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Abstract. Building on the work of Terwilliger, we find the structure of nonthin irreduciblenodules of endpoint

1 for P- and Q-polynomial association schemes with classical parameters. The isomorphism class of such a giver
module is determined by the intersection numbers of the scheme and one additional parameter which must be a
eigenvalue for the first subconstituent graph. We show that these modules always have what we call a ladder basi:
and find the structure explicitly for the bilinear, Hermitean, and alternating forms schemes.
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1. Introduction

The study of Terwilliger algebras for association schemes was begun by Terwilliger in
[4], where they are called subconstituent algebras. These nhoncommutative algebras ar
generated by the Bose-Mesner algebra of the scheme, together with matrices containin
local information about the structure with respect to a fixed vertex. It is expected that these
algebras will contribute significantly to the classification of P- and Q-polynomial schemes.

The irreducible modules for thin P- and Q-polynomial schemes were thoroughly inves-
tigated by Terwilliger in [4]. Roughly speaking, he shows that such modules inherit the
P-and Q-polynomial property and have structures described by Askey—Wilson polynomials
related to those of the scheme. He also relates thinness to the combinatorial structure of th
scheme.

Little is known about nonthin irreducible modules, and their structures seem to be much
more complicated. For one particular family of schemes, the Doob schemes, all irreducible
modules were found by Tanabe [3]. However for the classical forms schemes (bilinear,
alternating, Hermitean, and quadratic forms), which for diametare the other known
examples of nonthin P- and Q-polynomial association schemes [4], the irreducible modules
have not yet been determined.

Some basic theory for the case of endpoint 1, is found in Terwilliger's unpublished lecture
notes [5]. In particular, he shows that the isomorphism classes of modules are determinec
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by the eigenvalues of the subgraph on the first subconstituent, and that they are only &
little larger than thin modules, in the sense that they intersect the distand®spaces in
dimension 2 for 2< i < d — 1 and dimension 1 far= 1 andi = d.

In this paper, we consider only schemes with classical parameters; for these schemes
we describe the nonthin irreducible modules of endpoint 1. We show that for classical
parameters, there exists a particularly nice basis for any nonthin irreducible module of
endpoint 1, which we call ladder basis Such bases were first shown to exist for modules
of the Doob schemes in [3]; part of the motivation for our work was a question of Terwilliger
as to whether such bases exist in general. In fact, we show something stronger: for classice
parameters, half of the elements of a ladder basis are multiples of elements of the basit
given in [5] (theTerwilliger basig. We also find the matrix for the action of the adjacency
matrix A; on the module, with respect to both the Terwilliger and ladder bases.

All the known examples of P- and Q-polynomial schemes with diameéewhich are
not thin have classical parameters. They are also self-dual, and so have what we may cal
dual classical parameters for the Q-polynomial, or dual, structure. Since our methods are
algebraic rather than combinatorial, the theorems have dual versions (desévjlnsgead
of A;) for schemes with dual classical parameters. However, we do not explore this further
in this paper.

Terwilliger algebras contain a lot of information about the scheme, possibly enough to re-
construct the scheme ifitis P- and Q-polynomial. However, the determination of all nonthin
modules is extremely difficult in general. The advantage of investigating irreducible mod-
ules of endpoint 1 is that they are small enough to be manageable, but still can be expecte:
to reflect the nature of the local structure in the scheme. We hope that the investigation
of irreducible modules of small endpoint, together with combinatorial methods, will be
sufficient to finish the classification of P- and Q-polynomial schemes.

The organization of the paper is as follows. Section 2 gives definitions and a summary
of previous results from [4] and [5]. In Section 3, we define the term ladder basis, and give
necessary and sufficient conditions for existence. Section 4 shows that if the scheme ha
classical parameters, any nonthin irreduciblenodule of endpoint 1 for the scheme has a
ladder basis. In Section 5, we explicitly find the action/gfon the module, with respect
to both the Terwilliger and ladder bases. The final section is devoted to examples: we find
the eigenvalues of the subgraph on the first subconstituent for the bilinear, alternating, anc
Hermitean forms schemes, and use these to determine the nonthin irreducible endpoint :
modules.

2. Terwilliger algebras
In this section, we review the definition and basic results for Terwilliger algebras from [4]

and [5]. The books [1] and [2] are basic references for P- and Q-polynomial association
schemes.

2.1. Definitions and notation

Let X = (X, {R }o<i<d) be a commutative association scheme wlittiasses. As usual, let
A be the adjacency matrix for relatid®, A the linear span ofAg, Ay, ..., Aq} overC,
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that is, the Bose-Mesner algebra, a{lﬁﬂ}i"zo the set of primitive idempotents of. E; is
the projection onto theth common eigenspace of the adjacency matrices.

Fix x € X. LetTj(x) be theith subconstituent ot’, sol';(X) = {y € X | (X, Y) € Ri}.
Define Ef = E(x) € Matx(C) to be the| X| x |X]| diagonal matrix with(y, y) entry 1
if (X,y) € R and 0 otherwise. Th&erwilliger algebra T = T(x) is the subalgebra of
Maty (C) generated byA, ..., A4, E§, ..., Ej}.

LetV = CXI be the unitary space ov€r with an orthonormal basis which we identify
with X, and inner product ,). V is a module forT, called thestandard module For
0 <i =d,V hasasubspadé* = V,*(x) with basisT’; (x); E is the orthogonal projection
ontoV;*.

T is semi-simple, sov decomposes into an orthogonal direct sum of irreducible
T-modules. In this paper, eadhrmodule will be considered as a submoduleVvgfwe
can do this sinc# is faithful.

An irreducibleT-moduleW is thin if dim(E*W) < 1 for alli. Theendpointof W is
min{i : E'W # 0} (note that this is called thdual endpointin [4]). There is a unique
irreducible T-module of endpoint 0, called theivial module it is thin and has basis
{Ef1:0<i <dj}, wherel is the vector of all 1’s.

Throughout the paper, we will assumé = (X, {R }o<i<d) iS @ P- and Q-polynomial
scheme of diametat > 3. As usual, we denote the intersection numbersby;, and
G, whereg; = [I'i(x) N T1(Y)|, b = [Tiy2(x) N Ta(y)|, andci = [Ti_1(x) N T1(y)| for
y € I (X). We also lek = |T'1(x)|, the valency of the graph. Lé#;} be the eigenvalues
and{6;*} the dual eigenvalues of, so Ay = > 6, E; andE; = % Y0rA. Itis well
known that there exists a nonzero constant Q such that [1]

i3 —0i42) —pBijzo— 6+ (Gi1—6)=0 (O=<i=<d-3
03— 052 — PO — 05D+ 07, —6)=0 (0=<i=d-3).

wherep = q+q~1.

It is convenient to defing andg;* for all integers by the above recurrence. Note that
6; (and similarlyg;) are distinct for O< i < d, but they may not be so in general.

As in [2], we say thatY’ hasclassical parameter&d, g, «, 8) if X’ has diameted and
intersection numbers

(B e
cizm<1+a[‘zl]) ©<i=<d,

where [i] = [i]q =1+9+09%2+---+qltis the usuabi-binomial coefficient. In this
case, the eigenvalues and dual eigenvalues sétisfy

9i=q—ibi—[i1] O=<i=<ad

o =05+ 0; -0y [ @=i <0
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Fix x € X, and writeT = T(x), E" = E(X), andV;* = V;*(x). Let

e

F= EfALES (theflat operatop
o

R= E" 1AE" (theraise operatoy
|§O

L= E* ;A E (thelower operato}.

=

Note thatF, L, Re T,andA; = F + L + R. F is a symmetric 01 matrix, andR and
L are 0, 1 matrices such thet = L.

We will use extensively the following relations on these operators, which were given in
[4] in a slightly different form.

Proposition 2.1 ([4], Lemmas 5.5 and 5.6)

(0 FL24+LFL+g'L’F —yLHE =0 (2<i <d) (2.1)
(0" R°F+ RFR+g'FRE - yR)E' ,=0 (2<i<d) (2.2)

(& RL*+ (p +2LRL+g'L?R+ LF? — pFLF
+FL—y(LF+FL)—8L)Ef =0 (1<i<d) (2.3)

(& RL+ (0 +2)RLR+€'LR* + F’R— pFRF
+RF2—y(FR+RF) —8RE" ;=0 (1<i<d) (2.4)

where
p:q+q—1=9i —9i+*1+9ii2—9i+3 O<i<d—3
9i+1_9i+2

Yy =6 —pbiy1+ 02 O<i=zd-2
8§ =07 —p6ibia+0634, —y@6i +611) (0<i<d-1,

which are constants independent paind

e :
- 4=2 8 2<j<d
: 6, —6F e=1=9
g = A0 oi<d)
o — 67,
o — 074
ei+ — w 1<i<d.

o =674
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If X has classical parameteis, g, o, ), the above are given by

p=d+q
y=q"la+8-1+

- D

+m+n%d%+w—nﬂ

a—B+1

_ —?

Y q+1

-1
- =
9 a@+1)
& =-a@+1
-@g+1
A

2.2. Irreducible modules of endpoint 1

We now summarize the relevant results of [5] and [7] about irreducible modules of end-
point 1.

LetU; be the subspace o which is orthogonal td. Note thatU; is the subspace of
V;* which is orthogonal to the trivial module, and herfegT E; acts onJ;'.

Theorem 2.2 ([5]) Let W be an irreducible T-module of endpoint Then EW is a
one-dimensional subspace of Uln particular, any nonzera € EfW is an eigenvector
of Ef A1E}, and W= Tv. Converselyletv e U; be an eigenvector of B\ Ef. Then
Tw is an irreducible T-module of endpoifht

Theorem 2.3 ([5]) Letw, v' € Uf be eigenvectors for FA1E; with corresponding
eigenvalues., A’. Then Tv and Tv" are isomorphic as T -modules if and onlyi= 1.

Let W = Twv be an irreducibleél -module of endpoint 1, where is an eigenvector of
E} A E] acting onU;'. Define

Ui+ = Ei*Ai_]_U
Ur = Ei*Ai+1U.
Theorem 2.4 ([5]) The set of vector® = vy, vJ, vy, ..., v] 1, vy 1, vg} Spansw. It

is a basis for W if W is not thin. In particulaif W is not thin dim EfW = 2 for
2<i<d-1 anddim EfW = 1fori = 1,d.
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Theorem 2.5 ([7]) Suppose W is a honthin irreducible T-module of endphifithen the
following maps are nonsingular.

R|Ei*W:Ei*W—> E;k+1W 2<i<d-2
Llgew:EfW — Ef ;W 3<i<d-1
Thebasigv = v, vy, vy, ..., v4 4, vg_q, vg } Will be called theTerwilliger basisfor W.
The following lemma gives some easy consequences of the definition of these vectors.
Note thatvg, vy, vy, andvg, , are all the zero vector.

Lemma2.6 (5]) Forl<i <d,

Ruv" = Civitrl (2.5)
Ly, =by_, (2.6)
EfAv = —v" — v (2.7)
Ful = Ry + @-1+C-1— Gy —civy (2.8)
Ly = Fo; +bi_a; + (6 —a-1 — G-,y (2.9)

For classical parameters, the following theorem tells exactly which modules are thin.

Theorem 2.7 ([5]) Supposet’ has classical parameter@l, g, «, 8). Letv € U be an
eigenvector for EA;E] with eigenvalue.. The irreducible module # of endpointl is
thin if and only if

Le {—1,—q—1,,3—a—1,aq|:d11:|—1}.

3. Ladder bases

In this section, we describe a particularly nice sort of basis for a nonthin irreducible module
of endpoint 1, which we will call a ladder basis. We will then give criteria for the existence
of such a basis.

Throughout Sections 3 to 5, we assume thais a nonthin irreduciblé -module of
endpoint 1, and is a nonzero vector ilE;W. Thenv is an eigenvector foE; AE}, and
we denote the corresponding eigenvalue.by Theorem 2.2\W = T.

3.1. Criteria for existence

A ladder basisfor W is an orthogonal basisv;, wy, w,, ..., wg 5, wy 4, wg} which
satisfies the following.

() EfW = spadw;", w}.
(i) w;t, w; are eigenvectors fdF.
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(iiiy For2 <i <d—1,

Ruw;" € sparfw;, ,}
Lw;” € spafw;_,}.

If the eigenvalues of on E;*W are distinct, then the corresponding eigenvectors are
automatically orthogonal. In this case, the following lemma shows that it is enough to
check one of the properties of (iii).

Lemma 3.1 Suppose i is a fixed integer with < i < d — 2, and w;", w;, w,,

w;,, are mutually orthogonal vectors such that\® = sparfw;", w;'} and E' ;W =
sparfw;’,;, w4}
Then Lw;,, € sparfw;"} if and only if Ru;" € sparfw;",,}.

Proof:  Since(w;", w;") = 0 = (w4, w,), it follows thathI+1 € spafw; } if and
only if (Lw; 4, w ) = 0. But(Lw,, w;") = (w,,, Rw"), so this occurs if and only if
Ruw;" € spar{w|+1} g

We can now use this and the relations on the oper#&iots andR to show that we only
need to check a few eigenvectors to see if a ladder basis exists.

Proposition 3.2 The following are equivalent.
() W has a ladder basis.
(i) There exist eigenvectors] and w3 for F such thatw; € E3W, wj € E;W, and
Rw] € sparfwj}.
(iii) There exist eigenvectots, andw; for F such thatw, € E;W, w; € E}W, and
Lwy € sparfw, }.

Proof:

(i = iii): SinceF is symmetric, there exist eigenvectars andw; suchthaE;W = sparfw;,
wy }, (wl, wy) =0, E5W =spadw3, wy } and(wj, wy)=0. By Lemma 3.1Lw; €
sparfws, }.

(iii = ii): Similar.

(i=ii): Clear.

(i = i): Definew;" inductively byw;" = Rw;" ;,4 <i < d—1, andletw] be any nonzero
vector of E;W. By Theorem 2.5w;" # 0 fori < d.

Supposey;” ; andw;t , are elgenvectors foF, with eigenvalues;” ; andA;" ,, respec-
tively. Applying the operator of (2.2) to;" ,, we find

g A 2u) +k, 1u) +gI —wa:O.

Sincegfr is nonzeroF w;" € spaw;"}, andw;" is an eigenvector foF . Since dimE;W
=1, wg is an eigenvector foF andRwj ; € spar{w;} So the sefwy, wy, ..., wi}is
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half of a ladder basis. Now choos¢ an eigenvector foF so thatE;"W = spafw;", w;"}
and(w;", w;) = 0, and we are finished by Lemma 3.1. O

3.2. Eigenvalues of F

Supposdw;, wy, w, ..., wi 4, wy 5, wi} is aladder basis fow, and that{A;"} and
{7} are the corresponding eigenvaluesfao" = A w;", andFw,” = A, w;". Note that
A1 = A. For convenience, we will define

)\+_ V_)‘;_g;—)‘;
1 — — )
93

wherey, g3, andg; are as in Proposition 2.1.

Theorem 3.3 The eigenvalues” and;” (3 <i < d — 1) of F are given in terms of;,
A3, A7, andx; as follows

_ =G =06 — 01) — *2(03 = )G — 01) + (01 — 6) (G — 67))

(O, — 60 — 0y

Aj

(3.1)
where either
(H) A=4r" @2<i<d-1,
or
(=) rxi=A (@2=<i<d-1.
If g4 # 0, then this formula applies forg also.

Proof of Theorem 3.3: Note that in any case we can fing using t(Asjw) = > A" +
YA =042 Y0 6 + 64, 0

Proof: The equation
O hi2+ria+gAa—y=0 @B=<i=<d (3.2)

holds in either case. To see this for), i > 4, apply (2.2) tow;" ,; fori = 3, it holds
by definition ofA]. For (—), apply (2.1) tow;". If g # 0 (which holds at least for
2 <i < d —1), this determines; recursively.
It is easy to check that (3.1) is a solution to this equation. However, we will give below

a method for solving the recursion.
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Substitute the values fag~ andg;" into (3.2); this results in the equation

(O = 0% — (671 = 67 )2 -2) — (6 = 6 Dhi-a — (6 — 67 i 2)
+ O — 6 )y =0. (3.3)

Summing (3.3) for = 31toj,

07,1 — O — (071 — 07 _Dhj_1 — (03 — 0)h2 + (0 — O
+y(O0F + 07, — 05 —67) =0, (3.4)

which holds for 2< j < d.
Defineu; by

A = ad
L 07— 0D -0y

and let
o =—(03 — )2+ (6] — 05)A1 — v (65 + 67),
so (3.4) becomes
wi =i+ y (072 =07%) +o0; — 07 ) =0. (3.5)

Summing (3.5) from 2 to results in

i —p1+y (0% =052 + o6 — 07) =0,

from which the theorem follows. O

4. The Terwilliger basis

Recall that the Terwilliger basi® = vi", v3, v, ..., v4 1, vg_4, v4} of W is defined by
v" = EfAi_1v, v = Ef A1qv. Occasionally it is useful to lat; = Ej Aov andvy = 0.
It follows from (2.7) thatv; = (—A — Dyv.

In this section, we find explicitly the action o&; on v and v, and show that an
association scheme with classical parameters must have a ladder basis.
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4.1. Notation
We will use the following notation for entries & |w.
Ry =rfvh i+, @<i<d-2
Rug_q =rd_qvq
LviJr =|i+vitl+|i_vi:1 B<i=<d
Lvg = 15vf
Folf = frot+ f7hy  (2<i<d-1)
Fom=f" vt +f v @<i<d-1)
Fog = fitvg
Note thatFv] = Av;, and from (2.6)Lv, = bv; = (=1 — Dbpvy". We knowRv;" and
Ly, from Lemma 2.6.
Thus, with respect to the Terwilliger basi&; |w has matrix

Loy =+ Db

(I A f, I3 0

0 fy- I; b
C ry ft £ 1y 0
0 ry fs© f3~ 1y b

++  f+— +
fd—1 fd—l Id

_+ —_—
fdfl 1:d—l Id

1ty i

Lemmad4.1l For2<i<d-1,
ff-=1%.—b 4.2)
fr" =1 +a+G—G (4.2)
ff =r",+a_1+c_1—¢ (4.3)
f~" =r_,—c, wherer; =0. (4.4)
Proof: This follows directly from (2.8) and (2.9). |

The remainder of this section will be restricted to the case of classical parameters. The
methods here clearly give formulae in the general P- and Q-polynomial case for the entries
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of Az|w, however they are quite complicated. We expect to consider the general case using
a different approach in a subsequent paper.

4.2. Showing a ladder basis exists

Theorem 4.2 Supposet has classical parameters. Thefi f = 0, and hence)” is an
eigenvector for F2 <i <d — 1.

Proof:  We first show thatf,~ and f;"~ are equal to 0.
Most of the calculations use Egs. (2.1) to (2.4) on the operdots andR.
From (2.9) withi = 2 and the fact that; = —(1 + 1)v]", we find
T =(+D@—Cc—Ar+1)+hb. (4.5)
SinceX is P-polynomial, we can write

p=t (A2 —KI —agAy)
C2

and this together with (2.7) results in

f2++:a.1—02—)\ (46)
7+ = —c 4.7)

Now apply (2.4) tov], and consider coefficients of . This results in the equation
(p+2NF +e5cld + 152+ 17 6 — paf T A2~y (T +2) —6=0
which we may consider as being linear in the unknowisis and|]; everything else
is known as a function of], d, «, and 8. Solving simultaneously with the equation

;= —13 + b, = 0 from (4.1), we find

fr= =0 (4.8)
17 = by (4.9)

Similarly, apply (2.4) tov; and consider the coefficients of to get a linear equation
inly andf,

&Cly + T+, —paf, T —yfy P =0.
Solving simultaneously wittf, ™ — I3 — a, — ¢2 4 ¢3 = 0 from (4.2), we find

f, =0 —a) +a (4.10)
I3 =q( —ap) +Cc3—Ca. (4.112)
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Apply (2.2) tov;, and consider the coefficient of resulting in the equation

gCh+ f e+ f ) +gdcf —ye, =0

which may be solved simultaneously with
fit—rf+c—a—c=0,

and the coefficient of; resulting in the equation
fyry +05cf; 7 =0

which may be solved simultaneously with
fg"—r, +c3=0.

The results are

—bg
fit = a— A — — C;
3 q(l )+q2+q+1 3
=—AXA+Dg+a+c—cC3 (412)
kK —bs
rf=q@a—-2)—-k+thh+—""—=—0+1 4.13
2 =d@ —A) +2+q2+Q+1 (A + D (4.13)
_ -9°—q
S s B 4.14
P T gPtq+l (4.14)
C3

. — 4.15
27 tq+1 (4.15)

Finally, apply (2.4) tav; and consider the coefficient of to obtain
0=elico+ (p+ (13 +15¢r]) + el cacal) + ot o+ ety t ity
— (S e+ £y + 1 1) + e SRR P f,77)
+ri (T + ) = vt e ff T+ £ — e,
Solving this simultaneously with the equation
f3+_ —u_ + b3 =0,
we find
fy7=0 (4.16)
I; = bs. (4.17)

Now we can showf,"~ = 0 for alli.
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Apply (2.1) tov, 4 < i < d — 1, and consider the coefficientsgf ,. The resulting
equation is

g bb_1ff+bfl +g I, =0 @4<i<d-1.

Note also that by (4.1);" = f,"7 +bi_1. Now inductively, starting withf, = = f;/~ =0
and hencéj = by, I; = bs, we can show thaf, "~ = 0 (and hencg’, ; = b) O

Corollary 4.3 If X has classical parameterthen W has a ladder basis.

Proof: By Theorem 4.2p, andv; are eigenvectors withv; < sparfv, }. Now by
Proposition 3.2W has a ladder basis. ]

5. The entries of the matrix

In this section, we give our computational results about the entries of the mate figr
with respect to both the Terwilliger and ladder bases.

5.1. The matrix with respect to the Terwilliger basis

Theorem 5.1 Supposéet has classical parameters. Then the entries gfyAwith respect
to the Terwilliger basisusing the notation of Sectighl, are given by

=Gx+D@—-c—1+1)+b (5.1)
i—2
T =q %@ - [[il]] —b)—q 2<i=<d (5.2)
1
fro=dth—a)+a 2<i<d-1 (5.3)
fr==0 2<i=d-1 (5.4)
['7]
ft = [il] —1]¢ 2<i<d-1 (5.5)
1
Im=Dbi_1 @B=i=zd (5.6)
I =qd" 2 —a)+c —ciy @B=i=d (5.7)
i—1
+=qi_l(al—)\)—k+bi+%(k_bi+l) 2<i<d-1 (5.8)
1
i—1
= ﬁml 2<i=<d-2). (5.9)
1

Proof: We will make extensive use of the intermediate calculations in the proof of
Theorem 4.2.
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The formula (5.1) is just (4.5).
To find (5.2) and (5.3), we apply Theorem 3.3; we can do this siti¢es a ladder basis,
andE;W has eigenvalue§ ™" and f,"~. Here,A] = A, andx, = q(x — &) + a, hence

fi__ = )\.l_
& = 0@ — 6Dy (05— 0567 —6)
=- + h—ag) +
T I U o T
(0 — 65)6; — 6)
071 — 096" =07
@-a@ -9, d9@ - q@ -9

Pa-12 VT ggoy @t @t - na Ty

and using the values ¢f, a;, anda, for classical parameters, we can check that this equals
(5.3). Using (4.2), we also get (5.7).

f** = A" can be calculated similarly. From (4.6), " = A = ay — ¢, — A and
from (4.12),f;* = A3 = —(A+ D+ ax +C, — €3, S0A] = (y — A — g3A) /g5 =
—(A+1+4q)/q. Now (5.2) follows from Theorem 3.3.

Using (4.3), we also get (5.8) for< d — 2; the casé = d — 1 can be checked directly
using (2.8).

To show (5.9), we use another recursive equation. Apply (2.2ftg3 <i <d — 2,
and consider the coefficients gf, ;. The resulting equation is

G fiariar +Gafi ' +glcaafii =0

By (4.4), " =r_, —ci fori > 2. Hence substituting this and the valuesygf, and
g, for classical parameters and solving for, we have for 3<i <d -1

M= _ Ci-1GiCiy1 _ . (5.10)
Q3(r_, —G_I_; +GG_1— @+ D(r_; —G)C_1
It is easily checked that (5.9) satisfies this equation. a

Corollary 5.2 Supposet has classical parameters. Far<i <d — 1,
i. 77 #0
i. fft—f—#0.

Proof: Sinceg # 0, itfollowsfrom (5.5) than‘i‘Jr # 0. Fissymmetric, and hend€|e:w
is diagonalizable, and has eigenvaldgs” and f,”~ by Theorem 4.2. Iff,** = f,~~, this
implies f~" = 0, a contradiction. O

We can also write all entries in terms of teq, «, 8, anda.
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Corollary 5.3 If X has classical paramete(sl, g, «, 8), then

|;=—A2+{<[ﬂ—q—2>a+ﬁ—q—2}k—(q+l)a+[ﬂﬁ—q—l
R G B e e B e
Ui )| B P e

ftr= =0

et 1)
] 1) s
| (el oo

)

5.2. The matrix with respect to the ladder basis

We will assume that’ has classical parametéts g, «, 8). By Corollary 5.2,f,+ # .,
and the eigenvectors &f|\y are orthogonal. Let

wy = v 1l<i=<d-D1
_ A
wi+= CI_' %vﬁ'+vi_> 2<i<d-1
[1] fi
wt = 3 —A+1—q[d11](x vy,
TN 1+ )
Note that
- a+1-q[' e
fr 1+ [i_ll]ot 7

so (sincevy = 0), wy follows the same formula as the other vectofs. By Theorem 2.7,
+
wy # 0.
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It is easily checked that;" andw;™ are eigenvectors fdF, and that

Lw, =bw_;.

By Lemma 3.1Rw;" € spafw;’,

ric _ [5]eae

L] [PI0D
hence

Rut — ['zllqwm

N

— + —
Therefore{wy , w3, wy, ..

if.1}. The coefficient ob_ , in Rw;" is

L w4, wg_q, wh} is aladder basis fok'.

For this basis, we use the notation

Lu)|+ = O‘i+u)i+_1 +0‘iiwi7_1 (3 < | < d)
Lwjf = oy wy
Ruw; = rfwf;l +rw,, A= i<d-2

- o+
Rwy_q = t4_qwy -

So Aj|lw has matrix with respect to this basis given by

Al o, b
i A 0 of O
i 0 A, o5 bs
qc—jl 7 Ay O
0 w, 0 A3

JI 0
(74_ b4
g 0
0 Ag_1
[“°]
Lci1 74,

we can easily calculate the entries of this matrix.
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Theorem 5.4 With notation as above

= (@ e e e raey
2<i=<d

= (@D e e e
l<i<d-1

i—1[d+1-i i-1 i—1

ot = 4 [T ](ﬂ_[l]“)ig’\2+1_Q[1]“) G<i<d
(t+1-a["s"]e)
i—2 B _ 4[d-1
oo = I°@+A+ DO+ 14 a i_ﬁ;)(x+1 q[“; ) 2<i<d)
(A +1-a["]e)

i-1
= Azizd-1
q[l]a_()“+1)

- _ LG+ 1)+ 21—y o)
A+1-q[;]e

1l<i<d-2.

6. Examples

The irreducible modules of endpoint 1 are determined up to isomorphism by the eigenvalues
of the graph on the first subconstitugnix), sinceE; A, EJ is the adjacency matrix of this
graph. In this section, we consider three families of P- and Q-polynomial schemes which
are not thin: the bilinear forms schemes, the Hermitean forms schemes, and the alternatin
forms schemes. For each, we find the eigenvalueis; ¢f) and then use the results of
Section 5 to find the entries &% |w for each nonthin irreducible modul®& of endpoint 1.
We use [2] as a reference for these schemes.

The only other known P- and Q-polynomial schemes of diameéewhich are not thin
are the Doob schemes and the quadratic forms schemes [4]. All irreducible modules for the
Doob schemes were determined by Tanabe [3]. The case of the quadratic forms scheme
appears to be much more difficult.

6.1. The bilinear forms schemes

Let X be the set ofl x n matrices oveGF(q), d < n. Define matriceM andN to have
relationi if rk (M — N) = i. This gives a P- and Q-polynomial scheme, calledditiaear
forms schemewhich has classical parameter, g, «, 8) withae = q— 1 andg =q" — 1.
The automorphism group acts transitively on this scheme, therefore the structi(ee of
is independent of.
Assumed > 3.
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Theorem 6.1 The induced subgraph dm (x) for the bilinear forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoint 9, or a thin or nonthin irreducible module of endpoiht

Note that two of the eigenvalues coincide itdn, and that—1 does not occur as an
eigenvalue if g= 2.

eigenvalue multiplicity corresponding module
g +q"-q-2 1 trivial
qQ"—q-1 q(::f‘ thin
Q@ -q-1 %"_*f thin
-1 <q“71>(<(;4:)12>(q—2) thin
—q 7@1?&%"2‘“) nonthin

Proof: We may assumeg = 0, thed x n zero matrix, sd"1(x) has as vertices the set of
all d x n matrices of rank 1. Any rank 1 matriM can be written uniquely a§l = puvt,
whereu € GF(q)*, andu andv ared andn-tuples respectively with first nonzero entry
equal to 1.

SupposeM = puvt. ClearlyM is adjacent tquiuqv} if u = uy or v = v1. The number
of such matrices is equal |, hence this characterizes the matrices adjacekt.t¢This
could also be easily checked using the distance-transitivity of the automorphism group and
suitableu andv.)

Given any suchi andv, {uuvt | € GF(g)*} forms a clique im1(x), and the vertices
of two such cliques are either all adjacent or all nonadjacent. We can therefore form a
quotient graph on thé“% cliques of this form. The quotient graph has adjacency
matrix

B=UJ-DHl+1®0-1).

This matrix has eigenvaluegsnz—cfl—zm qq”_—ll -2, ‘};T‘ll — 2, and-2 of multiplicity 1, ‘g’%f
n d n .
= and%, respectively.
Now I'1(x) has adjacency matriB ® Jy—1 + | ® (J — 1), and the result follows. O

SupposeéN is the unique nonthin irreducible module. Using Theorems 5.1 and 5.4, we
can find the matrix ofA;|w with respect to either the Terwilliger basis or the ladder basis

of Section 5.2.
The eigenvalues dof on E;"W are given by

M= = [i _11}(q"+q”—qi —D—[”q“z
A= fi“=['11}(qd+q“—qi—1)—['1}q‘

wherea = 7.
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For the Terwilliger basis, the other entries of the matrix®efy are

(q"—q"’+q—1)(q”—qz+q—1)Jr

I =
2 q—l

9°—q
ff==0
7t =—@+ 19?3

o @ —d @’ -gh

| q_l
T =-d72@"+q"-d —qg* -1
nt=9q7'@-1

ri=¢P11}

For the ladder basis given in Section 5.2, the other entrids gf are

S+ @ —dHE —gHe -1

b @-D@-1-1
oo 9@ =@ -9
! @ —-q
ot = _qiil(q — 1)
1 qi+1 _ 1
. d@ -1?

i T Q-D@rt-1

6.2. The Hermitean forms schemes

Let X be the set ofl x d Hermitean matrices ové F (r 2), wherer is a prime power. Define
matricesM andN to have relation if rk(M — N) = i. This gives a P- and Q-polynomial
scheme, called thelermitean forms schem&hich has classical paramted, q, «, B),
withqg = —r,a = —r —1,andg = —(—r)4 — 1.

The automorphism group of this scheme acts transitively, therefore the structuge)of
is independent of the choice »f

Assumed > 3.

Theorem 6.2 The induced subgraph dry (x) for the Hermitean forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoin®), or a thin or nonthin irreducible module of endpoiht

Note that if r= 2, —1 does not occur as an eigenvalue.
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eigenvalue multiplicity corresponding module

r—2 1 trivial
r—2 r:‘;:rlz nonthin
-1 pe—p thin

Proof: It follows immediately from [6], Theorem 2.12, th&t (x) is a disjoint union of

2d . .
L=t cliques of size — 1. o

As in Section 6.1, we now give the entries of the matkipty for the Terwilliger basis
and ladder basis, in terms gfandd. Recall thag = —r.
The eigenvalues dof on E/'W are

i—17 .
M=ﬁ“=—[1}q1m+b—[l]

A= = —[il}(qi +971+1)

whereia = 7.

The other entries for the Terwilliger basis are
|+ _ _(qu B q4)
F=——

q-—1
ff= =0
frt=-@+Dng*°
o —@-ahEl+dh

i q _ 1
|- = q-2q +9-1-1)
n=d7'@+1

rf:szl}

The other entries for the ladder basis given in Section 5.2 are

. —@+D@E*-g??

+0?-1

T T -D@ T+

~_ 9% -

O =T Sit1i.1
qg-1+1

9@+

[ qi+1+1

~ 9@ -1H@+1
' @-1H@*t+1°
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6.3. The alternating forms schemes

Let X be the set oh x n skew-symmetric matrices with 0 diagonal o¥&F (r ); note that
such matrices have even rank. Two matritésandN have relation if rk(M — N) = 2i.
This defines thalternating forms schemevhich is a P- and Q-polynomial scheme with
classical parametets= |n/2|,q=r%a =r2—1,andg =r™ — 1, wheren=2d — 1
if n=2d,andm=2d + 1ifn=2d + 1.

Since the automorphism group is transitive, the structure of the Terwilliger algékya
for the scheme is independent of the choice of

Assumed > 3.

The following lemma about ranks follows from some easy matrix theory; or see [2],
Lemmas 9.5.4 and 9.5.5.

Lemma6.3 Let M; and M, be skew symmetric matrices of rank and m, respectively.
(i) If ker(My) + ker(M3) = GF(r)", thenker(M; — My) = ker(M;) N ker(M5).
(i) rk(M1 — M) = my + myif and only if GF(r)" = ker(M1) + ker(My).

Theorem 6.4 The induced subgraph dmn (x) for the alternating forms scheme has eigen-
values and multiplicities as shown below. We also show whether the corresponding module
is the trivial module(of endpoin®), or a thin or nonthin irreducible module of endpoiht

Note that if r= 2, then—1 does not occur as an eigenvalue.

eigenvalue multiplicity corresponding module
r4r1_r2_2 1 trivial
rm-1_y2_1 o thin
-1 (r —2()r(£ iz)l()r(r_”l’)l -1 thin
—r24r—1 7“"(;21_)(1’):;1_*1;2) nonthin

Proof: Since the automorphism group is transitive, we can assugm@, the zero matrix.
Thus the vertices df'1(x) are the matrices oX of rank 2.

If M and N are two distinct such matrices,(d — N) = 2 or 4. By Lemma 6.3,
rk(M — N) = 4, andM andN are not adjacent, if and only@ F(r)" = ker(M) + ker(N).
ThusM andN are adjacent if and only if digker(M) + ker(N)) < n. Given ann — 2
dimensional subspac® the set of matrices iX with kernelSforms a clique of size — 1
in I'1(x) and the vertices of two such cliques are either all adjacent or all nonadjacent.

As in the proof of Theorem 6.1, we now form the quotient graph on glje gliques,
identifying each with the subspace which is the common kernel. This graph has as vertices
the subspace @& F(r)" of dimensiom — 2, and two subspaces are adjacent if they intersect
in a subspace of dimension— 3. But this is isomorphic to the-Johnson graph on the
two-dimensional subspaces@fF (r)", and has as eigenvalutsrC==h 72D _ g
and—r — 1, with multiplicities 1,"=F, and%, respectively.
Ifthe quotient graph has adjacency ma@ixthenl; (x) has adjacency matrB ® J, _1+

| ® (J — 1), and the result follows. O
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Below are the entries o4 |w with respect to both bases. Recall th%\]t,ﬁ =14r24...
+r20-1 andq = r?; we use this notation here to show the similarities with the previous
two examples. Also, note thé2d, m} = {n, n— 1} for both even and odd, and this allows
us to treat both the even and odd cases together.

The eigenvalues df on E;*W are

)\‘4’ — f.++ — I -1 (rn+rn—1_r2i) _ 2I 2 _r2i—3
I I 1 2 2

1
e e I D I e N 2i-1
A =1 _[ 1 L(r +r r<) 1 r2+r
wherei = A7.
The other entries for the Terwilliger basis are
(rn _ r4)(rn71 _ r4)

|+= +rn+1+rn_r5_r2
2 ra—1

ff= =0

= —r4-6(2 4 1)
. (r" —r2-2)(n-1_2-2)
i r2_1
|- = —r2-4n p -l 222y

= r2-1 — 1)

B ]
o=t |: 1 :|r2.

The other entries for the ladder basis given in Section 5.2 are

. (r2i—1_1)(rn_r2i—2)(rn—l_r2i—2)
&= (- D= -1)
_r2i72(rnfl _ 1)(rn72 _ 1)

% = r2-3_1
S+ —ra=2r — 1)
[ r2i+li _ 1
_ r2 (r2i _ 1)(r2i—1 1
[ (I’z—l)(l’2i+1—l)
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