θ∗

i ) = 0 (0 ≤ i ≤ d − 3).

whereρ = q + q−1.
It is convenient to defineθi andθ∗

i for all integersi by the above recurrence. Note that
θi (and similarlyθ∗

i ) are distinct for 0≤ i ≤ d, but they may not be so in general.
As in [2], we say thatX hasclassical parameters(d, q, α, β) if X has diameterd and

intersection numbers

bi =
([

d
1

]
−

[
i
1

])(
β − α

[
i
1

])
(0 ≤ i ≤ d)

ci =
[

i
1

](
1 + α

[
i − 1

1

])
(0 ≤ i ≤ d),

where [j
1 ] = [ j

1 ]q = 1 + q + q2 + · · · + q j −1 is the usualq-binomial coefficient. In this
case, the eigenvalues and dual eigenvalues ofX satisfy

θi = q−i bi −
[

i
1

]
(0 ≤ i ≤ d)

θ∗
i = θ∗

0 + (θ∗
1 − θ∗

0 )

[
i
1

]
q1−i (0 ≤ i ≤ d).
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Fix x ∈ X, and writeT = T(x), E∗
i = E∗

i (x), andV∗
i = V∗

i (x). Let

F =
d∑

i =0

E∗
i A1E∗

i (theflat operator)

R =
d−1∑
i =0

E∗
i +1A1E∗

i (theraise operator)

L =
d∑

i =1

E∗
i −1A1E∗

i (the lower operator).

Note thatF , L, R ∈ T , andA1 = F + L + R. F is a symmetric 0, 1 matrix, andR and
L are 0, 1 matrices such thatRt = L.

We will use extensively the following relations on these operators, which were given in
[4] in a slightly different form.

Proposition 2.1 ([4], Lemmas 5.5 and 5.6)

(g−
i F L2 + L F L + g+

i L2F − γ L2)E∗
i = 0 (2 ≤ i ≤ d) (2.1)

(g−
i R2F + RF R+ g+

i F R2 − γ R2)E∗
i −2 = 0 (2 ≤ i ≤ d) (2.2)

(e−
i RL2 + (ρ + 2)L RL + e+

i L2R + L F2 − ρF L F

+ F2L − γ (L F + F L) − δL)E∗
i = 0 (1 ≤ i ≤ d) (2.3)

(e−
i R2L + (ρ + 2)RL R+ e+

i L R2 + F2R − ρF RF

+ RF2 − γ (F R + RF) − δR)E∗
i −1 = 0 (1 ≤ i ≤ d) (2.4)

where

ρ = q + q−1 = θ∗
i − θ∗

i +1 + θ∗
i +2 − θ∗

i +3
θ∗

i +1 − θ∗
i +2

(0 ≤ i ≤ d − 3)

γ = θi − ρθi +1 + θi +2 (0 ≤ i ≤ d − 2)

δ = θ2
i − ρθi θi +1 + θ2

i +1 − γ (θi + θi +1) (0 ≤ i ≤ d − 1),

which are constants independent of i, and

g−
i = θ∗

i −2 − θ∗
i −3

θ∗
i −2 − θ∗

i

(2 ≤ i ≤ d)

g+
i = θ∗

i − θ∗
i +1

θ∗
i − θ∗

i −2

(2 ≤ i ≤ d)

e−
i = θ∗

i −3 − θ∗
i −1

θ∗
i − θ∗

i −1

(1 ≤ i ≤ d)

e+
i = θ∗

i − θ∗
i +2

θ∗
i − θ∗

i −1

(1 ≤ i ≤ d).
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If X has classical parameters(d, q, α, β), the above are given by

ρ = q + q−1

γ = qd−1α + β − 1 + α − β + 1

q

δ = 1

q

{[
d + 1

1

][
d − 1

1

]
α2 −

([
d + 1

1

]
+

[
d − 1

1

])
(β − 1)α

+ (q + 1)2qd−1β + (β − 1)2

}
g−

i = −q2

q + 1

g+
i = −1

q(q + 1)

e−
i = −q(q + 1)

e+
i = −(q + 1)

q2
.

2.2. Irreducible modules of endpoint 1

We now summarize the relevant results of [5] and [7] about irreducible modules of end-
point 1.

Let U ∗
1 be the subspace ofV∗

1 which is orthogonal to1. Note thatU ∗
1 is the subspace of

V∗
1 which is orthogonal to the trivial module, and henceE∗

1T E∗
1 acts onU ∗

1 .

Theorem 2.2 ([5]) Let W be an irreducible T -module of endpoint1. Then E∗
1W is a

one-dimensional subspace of U∗
1 . In particular, any nonzerov ∈ E∗

1W is an eigenvector
of E∗

1 A1E∗
1, and W = Tv. Conversely, let v ∈ U ∗

1 be an eigenvector of E∗1 A1E∗
1. Then

Tv is an irreducible T -module of endpoint1.

Theorem 2.3 ([5]) Let v, v′ ∈ U ∗
1 be eigenvectors for E∗1 A1E∗

1 with corresponding
eigenvaluesλ, λ′. Then Tv and Tv′ are isomorphic as T -modules if and only ifλ = λ′.

Let W = Tv be an irreducibleT-module of endpoint 1, wherev is an eigenvector of
E∗

1 A1E∗
1 acting onU ∗

1 . Define

v+
i = E∗

i Ai −1v

v−
i = E∗

i Ai +1v.

Theorem 2.4 ([5]) The set of vectors{v = v+
1 , v+

2 , v−
2 , . . . , v+

d−1, v
−
d−1, v

+
d } spansW. It

is a basis for W if W is not thin. In particular, if W is not thin, dim E∗
i W = 2 for

2 ≤ i ≤ d − 1, anddim E∗
i W = 1 for i = 1, d.
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Theorem 2.5 ([7]) Suppose W is a nonthin irreducible T -module of endpoint1. Then the
following maps are nonsingular.

R|E∗
i W : E∗

i W → E∗
i +1W (2 ≤ i ≤ d − 2)

L|E∗
i W : E∗

i W → E∗
i −1W (3 ≤ i ≤ d − 1)

The basis{v = v+
1 , v+

2 , v−
2 , . . . , v+

d−1, v
−
d−1, v

+
d }will be called theTerwilliger basisfor W.

The following lemma gives some easy consequences of the definition of these vectors.
Note thatv−

0 , v+
0 , v−

d , andv+
d+1 are all the zero vector.

Lemma 2.6 ([5]) For 1 ≤ i ≤ d,

Rv+
i = ci v

+
i +1 (2.5)

Lv−
i = bi v

−
i −1 (2.6)

E∗
i Ai v = −v+

i − v−
i (2.7)

Fv+
i = Rv−

i −1 + (ai −1 + ci −1 − ci )v
+
i − ci v

−
i (2.8)

Lv+
i = Fv−

i −1 + bi −1v
+
i −1 + (ci − ai −1 − ci −1)v

−
i −1. (2.9)

For classical parameters, the following theorem tells exactly which modules are thin.

Theorem 2.7 ([5]) SupposeX has classical parameters(d, q, α, β). Letv ∈ U ∗
1 be an

eigenvector for E∗1 A1E∗
1 with eigenvalueλ. The irreducible module Tv of endpoint1 is

thin if and only if

λ ∈
{
−1, −q − 1, β − α − 1, αq

[
d − 1

1

]
− 1

}
.

3. Ladder bases

In this section, we describe a particularly nice sort of basis for a nonthin irreducible module
of endpoint 1, which we will call a ladder basis. We will then give criteria for the existence
of such a basis.

Throughout Sections 3 to 5, we assume thatW is a nonthin irreducibleT-module of
endpoint 1, andv is a nonzero vector inE∗

1W. Thenv is an eigenvector forE∗
1 A1E∗

1, and
we denote the corresponding eigenvalue byλ. By Theorem 2.2,W = Tv.

3.1. Criteria for existence

A ladder basisfor W is an orthogonal basis{w−
1 , w+

2 , w−
2 , . . . , w+

d−1, w−
d−1, w+

d } which
satisfies the following.

(i) E∗
i W = span{w+

i , w−
i }.

(ii) w+
i , w−

i are eigenvectors forF .
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(iii) For 2 ≤ i ≤ d − 1,

Rw+
i ∈ span{w+

i +1}
Lw−

i ∈ span{w−
i −1}.

If the eigenvalues ofF on E∗
i W are distinct, then the corresponding eigenvectors are

automatically orthogonal. In this case, the following lemma shows that it is enough to
check one of the properties of (iii).

Lemma 3.1 Suppose i is a fixed integer with2 ≤ i ≤ d − 2, and w+
i , w−

i , w+
i +1,

w−
i +1 are mutually orthogonal vectors such that E∗

i W = span{w+
i , w−

i } and E∗
i +1W =

span{w+
i +1, w

−
i +1}.

Then Lw−
i +1 ∈ span{w−

i } if and only if Rw+
i ∈ span{w+

i +1}.

Proof: Since〈w+
i , w−

i 〉 = 0 = 〈w+
i +1, w

−
i +1〉, it follows that Lw−

i +1 ∈ span{w−
i } if and

only if 〈Lw−
i +1, w

+
i 〉 = 0. But 〈Lw−

i +1, w
+
i 〉 = 〈w−

i +1, Rw+
i 〉, so this occurs if and only if

Rw+
i ∈ span{w+

i +1}. 2

We can now use this and the relations on the operatorsF , L, andR to show that we only
need to check a few eigenvectors to see if a ladder basis exists.

Proposition 3.2 The following are equivalent.
(i) W has a ladder basis.

(ii) There exist eigenvectorsw+
2 andw+

3 for F such thatw+
2 ∈ E∗

2W, w+
3 ∈ E∗

3W, and
Rw+

2 ∈ span{w+
3 }.

(iii) There exist eigenvectorsw−
2 andw−

3 for F such thatw−
2 ∈ E∗

2W, w−
3 ∈ E∗

3W, and
Lw−

3 ∈ span{w−
2 }.

Proof:

(ii ⇒ iii): SinceF is symmetric, there exist eigenvectorsw−
2 andw−

3 such thatE∗
2W = span{w+

2 ,

w−
2 }, 〈w+

2 , w−
2 〉 = 0, E∗

3W = span{w+
3 , w−

3 } and〈w+
3 , w−

3 〉 = 0. By Lemma 3.1,Lw−
3 ∈

span{w−
2 }.

(iii ⇒ ii): Similar.
(i ⇒ ii): Clear.
(ii ⇒ i): Definew+

i inductively byw+
i = Rw+

i −1, 4 ≤ i ≤ d−1, and letw+
d be any nonzero

vector ofE∗
dW. By Theorem 2.5,w+

i 6= 0 for i < d.

Supposew+
i −1 andw+

i −2 are eigenvectors forF , with eigenvaluesλ+
i −1 andλ+

i −2, respec-
tively. Applying the operator of (2.2) tow+

i −2, we find

g−
i λ+

i −2w
+
i + λ+

i −1w
+
i + g+

i Fw+
i − γw+

i = 0.

Sinceg+
i is nonzero,Fw+

i ∈ span{w+
i }, andw+

i is an eigenvector forF . Since dimE∗
dW

= 1, w+
d is an eigenvector forF andRw+

d−1 ∈ span{w+
d }. So the set{w+

2 , w+
3 , . . . , w+

d } is
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half of a ladder basis. Now choosew−
i an eigenvector forF so thatE∗

i W = span{w+
i , w−

i }
and〈w+

i , w−
i 〉 = 0, and we are finished by Lemma 3.1. 2

3.2. Eigenvalues of F

Suppose{w−
1 , w+

2 , w−
2 ,. . . , w+

d−1, w−
d−1, w+

d } is a ladder basis forW, and that{λ+
i } and

{λ−
i } are the corresponding eigenvalues, soFw+

i = λ+
i w+

i , andFw−
i = λ−

i w−
i . Note that

λ−
1 = λ. For convenience, we will define

λ+
1 = γ − λ+

2 − g+
3 λ+

3

g−
3

,

whereγ , g+
3 , andg−

3 are as in Proposition 2.1.

Theorem 3.3 The eigenvaluesλ+
i andλ−

i (3 ≤ i ≤ d − 1) of F are given in terms ofλ+
1 ,

λ+
2 , λ−

1 , andλ−
2 as follows:

λi = −(γ (θ∗
i − θ∗

2 )(θ∗
i − θ∗

1 ) − λ2(θ
∗
3 − θ∗

2 )(θ∗
i − θ∗

1 ) + λ1(θ
∗
1 − θ∗

0 )(θ∗
i − θ∗

2 ))

(θ∗
i +1 − θ∗

i )(θ∗
i − θ∗

i −1)

(3.1)

where either

(+) λi = λ+
i (2 ≤ i ≤ d − 1),

or

(−) λi = λ−
i (2 ≤ i ≤ d − 1).

If g+
d 6= 0, then this formula applies forλ+

d also.

Proof of Theorem 3.3: Note that in any case we can findλ+
d using tr(A1|W) = ∑

λ+
i +∑

λ−
i = θ1 +2

∑d−1
i =2 θi + θd. 2

Proof: The equation

g−
i λi −2 + λi −1 + g+

i λi − γ = 0 (3 ≤ i ≤ d) (3.2)

holds in either case. To see this for(+), i ≥ 4, apply (2.2) tow+
i −2; for i = 3, it holds

by definition ofλ+
1 . For (−), apply (2.1) tow−

i . If g+
i 6= 0 (which holds at least for

2 ≤ i ≤ d − 1), this determinesλi recursively.
It is easy to check that (3.1) is a solution to this equation. However, we will give below

a method for solving the recursion.
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Substitute the values forg−
i andg+

i into (3.2); this results in the equation

((θ∗
i +1 − θ∗

i )λi − (θ∗
i −1 − θ∗

i −2)λi −1) − ((θ∗
i − θ∗

i −1)λi −1 − (θ∗
i −2 − θ∗

i −3)λi −2)

+ (θ∗
i − θ∗

i −2)γ = 0. (3.3)

Summing (3.3) fori = 3 to j ,

(θ∗
j +1 − θ∗

j )λ j − (θ∗
j −1 − θ∗

j −2)λ j −1 − (θ∗
3 − θ∗

2 )λ2 + (θ∗
1 − θ∗

0 )λ1

+ γ (θ∗
j + θ∗

j −1 − θ∗
2 − θ∗

1 ) = 0, (3.4)

which holds for 2≤ j ≤ d.
Defineµ j by

λ j = µ j

(θ∗
j +1 − θ∗

j )(θ
∗
j − θ∗

j −1)

and let

σ = −(θ∗
3 − θ∗

2 )λ2 + (θ∗
1 − θ∗

0 )λ1 − γ (θ∗
2 + θ∗

1 ),

so (3.4) becomes

µ j − µ j −1 + γ
(
θ∗

j
2 − θ∗2

j −1

) + σ(θ∗
j − θ∗

j −1) = 0. (3.5)

Summing (3.5) from 2 toi results in

µi − µ1 + γ
(
θ∗

i
2 − θ∗

1
2) + σ(θ∗

i − θ∗
1 ) = 0,

from which the theorem follows. 2

4. The Terwilliger basis

Recall that the Terwilliger basis{v = v+
1 , v+

2 , v−
2 , . . . , v+

d−1, v
−
d−1, v

+
d } of W is defined by

v+
i = E∗

i Ai −1v, v−
i = E∗

i Ai +1v. Occasionally it is useful to letv−
1 = E∗

1 A2v andv−
d = 0.

It follows from (2.7) thatv−
1 = (−λ − 1)v.

In this section, we find explicitly the action ofA1 on v+
i and v−

i , and show that an
association scheme with classical parameters must have a ladder basis.
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4.1. Notation

We will use the following notation for entries ofA1|W.

Rv−
i = r +

i v+
i +1 + r −

i v−
i +1 (2 ≤ i ≤ d − 2)

Rv−
d−1 = r +

d−1v
+
d

Lv+
i = l+i v+

i −1 + l−i v−
i −1 (3 ≤ i ≤ d)

Lv+
2 = l+2 v+

1

Fv+
i = f ++

i v+
i + f −+

i v−
i (2 ≤ i ≤ d − 1)

Fv−
i = f +−

i v+
i + f −−

i v−
i (2 ≤ i ≤ d − 1)

Fv+
d = f ++

d v+
d

Note thatFv+
1 = λv+

1 , and from (2.6),Lv−
2 = b2v

−
1 = (−λ − 1)b2v

+
1 . We knowRv+

i and
Lv−

i from Lemma 2.6.
Thus, with respect to the Terwilliger basis,A1|W has matrix

λ l+2 −(λ + 1)b2

1 f ++
2 f +−

2 l+3 0

0 f −+
2 f −−

2 l−3 b3

c2 r +
2 f ++

3 f +−
3 l+4 0

0 r −
2 f −+

3 f −−
3 l−4 b4

. . .
. . .

. . .
. . .

f ++
d−1 f +−

d−1 l+d
f −+
d−1 f −−

d−1 l−d
cd−1 r +

d−1 f ++
d



.

Lemma 4.1 For 2 ≤ i ≤ d − 1,

f +−
i = l+i +1 − bi (4.1)

f −−
i = l−i +1 + ai + ci − ci +1 (4.2)

f ++
i = r +

i −1 + ai −1 + ci −1 − ci (4.3)

f −+
i = r −

i −1 − ci , wherer −
1 = 0. (4.4)

Proof: This follows directly from (2.8) and (2.9). 2

The remainder of this section will be restricted to the case of classical parameters. The
methods here clearly give formulae in the general P- and Q-polynomial case for the entries
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of A1|W, however they are quite complicated. We expect to consider the general case using
a different approach in a subsequent paper.

4.2. Showing a ladder basis exists

Theorem 4.2 SupposeX has classical parameters. Then f+−
i = 0, and hencev−

i is an
eigenvector for F, 2 ≤ i ≤ d − 1.

Proof: We first show thatf +−
2 and f +−

3 are equal to 0.
Most of the calculations use Eqs. (2.1) to (2.4) on the operatorsF , L, andR.
From (2.9) withi = 2 and the fact thatv−

1 = −(λ + 1)v+
1 , we find

l+2 = (λ + 1)(a1 − c2 − λ + 1) + b1. (4.5)

SinceX is P-polynomial, we can write

A2 = 1

c2

(
A2

1 − k I − a1A1
)

and this together with (2.7) results in

f ++
2 = a1 − c2 − λ (4.6)

f −+
2 = −c2. (4.7)

Now apply (2.4) tov+
1 , and consider coefficients ofv+

2 . This results in the equation

(ρ + 2)l +2 + e+
2 c2l

+
3 + f ++

2
2 + f −+

2 f +−
2 − ρλ f ++

2 + λ2 − γ ( f ++
2 + λ) − δ = 0

which we may consider as being linear in the unknownsf +−
2 and l+3 ; everything else

is known as a function ofq, d, α, and β. Solving simultaneously with the equation
f +−
2 − l+3 + b2 = 0 from (4.1), we find

f +−
2 = 0 (4.8)

l+3 = b2. (4.9)

Similarly, apply (2.4) tov+
1 and consider the coefficients ofv−

2 to get a linear equation
in l −3 and f −−

2

e+
2 c2l

−
3 + f ++

2 f −+
2 + f −+

2 f −−
2 − ρλ f −+

2 − γ f −+
2 = 0.

Solving simultaneously withf −−
2 − l−3 − a2 − c2 + c3 = 0 from (4.2), we find

f −−
2 = q(λ − a1) + a2 (4.10)

l −3 = q(λ − a1) + c3 − c2. (4.11)
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Apply (2.2) tov+
1 , and consider the coefficient ofv+

3 resulting in the equation

g−
3 c2λ + f ++

2 c2 + f −+
2 r +

2 + g+
3 c2 f ++

3 − γ c2 = 0

which may be solved simultaneously with

f ++
3 − r +

2 + c3 − a2 − c2 = 0,

and the coefficient ofv−
3 resulting in the equation

f −+
2 r −

2 + g+
3 c2 f −+

3 = 0

which may be solved simultaneously with

f −+
3 − r −

2 + c3 = 0.

The results are

f ++
3 = q(a1 − λ) + k − b3

q2 + q + 1
− c3

= −(λ + 1)q + a2 + c2 − c3 (4.12)

r +
2 = q(a1 − λ) − k + b2 + k − b3

q2 + q + 1
= −(λ + 1)q (4.13)

f −+
3 = −q2 − q

q2 + q + 1
c3 (4.14)

r −
2 = c3

q2 + q + 1
. (4.15)

Finally, apply (2.4) tov+
2 and consider the coefficient ofv+

3 to obtain

0 = e−
3 l+2 c2 + (ρ + 2)

(
l+3 c2

2 + l−3 c2r
+
2

) + e+
3 c2c3l

+
4 + c2 f ++

3
2 + c2 f −+

3 f +−
3

− ρ( f ++
2 f ++

3 c2 + f ++
3 f −+

2 r +
2 + f +−

3 f −+
2 r −

2 ) + c2
(

f ++
2

2 + f −+
2 f +−

2

)
+ r +

2 f −+
2 ( f ++

2 + f −−
2 ) − γ (c2 f ++

3 + c2 f ++
2 + f −+

2 r +
2 ) − δc2.

Solving this simultaneously with the equation

f +−
3 − l+4 + b3 = 0,

we find

f +−
3 = 0 (4.16)

l+4 = b3. (4.17)

Now we can showf +−
i = 0 for all i .
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Apply (2.1) tov−
i , 4 ≤ i ≤ d − 1, and consider the coefficients ofv+

i −2. The resulting
equation is

g−
i bi bi −1 f +−

i −2 + bi f +−
i −1 l+i −1 + g+

i f +−
i l+i l+i −1 = 0 (4 ≤ i ≤ d − 1).

Note also that by (4.1),l+i = f +−
i −1 + bi −1. Now inductively, starting withf +−

2 = f +−
3 = 0

and hencel +3 = b2, l+4 = b3, we can show thatf +−
i = 0 (and hencel+i +1 = bi ). 2

Corollary 4.3 If X has classical parameters, then W has a ladder basis.

Proof: By Theorem 4.2,v−
2 andv−

3 are eigenvectors withLv−
3 ∈ span{v−

2 }. Now by
Proposition 3.2,W has a ladder basis. 2

5. The entries of the matrix

In this section, we give our computational results about the entries of the matrix forA1|W
with respect to both the Terwilliger and ladder bases.

5.1. The matrix with respect to the Terwilliger basis

Theorem 5.1 SupposeX has classical parameters. Then the entries of A1|W with respect
to the Terwilliger basis, using the notation of Section4.1, are given by

l+2 = (λ + 1)(a1 − c2 − λ + 1) + b1 (5.1)

f ++
i = qi −2(a1 − λ) +

[ i −2
1

][ i
1

] (k − bi ) − ci (2 ≤ i ≤ d) (5.2)

f −−
i = qi −1(λ − a1) + ai (2 ≤ i ≤ d − 1) (5.3)

f +−
i = 0 (2 ≤ i ≤ d − 1) (5.4)

f −+
i =

([ i −2
1

][ i
1

] − 1

)
ci (2 ≤ i ≤ d − 1) (5.5)

l+i = bi −1 (3 ≤ i ≤ d) (5.6)

l−i = qi −2(λ − a1) + ci − ci −1 (3 ≤ i ≤ d) (5.7)

r +
i = qi −1(a1 − λ) − k + bi +

[ i −1
1

][ i +1
1

] (k − bi +1) (2 ≤ i ≤ d − 1) (5.8)

r −
i =

[ i −1
1

][ i +1
1

]ci +1 (2 ≤ i ≤ d − 2). (5.9)

Proof: We will make extensive use of the intermediate calculations in the proof of
Theorem 4.2.
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The formula (5.1) is just (4.5).
To find (5.2) and (5.3), we apply Theorem 3.3; we can do this sinceW has a ladder basis,

andE∗
i W has eigenvaluesf ++

i and f −−
i . Here,λ−

1 = λ, andλ−
2 = q(λ − a1) + a2, hence

f −−
i = λ−

i

= − (θ∗
i − θ∗

2 )(θ∗
i − θ∗

1 )γ

(θ∗
i +1 − θ∗

i )(θ∗
i − θ∗

i −1)
+ (θ∗

3 − θ∗
2 )(θ∗

i − θ∗
1 )

(θ∗
i +1 − θ∗

i )(θ∗
i − θ∗

i −1)
(q(λ − a1) + a2)

− (θ∗
1 − θ∗

0 )(θ∗
i − θ∗

2 )

(θ∗
i +1 − θ∗

i )(θ∗
i − θ∗

i −1)
λ

= − (qi − q)(qi − q2)

q2(q − 1)2
γ + qi (qi − q)

q3(q − 1)
(q(λ − a1) + a2) − qi (qi − q2)

q2(q − 1)
λ

and using the values ofγ , a1, anda2 for classical parameters, we can check that this equals
(5.3). Using (4.2), we also get (5.7).

f ++
i = λ+

i can be calculated similarly. From (4.6),f ++
2 = λ+

2 = a1 − c2 − λ and
from (4.12), f ++

3 = λ+
3 = −(λ + 1)q + a2 + c2 − c3, soλ+

1 = (γ − λ+
2 − g+

3 λ+
3 )/g−

3 =
−(λ + 1 + q)/q. Now (5.2) follows from Theorem 3.3.

Using (4.3), we also get (5.8) fori ≤ d − 2; the casei = d − 1 can be checked directly
using (2.8).

To show (5.9), we use another recursive equation. Apply (2.2) tov+
i −1, 3 ≤ i ≤ d − 2,

and consider the coefficients ofv−
i +1. The resulting equation is

g−
i +1 f −+

i −1r −
i −1r

−
i + ci −1 f −+

i r −
i + g+

i +1ci ci −1 f −+
i +1 = 0.

By (4.4), f −+
i = r −

i −1 − ci for i ≥ 2. Hence substituting this and the values ofg+
i +1 and

g−
i +1 for classical parameters and solving forr −

i , we have for 3≤ i ≤ d − 1

r −
i = ci −1ci ci +1

q3(r −
i −2 − ci −1)r

−
i −1 + ci ci −1 − q(q + 1)(r −

i −1 − ci )ci −1
. (5.10)

It is easily checked that (5.9) satisfies this equation. 2

Corollary 5.2 SupposeX has classical parameters. For2 ≤ i ≤ d − 1,

i. f −+
i 6= 0

ii. f ++
i − f −−

i 6= 0.

Proof: Sinceci 6= 0, it follows from (5.5) thatf −+
i 6= 0. F is symmetric, and henceF |E∗

i W

is diagonalizable, and has eigenvaluesf ++
i and f −−

i by Theorem 4.2. Iff ++
i = f −−

i , this
implies f −+

i = 0, a contradiction. 2

We can also write all entries in terms of thed, q, α, β, andλ.
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Corollary 5.3 If X has classical parameters(d, q, α, β), then

l +2 = −λ2 +
{([

d
1

]
− q − 2

)
α + β − q − 2

}
λ − (q + 1)α +

[
d
1

]
β − q − 1

f ++
i =

(
qi

[
d − i

1

]
−

[
i − 1

1

]) [
i − 1

1

]
α +

[
i − 1

1

]
(β − 1) − qi −2(λ + q + 1)

f −−
i =

(
qi

[
d − i

1

]
−

[
i + 1

1

]) [
i − 1

1

]
α +

[
i − 1

1

]
(β − 1) + qi −1λ

f +−
i = 0

f −+
i = −qi −2(q + 1)

(
α

[
i − 1

1

]
+ 1

)
l+i = qi −1

[
d − i + 1

1

] (
β − α

[
i − 1

1

])
for i ≥ 3

l−i = qi −2

{ ([
i − 1

1

]
− qi

[
d − i

1

])
α − β + λ + q + 1

}
r +

i = −qi −1(λ + 1)

r −
i =

[
i − 1

1

] (
1 +

[
i
1

]
α

)
.

5.2. The matrix with respect to the ladder basis

We will assume thatX has classical parameters(d, q, α, β). By Corollary 5.2,f ++
i 6= f −−

i ,
and the eigenvectors ofF |W are orthogonal. Let

w−
i = v−

i (1 ≤ i ≤ d − 1)

w+
i = ci[ i

1

](
f ++
i − f −−

i

f −+
i

v+
i + v−

i

)
(2 ≤ i ≤ d − 1)

w+
d = cd[ d

1

](
λ + 1 − q

[ d−1
1

]
α

1 + [ d−1
1

]
α

)
v+

d .

Note that

f ++
i − f −−

i

f −+
i

= λ + 1 − q
[ i −1

1

]
α

1 + [ i −1
1

]
α

,

so (sincev−
d = 0),w+

d follows the same formula as the other vectorsw+
i . By Theorem 2.7,

w+
d 6= 0.
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It is easily checked thatw+
i andw−

i are eigenvectors forF , and that

Lw−
i = bi w

−
i −1.

By Lemma 3.1,Rw+
i ∈ span{w+

i +1}. The coefficient ofv−
i +1 in Rw+

i is

r −
i ci[ i
1

] =
[ i −1

1

]
ci +1ci[ i +1

1

][ i
1

] ,

hence

Rw+
i =

[ i −1
1

][ i
1

] ci w
+
i +1.

Therefore{w−
1 , w+

2 , w−
2 , . . . , w+

d−1, w−
d−1, w+

d } is a ladder basis forX .
For this basis, we use the notation

Lw+
i = σ+

i w+
i −1 + σ−

i w−
i −1 (3 ≤ i ≤ d)

Lw+
2 = σ−

2 w−
1

Rw−
i = τ+

i w+
i +1 + τ−

i w−
i +1 (1 ≤ i ≤ d − 2)

Rw−
d−1 = τ+

d−1w
+
d .

So A1|W has matrix with respect to this basis given by

λ−
1 σ−

2 b2

τ+
1 λ+

2 0 σ+
3 0

τ−
1 0 λ−

2 σ−
3 b3

c2
q+1 τ+

2 λ+
3 0 σ+

4 0

0 τ−
2 0 λ−

3 σ−
4 b4

. . .
. . .

. . .

λ+
d−1 0 σ+

d

0 λ−
d−1 σ−

d[ d−2
1

][ d−1
1

]cd−1 τ+
d−1 λ+

d



.

Now, using Theorem 5.1, and the equations

v+
i = f −+

i

f ++
i − f −−

i

([ i
1

]
ci

w+
i − w−

i

)
v−

i = w−
i ,

we can easily calculate the entries of this matrix.
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Theorem 5.4 With notation as above,

λ+
i =

(
qi

[
d − i

1

]
−

[
i − 1

1

]) [
i − 1

1

]
α +

[
i − 1

1

]
(β − 1) − qi −2(λ + q + 1)

(2 ≤ i ≤ d)

λ−
i =

(
qi

[
d − i

1

]
−

[
i + 1

1

]) [
i − 1

1

]
α +

[
i − 1

1

]
(β − 1) + qi −1λ

(1 ≤ i ≤ d − 1)

σ+
i = qi −1

[ d+1−i
1

](
β − [ i −1

1

]
α
)(

λ + 1 − q
[ i −1

1

]
α
)(

λ + 1 − q
[ i −2

1

]
α
) (3 ≤ i ≤ d)

σ−
i = qi −2(q + λ + 1)(λ + 1 + α − β)

(
λ + 1 − q

[ d−1
1

]
α
)(

λ + 1 − q
[ i −2

1

]
α
) (2 ≤ i ≤ d)

τ+
i = qi −1(λ + 1)

q
[ i

1

]
α − (λ + 1)

(1 ≤ i ≤ d − 1)

τ−
i =

[ i
1

]([ i
1

]
α + 1

)(
λ + 1 − q

[ i −1
1

]
α
)

λ + 1 − q
[ i

1

]
α

(1 ≤ i ≤ d − 2).

6. Examples

The irreducible modules of endpoint 1 are determined up to isomorphism by the eigenvalues
of the graph on the first subconstituent01(x), sinceE∗

1 A1E∗
1 is the adjacency matrix of this

graph. In this section, we consider three families of P- and Q-polynomial schemes which
are not thin: the bilinear forms schemes, the Hermitean forms schemes, and the alternating
forms schemes. For each, we find the eigenvalues of01(x) and then use the results of
Section 5 to find the entries ofA1|W for each nonthin irreducible moduleW of endpoint 1.
We use [2] as a reference for these schemes.

The only other known P- and Q-polynomial schemes of diameter≥6 which are not thin
are the Doob schemes and the quadratic forms schemes [4]. All irreducible modules for the
Doob schemes were determined by Tanabe [3]. The case of the quadratic forms schemes
appears to be much more difficult.

6.1. The bilinear forms schemes

Let X be the set ofd × n matrices overGF(q), d ≤ n. Define matricesM andN to have
relationi if rk(M − N) = i . This gives a P- and Q-polynomial scheme, called thebilinear
forms scheme, which has classical parameter(d, q, α, β) with α = q − 1 andβ = qn − 1.

The automorphism group acts transitively on this scheme, therefore the structure ofT(x)

is independent ofx.
Assumed ≥ 3.
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Theorem 6.1 The induced subgraph on01(x) for the bilinear forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoint 0), or a thin or nonthin irreducible module of endpoint1.

Note that two of the eigenvalues coincide if d= n, and that−1 does not occur as an
eigenvalue if q= 2.

eigenvalue multiplicity corresponding module

qd + qn − q − 2 1 trivial

qn − q − 1 qd−q
q−1 thin

qd − q − 1 qn−q
q−1 thin

−1 (qd−1)(qn−1)(q−2)

(q−1)2 thin

−q (qd−q)(qn−q)

(q−1)2 nonthin

Proof: We may assumex = 0, thed × n zero matrix, so01(x) has as vertices the set of
all d × n matrices of rank 1. Any rank 1 matrixM can be written uniquely asM = µuvt ,
whereµ ∈ GF(q)∗, andu andv ared andn-tuples respectively with first nonzero entry
equal to 1.

SupposeM = µuvt . ClearlyM is adjacent toµ1u1v
t
1 if u = u1 or v = v1. The number

of such matrices is equal toa1, hence this characterizes the matrices adjacent toM . (This
could also be easily checked using the distance-transitivity of the automorphism group and
suitableu andv.)

Given any suchu andv, {µuvt | µ ∈ GF(q)∗} forms a clique in01(x), and the vertices
of two such cliques are either all adjacent or all nonadjacent. We can therefore form a
quotient graph on the(q

d−1)(qn−1)

(q−1)2 cliques of this form. The quotient graph has adjacency
matrix

B = (J − I ) ⊗ I + I ⊗ (J − I ).

This matrix has eigenvaluesq
n+qd−2q

q−1 , qn−1
q−1 − 2, qd−1

q−1 − 2, and−2 of multiplicity 1, qd−q
q−1 ,

qn−q
q−1 , and (qd−q)(qn−q)

(q−1)2 , respectively.
Now 01(x) has adjacency matrixB ⊗ Jq−1 + I ⊗ (J − I ), and the result follows. 2

SupposeW is the unique nonthin irreducible module. Using Theorems 5.1 and 5.4, we
can find the matrix ofA1|W with respect to either the Terwilliger basis or the ladder basis
of Section 5.2.

The eigenvalues ofF on E∗
i W are given by

λ+
i = f ++

i =
[

i − 1
1

]
(qd + qn − qi − 1) −

[
i
1

]
qi −2

λ−
i = f −−

i =
[

i − 1
1

]
(qd + qn − qi − 1) −

[
i
1

]
qi

whereλ = λ−
1 .
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For the Terwilliger basis, the other entries of the matrix ofA1|W are

l+2 = (qd − q2 + q − 1)(qn − q2 + q − 1)

q − 1
+ q2 − q

f +−
i = 0

f −+
i = −(q + 1)q2i −3

l+i = (qn − qi −1)(qd − qi −1)

q − 1

l−i = −qi −2(qn + qd − qi − qi −1 − 1)

r +
i = qi −1(q − 1)

r −
i = qi

[
i − 1

1

]
.

For the ladder basis given in Section 5.2, the other entries ofA1|W are

σ+
i = (qd − qi −1)(qn − qi −1)(qi − 1)

(q − 1)(qi −1 − 1)

σ−
i = −qi −1(qd − 1)(qn − 1)

(qi − q)

τ+
i = −qi −1(q − 1)

qi +1 − 1

τ−
i = qi (qi − 1)2

(q − 1)(qi +1 − 1)
.

6.2. The Hermitean forms schemes

Let X be the set ofd×d Hermitean matrices overGF(r 2), wherer is a prime power. Define
matricesM andN to have relationi if rk(M − N) = i . This gives a P- and Q-polynomial
scheme, called theHermitean forms scheme, which has classical paramters(d, q, α, β),
with q = −r , α = −r − 1, andβ = −(−r )d − 1.

The automorphism group of this scheme acts transitively, therefore the structure ofT(x)

is independent of the choice ofx.
Assumed ≥ 3.

Theorem 6.2 The induced subgraph on01(x) for the Hermitean forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoint0), or a thin or nonthin irreducible module of endpoint1.

Note that if r = 2, −1 does not occur as an eigenvalue.



                 
P1: VTL/PCY P2: VTL/SRK P3: VTL/SRK QC:

Journal of Algebraic Combinatorics KL507-04-Hobart November 7, 1997 9:18

72 HOBART AND ITO

eigenvalue multiplicity corresponding module

r − 2 1 trivial

r − 2 r 2d−r 2

r 2−1 nonthin

−1 (r 2d−1)(r −2)

r 2−1 thin

Proof: It follows immediately from [6], Theorem 2.12, that01(x) is a disjoint union of
r 2d−1
r 2−1 cliques of sizer − 1. 2

As in Section 6.1, we now give the entries of the matrixA1|W for the Terwilliger basis
and ladder basis, in terms ofq andd. Recall thatq = −r .

The eigenvalues ofF on E∗
i W are

λ+
i = f ++

i = −
[

i − 1
1

]
qi −1(q + 1) −

[
i − 2

1

]
λ−

i = f −−
i = −

[
i
1

]
(qi + qi −1 + 1)

whereλ = λ−
1 .

The other entries for the Terwilliger basis are

l+2 = −(q2d − q4)

q − 1
+ q2 − 1

f +−
i = 0

f −+
i = −(q + 1)q2i −3

l+i = −(qd − qi −1)(qd + qi −1)

q − 1

l −i = qi −2(qi + qi −1 − 1)

r +
i = qi −1(q + 1)

r −
i = qi

[
i − 1

1

]
.

The other entries for the ladder basis given in Section 5.2 are

σ+
i = −(qi + 1)(q2d − q2i −2)

(q − 1)(qi −1 + 1)

σ−
i = −qi −2(q2d − 1)

qi −1 + 1

τ+
i = −qi −1(q + 1)

qi +1 + 1

τ−
i = qi (qi − 1)(qi + 1)

(q − 1)(qi +1 + 1)
.
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6.3. The alternating forms schemes

Let X be the set ofn × n skew-symmetric matrices with 0 diagonal overGF(r ); note that
such matrices have even rank. Two matricesM andN have relationi if rk(M − N) = 2i .
This defines thealternating forms scheme, which is a P- and Q-polynomial scheme with
classical parametersd = bn/2c, q = r 2, α = r 2 − 1, andβ = r m − 1, wherem = 2d − 1
if n = 2d, andm = 2d + 1 if n = 2d + 1.

Since the automorphism group is transitive, the structure of the Terwilliger algebraT(x)

for the scheme is independent of the choice ofx.
Assumed ≥ 3.
The following lemma about ranks follows from some easy matrix theory; or see [2],

Lemmas 9.5.4 and 9.5.5.

Lemma 6.3 Let M1 and M2 be skew symmetric matrices of rank m1 and m2, respectively.
(i) If ker(M1) + ker(M2) = GF(r )n, thenker(M1 − M2) = ker(M1) ∩ ker(M2).
(ii) rk(M1 − M2) = m1 + m2 if and only if GF(r )n = ker(M1) + ker(M2).

Theorem 6.4 The induced subgraph on01(x) for the alternating forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoint0), or a thin or nonthin irreducible module of endpoint1.

Note that if r = 2, then−1 does not occur as an eigenvalue.
eigenvalue multiplicity corresponding module

r n + r n−1 − r 2 − 2 1 trivial

r n−1 − r 2 − 1 r n−r
r −1 thin

−1 (r −2)(r n−1)(r n−1−1)

(r 2−1)(r −1)
thin

−r 2 + r − 1 (r n−1)(r n−1−r 2)

(r 2−1)(r −1)
nonthin

Proof: Since the automorphism group is transitive, we can assumex = 0, the zero matrix.
Thus the vertices of01(x) are the matrices ofX of rank 2.

If M and N are two distinct such matrices, rk(M − N) = 2 or 4. By Lemma 6.3,
rk(M − N) = 4, andM andN are not adjacent, if and only ifGF(r )n = ker(M)+ker(N).
Thus M and N are adjacent if and only if dim(ker(M) + ker(N)) < n. Given ann − 2
dimensional subspaceS, the set of matrices inX with kernelS forms a clique of sizer − 1
in 01(x) and the vertices of two such cliques are either all adjacent or all nonadjacent.

As in the proof of Theorem 6.1, we now form the quotient graph on the [n
2]r cliques,

identifying each with the subspace which is the common kernel. This graph has as vertices
the subspace ofGF(r )n of dimensionn−2, and two subspaces are adjacent if they intersect
in a subspace of dimensionn − 3. But this is isomorphic to ther -Johnson graph on the
two-dimensional subspaces ofGF(r )n, and has as eigenvaluesr (r +1)(r n−2−1)

r −1 , r 2(r n−3−1)

r −1 − 1,
and−r − 1, with multiplicities 1, r n−r

r −1 , and (r n−1)(r n−1−r 2)

(r 2−1)(r −1)
, respectively.

If the quotient graph has adjacency matrixB, then01(x) has adjacency matrixB ⊗ Jr −1+
I ⊗ (J − I ), and the result follows. 2
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Below are the entries ofA1|W with respect to both bases. Recall that [n
2]r 2 = 1+ r 2 +· · ·

+r 2(i −1) andq = r 2; we use this notation here to show the similarities with the previous
two examples. Also, note that{2d, m} = {n, n−1} for both even and oddn, and this allows
us to treat both the even and odd cases together.

The eigenvalues ofF on E∗
i W are

λ+
i = f ++

i =
[

i − 1
1

]
r 2

(r n + r n−1 − r 2i ) −
[

2i − 2
1

]
r 2

− r 2i −3

λ−
i = f −−

i =
[

i − 1
1

]
r 2

(r n + r n−1 − r 2i ) −
[

2i
1

]
r 2

+ r 2i −1

whereλ = λ−
1 .

The other entries for the Terwilliger basis are

l+2 = (r n − r 4)(r n−1 − r 4)

r 2 − 1
+ r n+1 + r n − r 5 − r 2

f +−
i = 0

f −+
i = −r 4i −6(r 2 + 1)

l+i = (r n − r 2i −2)(r n−1 − r 2i −2)

r 2 − 1

l−i = −r 2i −4(r n + r n−1 − r 2i − r 2i −2 − r )

r +
i = r 2i −1(r − 1)

r −
i = r 2i

[
i − 1

1

]
r 2

.

The other entries for the ladder basis given in Section 5.2 are

σ+
i = (r 2i −1 − 1)(r n − r 2i −2)(r n−1 − r 2i −2)

(r 2 − 1)(r 2i −3 − 1)

σ−
i = −r 2i −2(r n−1 − 1)(r n−2 − 1)

r 2i −3 − 1

τ+
i = −r 2i −2(r − 1)

r 2i +1 − 1

τ−
i = r 2i (r 2i − 1)(r 2i −1 − 1)

(r 2 − 1)(r 2i +1 − 1)
.
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