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Abstract. Let D be a(v, k, λ) difference set over an abelian groupG with evenn = k − λ. Assume thatt ∈ N
satisfies the congruencest ≡ q fi

i (mod exp(G)) for each prime divisorqi of n/2 and some integerfi . In [4] it was
shown thatt is a multiplier ofD provided thatn > λ, (n/2, λ) = 1 and(n/2, v) = 1. In this paper we show that
the conditionn > λ may be removed. As a corollary we obtain that in the case ofn = 2pa when p is a prime,p
should be a multiplier ofD. This answers an open question mentioned in [2].
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1. Introduction

Let G be a finite abelian group with unit 1, where the group operation is written multiplica-
tively. We use exp(G) to denote an exponent ofG andZG for a group algebra ofG over
integers.

For an arbitraryX = ∑
g∈G xgg ∈ ZG andm ∈ Z, we setX(m) = ∑

g∈G xggm. If
(m, |G|) = 1, then the mappingX → X(m) is an automorphism of the group algebraZG.

An integerm is calleda (numerical) multiplier of X if X(m) = Xg for a suitableg ∈ G.

If T is a subset ofG, then we use the same letter for the element
∑

t∈T t ∈ ZG. In what
follows we use a notation|X|, X ∈ ZG for a sum of all coefficients ofX. The mapping
X → |X| is a homomorphism ofZ-algebras. It satisfies the equalityXG = |X|G.

A subsetT of G is calleda (v, k, λ)-difference setif it satisfies the equality

T T(−1) = n + λG (1)

wheren = k − λ, k = |T |, v = |G|.
In 1967 Mann and Zaremba proved the following (Theorem 4 in [4]).

Theorem 1.1 Let G be an abelian group and D be a difference set over G with parameters
(v, k, λ). Assume that n= 2m, (m, |G|) = 1, (m, λ) = 1, n > λ and for some t∈ N,

t ≡ q fi
i (mod exp(G)) for every prime divisor qi of m and some integer fi . Then t is a

multiplier.

In this paper we prove

Theorem 1.2 Theorem1.1 remains true if we remove the condition n> λ.
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As a consequence we obtain the following

Corollary 1.1 Let D a (v, k, λ)-difference set and n= 2pm for some odd prime p,
(p, |G|) = 1. Then p is a multiplier of D.

This claim answers an open question from [2].
In [5] the following situation was studied. LetD be an abelian difference set over a group

G. Assume thatn = k−λ = 3m where(m, |G|) = 1 and there exists an integert satisfying
t ≡ q fi

i (mod exp(G)) for each prime divisorqi of m. In the case of(|G|, 3 · 13) = 1 Qiu
Weisheng proved in [5] thatt is a multiplier of D provided that one of six conditions of
Theorem 5 of [5] holds. Here we strengthen his result and prove the following claim.

Theorem 1.3 Let D be a(v, k, λ)-difference set over an abelian group G. Assume that
n = k − λ = 3m with (m, |G|) = 1 and t be an integer satisfying the congruence
t ≡ q fi

i (mod exp(G)) for each prime divisor qi of n and a suitable exponent fi . If t is not a
multiplier of D, then m is a square and exactly one of the following conditions is satisfied.
(i) 11 ‖ |G| and for each prime divisor p of|G| ordp(t) is even if p= 11 and odd

otherwise; t2 is a multiplier of D;
(ii) 13 ‖ |G| and for each prime divisor p of|G| ordp(t) is even if p= 13 and odd

otherwise; t4 is a multiplier of D.

2. Basic facts

In what followsG∗ will stand for a group of permutations acting onG which consists of
all mappingsg → gm, (m, |G|) = 1. It is a well-known fact thatG∗ ∼= Z∗

exp(G) and two
numbersm1, m2 ∈ G∗ induce the same permutation if and only ifm1 ≡ m2(mod exp(G)).

For two natural numbersn, λ we denoteD(n, λ) = {X ∈ ZG | X X(−1) = n + λG}.
Clearly,X ∈ D(n, λ) implies|X|2 = n + λ|G|.

If X = ∑
g∈G xgg ∈ ZG andY = ∑

g∈G ygg ∈ ZG, then we writeX ≡ Y(modm), m ∈
Z if xg ≡ yg(modm) holds for allg ∈ G.

First we list a few elementary properties of elements fromD(n, λ). We omit proofs, since
they are straightforward.

Proposition 2.1 An integer t is a multiplier of X∈ D(n, λ) if and only if X(t)X(−1) −
λG = ng, g ∈ G.

Proposition 2.2 For any X, Y ∈ D(n, λ), |x| |y| > 0 it holds that XY− λG ∈ D(n2, 0).

The setD(n2, 0) contains elements of the form±ng, g ∈ G. Following [5] we call these
elementstrivial .

Proposition 2.3 Let X = ∑
g∈G xgg ∈ D(n2, 0). If all xg are non-negative, then X =

ng, g ∈ G (i.e., X is trivial).
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Proof: The equationX X(−1) = n2 implies
∑

g∈G x2
g = n2 and

∑
g∈G xg = n.

If X is non-trivial, then there are at least twog 6= h ∈ G with non-zeroxg andxh. Since
all x f are non-negative,gh−1 6= 1 appears in the productX X(−1) with positive coefficient,
a contradiction. 2

Proposition 2.4 Let X = ∑
g∈G xgg ∈ D(n2, 0). If X ≡ 0(modn), then X= ±ng, g ∈

G (i.e., X is trivial).

Proof: By assumptionX = nY, Y ∈ ZG, implying Y Y(−1) = 1. Let yg, g ∈ G be the
coefficients ofY. Then

∑
g∈G y2

g = 1. Now the claim is evident. 2

Next claim plays the central role in this chapter. In fact, it is the straight consequence of
Lemma 7.5 from [3]. Nevertheless, we prefer to give here an independent original proof.

Lemma 2.5 Let X ∈ D(n, λ) for some n, λ ∈ Z. Let p | n be a prime divisor relatively
prime to|G|. Then for any j∈ Z, X(pj )X(−1) − λG ≡ 0(mod pa), where pa ‖ n.

Proof: It is sufficient to prove the claim only for non-negativej .
Defineb to be the maximal natural number satisfying the property

∀ j ∈ Z+, X(pj )X(−1) − λG ≡ 0(mod pb).

It is clear that our claim is equivalent to the inequalityb ≥ a.1

By the definition ofb there existsj ∈ Z+ such that

X(pj )X(−1) − λG ≡ 0(mod pb),

X(pj )X(−1) − λG 6≡ 0(mod pb+1).

In other words,X(pj )X(−1) − λG = pbY, whereY ∈ ZG satisfiesY 6≡ 0(mod p). The
direct computations give us

Y(pj )Y = 1

p2b

(
X(pj )X(−1) − λG

)(pj )(
X(pj )X(−1) − λG

)
= 1

p2b

(
X(p2 j )X(−pj ) − λG

)(
X(pj )X(−1) − λG

)
= n

pb

X(p2 j )X(−1) − λG

pb
.

By the definition ofb,

X(p2 j )X(−1) − λG

pb
∈ ZG.
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Thus we haveY(pj )Y = n
pb Z, Z ∈ ZG. If b < a, thenYpj +1 ≡ Y(pj )Y ≡ 0(mod p),

i.e., Y is nilpotent in the group algebraFpG. But this algebra is semisimple, therefore
Y ≡ 0(mod p), a contradiction. 2

As a corollary we obtain the following statement whose parts (i) and (ii) are equivalent
to Lemma 2 of [5].

Lemma 2.6 Let X ∈ D(n, λ) and let m| n be a divisor of n relatively prime to|G|.
Assume also that there exists an integer t satisfying the following condition:

For every prime p dividing m there exists an integer j such that pj ≡ t (mod exp(G)).
Then there exists Yt ∈ ZG such that

(i) X(t)X(−1) − λG = mYt ;
(ii) YtY

(−1)
t = ( n

m)2;
(iii) XYt = (n/m)X(t).

Proof: (i)–(ii) Let p | m be a prime. By assumptionX(t) = X(pj ). Now Lemma 2.5
gives usX(pj )X(−1) − λG ≡ 0(mod pb), pb ‖ n. ThusX(t)X(−1) − λG ≡ 0(mod pb) for
every primep dividing m. This impliesX(t)X(−1) − λG = mYt for someYt ∈ ZG. By
Proposition 2.2 we have(mYt )(mYt )

(−1) = n2, whenceYtY
(−1)
t = (n/m)2.

To get (iii) it is sufficient to multiply both sides of the identityX(t)X(−1) − λG = mYt

by X and to collect the terms. 2

Using this lemma and Proposition 2.3 one can easily prove the well-knownSecond Mul-
tiplier Theorem.

Second Multiplier Theorem Keep the assumptions of the previous claim. If, in addition,
m > λ, then t is a multiplier of X.

Proof: Consider the equalityX(t)X(−1) − λG = mYt , Yt ∈ ZG, which holds due to (i)
of Lemma 2.6. We claim thatm > λ implies that all coefficients ofYt are non-negative.
Indeed, if it is not the case, then the minimal coefficient in the right side of the equality is
less or equal to−m. On the other hand the minimal coefficient in the left part is greater or
equal to−λ > −m. Contradiction.

Since coefficients ofYt are non-negative, part (ii) of Lemma 2.6 together with Proposi-
tion 2.3 yieldYt = (n/m)g, g ∈ G, whenceX(t)X(−1) − λG = ng. By Proposition 2.1,t
is a multiplier ofX. 2

Lemma 2.7 Let X ∈ D(n, λ), (n, |G|) = 1. Assume that X= X(−1)g, g ∈ G. Then n is
a square.

Proof: This is a direct consequence of Theorem 7.2 from [3]. 2
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3. Multipliers

Lemma 3.1 Let X ∈ ZG be an element satisfying the equation Xk = nkh for some
k ∈ N, h ∈ G. Then(n, |G|) = 1 implies X= ±ng for some g∈ G.

Proof: Denote byd the greatest common divisor of the coefficients ofX. We can write
that X = dY, Y ∈ ZG. It is clear that the greatest common divisor of the coefficients of
Y is equal to one andYk = mkh, m = n/d. Our proof will be finished if we show that
Y = ±g, g ∈ G. If m 6= 1, then a primep | m gives us the congruenceYk ≡ 0(mod p).
But (p, |G|) = 1, whenceY ≡ 0(mod p). Hencep divides the greatest common divisor
of the coefficients ofY, a contradiction. Hencem = ±1 andYk = ±h. This implies that
Y ∈ ZG is a unit ofZG. Hence, (see Corollary 37.6 [1])Y = ±g, g ∈ G. 2

Corollary 3.2 Let X ∈ ZG be an element invertible inQG. Assume that for some t∈ G∗

there exists Y∈ ZG such that XY= |Y|X(t), (|Y|, |G|) = 1. If t is a multiplier of Y, then
t is also a multiplier of X.

Proof: Sincet is a multiplier ofY, Y(t) = hY, h ∈ G. Let l be a natural number such that
t l is a multiplier ofX, i.e., X(t l ) = Xg, g ∈ G. One can write the sequence of equalities:

|Y|X(t) = h1Y X
|Y|X(t2) = h2Y X(t)

· = ·
· = ·
· = ·

|Y|X(t l ) = hl Y X(t l−1),

whereh1 = 1, h2 = h, . . . , hl are elements ofG. SinceX(t l ) = Xg, g ∈ G, we have

|Y|l X(t)X(t2) . . . X(t l−1)X = (h1h2 . . . hl g
−1)Yl X X(t)X(t2) . . . X(t l−1).

SinceX is invertible inQG, we obtainh|Y|l = Yl , h ∈ G. By the previous statement
Y = ±|Y|g, g ∈ G. Taking into account that|g| = 1, we getY = |Y|g. After substitution
of Y = |Y|g into the equality|Y|X(t) = Y X and cancelling of|Y| we getX(t) = gX. 2

In what follows, byMH (X) whereX ∈ ZG and H ≤ G∗ we denote a subgroup ofH
consisting of all multipliers ofX, i.e.,

MH (X) = {
t ∈ H | X(t) = gt X, gt ∈ G

}
.

Theorem 3.1 Let X ∈ D(n, λ), (n, |G|) = 1. Take any t ∈ G∗ and denote Yt =
X(t)X(−1) − λG. Then

M〈t〉(X) = M〈t〉(Yt ).
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Proof: By definition ofYt M〈t〉(X) ⊂ M〈t〉(Yt ). To prove the inverse inclusion we multiply
both sides of the equalityYt = X(t)X(−1) − λG by X. After simple transformations we
obtain

|Yt |X(t) = Yt X. (2)

The groupM〈t〉(Yt ) is cyclic, hence it has a generator, sayt l for somel (i.e.,Y(t l )
t = gYt ).

To finish the proof we have to show thatt l is a multiplier of X. Applying t to (2) l − 1
times we obtain

|Yt |X(t) = Yt X
|Yt |X(t2) = Y(t)

t X(t)

· · ·
· · ·
· · ·

|Yt |X(t l ) = Y(t l−1)
t X(t l−1)

By multiplication of all these equalities we obtain

|Yt |l X(t l )
(
X(t l−1) . . . X(t)

) = Yt . . . Y(t l−1)
t X

(
X(t) . . . X(t l−1)

)
.

Since(n, |G|) = 1, n + λ|G| 6= 0 which implies thatX is invertible inQG. Hence one
can cancel the common factors in the both sides of the latter equality. This gives

|Yt |l X(t l ) = (
Yt . . . Y(t l−1)

t

)
X. (3)

We claim thatt (and, therefore,t l ) is a multiplier of the elementYt . . . Y(t l−1)
t . Indeed,(

Yt . . . Y(t l−1)
t

)(t) = Y(t)
t . . . Y(t l )

t = Y(t)
t . . . Y(t l−1)

t Yt g = g
(
Yt . . . Y(t l−1)

t

)
.

Since|Yt · . . . · Y(t l−1)
t | = |Yt |l = nl is relatively prime to|G|, the equality (3) shows thatX

andt l satisfy the condition of Corollary 3.2. Hencet l is a multiplier ofX. 2

To formulate next results we need an additional notation. For any elementX = ∑
g∈G xgg

∈ ZG by [X], we denote a subgroup generated by a set{gh−1 | xg 6= 0 andxh 6= 0}.

Lemma 3.3 Let X ∈ D(n, λ), (n, |G|) = 1. Define Yt = X(t)X(−1) − λG, t ∈ G∗.
Assume that n is a non-square. Then the permutationḡ → ḡt , ḡ ∈ G/[Yt ] is of odd order.

Proof: Sincen is a non-square,|G| is odd. Denote the natural projectionG → G/[Yt ]
by f . Considerf (X). It is clear thatf (X) satisfies the equationf (X) f (X)(−1) = n+ λ̄ Ḡ
(hereḠ = G/[Yt ], λ̄ = λ|[Yt ]|). One can easily find thatf (Yt ) = |Yt |ḡ, for a suitable
ḡ ∈ Ḡ. Applying f to both sides of the identity|Yt |X(t) = Yt X we obtainf (X)(t) = ḡ f (X),
i.e., t is a multiplier of f (X).
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To prove the claim let us assume the contrary, i.e.,t2m ≡ 1(mod exp(Ḡ)) and tm 6≡
1(mod exp(G)). Denotetm by s. SinceḠ is of odd order ands2 ≡ 1(mod exp(Ḡ)), the
groupḠ is a direct product̄G = Ḡ1 × Ḡ−1 whereḠa = {ḡ∈ Ḡ | ḡs = ḡa}, a = ± 1. Since
s 6≡ 1(mod exp(Ḡ)), Ḡ−1 is nontrivial.

Let h : Ḡ → Ḡ−1 be a natural projection. DenoteZ = h( f (X)). It is clear thatZ
satisfies the equationZ Z(−1) = n + µḠ−1, µ ∈ Z. Since t is a multiplier of f (X),
Z(t) = Zg, g ∈ Ḡ−1. From here, it follows thatuZ = Z(tm) = Z(s) = Z(−1) for a suitable
u ∈ Ḡ−1. In other words−1 is a multplier ofZ. Due to Lemma 2.7n should be a square,
a contradiction. 2

Corollary 3.4 Keep the notations and the assumptions of the previous statement. Suppose,

in addition, that [Yt ] is a subgroup of a prime order, say p. If t is of even order modulo p,

then p‖ |G|.

Proof: This is rather simple, so we omit. 2

4. Proof of Theorem 1.3

In this sectionX always denotes a(v, k, λ)-difference set over an abelian groupG. As we
mentioned before,X ∈ D(n, λ) wheren = k − λ. In what follows we assume that there
exists a divisorm of n such that

(i) (m, |G|) = 1;
(ii) There exists a numbert such that for every primep | m, t ≡ pj (mod exp(G)) for somej .

Due to Lemma 2.6 the conditions above implyX(t)X(−1) − λG = mYt , whereYt ∈ ZG
should satisfy the equation

YtY
(−1)
t =

(
n

m

)2

. (4)

In this section we consider the casen/m ∈ {2, 3}. It should be mentioned that all results
concerning here with the casen/m = 2 are known due to [4]. The results about the
casen/m = 3 strengthen ones obtained in [5]. We devote the next section to the detailed
investigation of the casen/m = 2.

Lemma 4.1 Let X be a difference set. Assume that n/m is a prime, say q. Then
(n, |G|) = 1. If, in addition, t is not a multiplier, then(m, q) = 1.

Proof: Due to the assumptionn = qm and(m, |G|) = 1. Hence, if(n, |G|) 6= 1, then
(n, |G|) = q. SinceX is a difference set,|X| = n + λ and (n + λ)2 = n + λ|G|. Both
n and |G| are divisible byq. Thereforeq | λ, which in turn, impliesq | m. As q | m
contradicts the assumption(m, |G|) = 1, we must have(n, |G|) = 1.
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If q | m, then Lemma 2.6 implies thatX(t)X(−1)−λG ≡ 0(modn). From Propositions 2.1,
2.2 and 2.4 it follows thatt is a multiplier ofX, a contradiction. 2

Thus we have(|G|, 2) = 1 in the casen/m = 2, and(|G|, 3) = 1 if n/m = 3. Moreover,
Lemma 4.1 implies thatn is not a square ift is not a multiplier. Therefore the order ofG
is odd for both values ofn/m.

In what follows we assume thatt is not a multiplier. Under this assumption the elementYt

defined above is a non-trivial solution of (4). All these solutions were found in [5]. They are:

(i)

Yt = g(−2 + y + y3 + y4 + y5 + y9), g, y ∈ G, [Yt ] = 〈y〉,
y11 = 1, n/m = 3,

(ii)

Yt = g(−y − y3 − y9 + y7 + y8 + y11 + ya + y3a + y9a), g, y ∈ G,

a = 2, 4, [Yt ] = 〈y〉, y13 = 1, n/m = 3,

(iii)

Yt = g(−1 + y + y2 + y4), g, y ∈ G, [Yt ] = 〈y〉, y7 = 1, n/m = 2.

First we show thatg may be assumed to be equal to 1 in all three cases (i)–(iii). We shall
prove it only for the case (iii), since all other cases can be considered analogously.

Proposition 4.2 There exists a translation hX, h ∈ G of X such that

(hX)(t)(hX)(−1) − λG = m(−1 + y + y2 + y4).

Proof: By definitionmg(−1 + y + y2 + y4) = mYt = X(t)X(−1) − λG. Therefore it is
sufficient to show thatg = ht−1 for a suitableh ∈ G.

Rewrite the identity 2X(t) = Yt X as

2X(t) + gX = (gy)X + (gy2)X + (gy4)X

and consider this equality as one of multisets. Then products of all elements in both sides
should be equal. Therefore, settingf = ∏

x∈X x, we can write

f 2t · g|X| · f = (gy)|X| · f · (gy2)|X| · f · (gy4)|X| · f.

After simple transformations we obtain

f 2t−2 = g2|X|.

SinceG is of odd order,g|X| = f t−1. Raising both sides to a power of|X| yields(
f |X|)t−1 = g|X|2 = gn+λ|G| = gn.

But (n, |G|) = 1, henceg is (t − 1)th power, as claimed. 2
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Proposition 4.3 Assume that t is not a multiplier. Then t restricted on[Yt ] is of even
order.

Proof: The group [Yt ] is of prime order in all three cases (i)–(iii). Denote it byCp, where
p = |[Yt ]|. One can easily check that every element of odd order fromZ∗

p is a multiplier
of Yt in all three cases (i)–(iii). Hence, if the order of the restriction oft onCp is odd then
t is a multiplier ofYt . By Theorem 3.1,t should be a multiplier ofX, a contradiction. 2

Corollary 4.4 m is a square.

Proof: As above denote [Yt ] by Cp, wherep is a prime. Letq be a prime divisor ofm. By
the assumption,t ≡ q j (mod exp(G)) for somej . Sincet restricted onCp is of even order,
there existsi such thatt i ≡ −1(mod p). Thusq ji ≡ −1(mod p). Now Theorem 7.2 of
[3] says that the exponent ofq in the decomposition ofm into the product of prime powers
should be even. 2

Next result will immediately imply Theorem 1.3.
We remind that ordp(t) (see [2]) means the order oft modulo a primep. A trivial

observation shows that ordp(t) of a non-squaret is always even. The vice versa is not true
in general, but ifp ≡ 3(mod 4), thent has an even order if and only if it is a non-square.

Theorem 4.1 As above we assume that t is not a multiplier and n/m ∈ {2, 3}. Then
(i) If n/m = 2, then m is a square, 7 ‖ |G|, ordp(t) is even for p= 7 and odd for all

other prime divisors of|G|, t2 is a multiplier of X.
(ii) If n/m = 3, then m is a square and exactly one of two cases holds

— 11‖ |G|, ordp(t) is even for p= 11and odd for all other prime divisors of|G|, t2

is a multiplier of X;
— 13‖ |G|, ordp(t) is even for p= 13and odd for all other prime divisors of|G|, t4

is a multiplier of X.

Proof:

(i) The case ofn/m= 2. In this caseYt = g(−1 + y + y2 + y4), g, y ∈ G, y7 = 1,

and [Yt ] = C7. By Proposition 4.3 ord7(t) is even. Hence, by Corollary 3.4, 7‖ |G|.
Corollary 4.4 says thatm is a square. Ifp 6= 7 is a prime divisor of|G|, then it follows
from Lemma 3.3 that ordp(t) is odd. Finally, it is easy to check that any square is a
multiplier of Yt . ThereforeY(t2)

t = Yt , whence, by Theorem 3.1,t2 is a multiplier ofX.
(ii) The case ofn/m= 3. There are two opportunities forYt only:

Yt = g(−2 + y + y3 + y4 + y5 + y9), g, y ∈ G, [Yt ] = 〈y〉, y11 = 1,

Yt = g(−y − y3 − y9 + y7 + y8 + y11 + ya + y3a + y9a),

g, y ∈ G, a = 2, 4, [Yt ] = 〈y〉, y13 = 1.

To prove the claim forn/m = 3 one should repeat all the arguments we used above in
the casen/m = 2. 2
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5. Proof of Theorem 1.2

Here we consider the casen/m = 2 in more detail. It should be mentioned that the case
n/m = 3 may be treated in the same way.

We know that ifn/m = 2 andt is not a multiplier, then|G| = 7h, (h, 7) = 1. Hence
G = H ×C7 whereC7 is the unique subgroup of order 7. Further, by Theorem 4.1,m = q2

for a suitableq ∈ N.
Due to Lemma 3.3 the restriction oft on H is of odd order, say 2l + 1. On the other

hand ord7(t) is even, hencet3 ≡ −1(mod 7). By Proposition 4.2 we may assume that
X(t)X(−1) − λG = m(−1 + y + y2 + y4), 〈y〉 = C7. Multiplication of the both sides of
this equality byX gives us 2X(t) = (−1 + y + y2 + y4)X. Applying t to the both sides
implies

2X(t2) = X(t)(−1 + y + y2 + y4)(t) = X(t)(−1 + y + y2 + y4)(−1)

= 1

2
X(−1 + y + y2 + y4)(−1 + y−1 + y−2 + y−4) = 2X.

Finally, we obtainedX(t2) = X.
Let s = t3(2l+1). Thens ≡ −1(mod 7) ands ≡ 1(mod exp(H)). Moreover,X(t2) = X

implies that 2X(s) = 2X(t) = XYt , whereYt = −1 + y + y2 + y4. Therefore,

2X(s) = 2X(t) = XYt = X(−1 + y + y2 + y4).

The setX can be written in the form

X =
∑
h∈H

h Ah, Ah ⊂ C7. (5)

Then 2X(t) = 2X(s) = ∑
h∈H 2h A(−1)

h . Taking into account the Eq. (5) we get 2A(−1)
h =

(−1 + y + y2 + y4)Ah for all h ∈ H .

Lemma 5.1 Let B ⊂ C7 satisfy the equation2B(−1) = (−1 + y + y2 + y4)B. Then
B ∈ {∅, y + y2 + y4, 1 + y6 + y5 + y3, C7}.

Proof: Consider the equation

2z(−1) = (−1 + y + y2 + y4)z, z ∈ ZC7. (6)

One can easily verify that (6) is a linear equation forz. At first we consider all solutions of (6)
admitting 2 as a multiplier. In this casez is a linear combinationz = z01+z1(y+y2+y4)+
z2C7. Substitution of this expression into (6) gives us 2z0+2(z1(y+ y2+ y4)+z2C7)

(−1) =
−z0 + z0(y + y2 + y4) + 2(z1(y + y2 + y4) + z2C7)

(−1). From here it follows thatz0 = 0
andz = z1(y + y2 + y4) + z2C7. In other wordsz is linear combination ofy + y2 + y4

and 1+ y6 + y5 + y3.
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Now consider the general case, i.e.,B ⊂ C7 is a solution of (6). We assumeB to be
nonempty. The completionC7 − B of B is a solution of (6) as well. So we can assume the
|B| ≤ 3. Take an elementB + B(2) + B(4). It also satisfies (6) and has 2 as a multiplier. By
previous paragraphB + B(2) + B(4) = z1(y + y2 + y4) + z2(1 + y6 + y5 + y3) for some
non-negative integersz1, z2. The numbersz1, z2 satisfy the equation 3|B| = 3z1 + 4z2.
Since|B| ≤ 3 andz1, z2 are non-negative integers,z1 = |B|, z2 = 0 is the only solution of
this equation. This immediately implies the inclusionB ⊂ y+ y2+ y4. If B = y+ y2+ y4,
then there is nothing to prove. AssumeB 6= y + y2 + y4. Since bothB andy + y2 + y4

are solutions, the sety + y2 + y4 − B has the same property. Thus we can assume that
|B| = 1, i.e.,B = yi for somei = 1, 2, 4. The direct substitution ofyi instead ofB into
(6) gives us

2y−i = yi (−1 + y + y2 + y4) ⇔ 2y−i + yi = yi (y + y2 + y4).

But the non-zero coefficients in the right side of the latter equation are ones only. Therefore
yi cannot be a solution of (6) for anyi . 2

The lemma we have proved above gives only four values forAh. Let

H0 = {h ∈ H | Ah = ∅},
H1 = {h ∈ H | Ah = y + y2 + y4},
H2 = {h ∈ H | Ah = 1 + y6 + y5 + y3},
H3 = {h ∈ H | Ah = C7}.

ThenH = H0 ∪ H1 ∪ H2 ∪ H3 is a partition ofH andX = H1(y + y2 + y4) + H2(1 +
y6 + y5 + y3)+ H3C7. Denote|Hi | = hi . Clearly 2q2 +λ = 3h1 + 4h2 + 7h3 (we remind
that m = 2q2). Let χ be an irreducible character ofH andρ be a non-principal one of
C7. Thenρ ⊗ χ is a irreducible character ofG = C7 × H . SinceG is abelian,ρ ⊗ χ is
also a one-dimensional representation ofZG. Hence a valuez = (ρ ⊗ χ)(X) is equal to
χ(H1)ρ(y + y2 + y4) + χ(H2)ρ(1 + y6 + y5 + y3) + χ(H3)ρ(C7). Sinceρ(C7) = 0,

thenρ(1+ y6 + y5 + y3) = −ρ(y + y2 + y4) andz = ρ(y + y2 + y4)(χ(H1) − χ(H2)).
SinceX satisfies the equationX X(−1) = 2q2 + λG, we can write

z̄z= ρ(y + y2 + y4)ρ(y + y2 + y4)(χ(H1 − H2))(χ(H1 − H2)) = 2q2

Taking into account thatρ(y + y2 + y4)ρ(y + y2 + y4) = 2 we obtain

χ(H1 − H2)χ(H1 − H2) = q2

for all irreducible characters of the groupH . Therefore(H1 − H2)(H1 − H2)
(−1) = q2.

This equation implies two ones:(h1 − h2)
2 = q2, h1 + h2 = q2.
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Thus we have the following equation forh1, h2, h3 h1 − h2 = ±q
h1 + h2 = q2

3h1 + 4h2 + 7h3 = λ + 2q2

This system has the following solutions:

h1 = q2 ± q

2
, h2 = q2 ∓ q

2
, 7h3 = λ + −3q2 ± q

2
.

The last expression gives us the inequalityλ ≥ (3q2 − q)/2. Applying this inequality to
the complement difference setG\X we obtain:

2q2(2q2 − 1)

λ
≥ 3q2 − q

2
.

Thus we have the following scope forλ:

3q2 − q

2
≤ λ ≤ 4q(2q2 − 1)

3q − 1
. (7)

Proof of Theorem 1.2: Assume the contrary, i.e.,t is not a multiplier. Thenλ satisfies (7).
Since(q2, λ) = 1 andλ | 2q2(2q2 − 1), the numberl = (4q2 − 2)/λ is an integer. From

the inequality (7) it follows that

3 > 2
4q2 − 2

3q2 − q
≥ l ≥ 3q − 1

2q
> 1

and we have the only solutionl = 2, i.e.,λ = 2q2 − 1. But in this casen > λ, and by
Theorem 4 of [4]t is a multiplier ofX, a contradiction. 2

As a consequence we are able to give a proof of Corollary 1.1.

Proof of Corollary 1.1: Suppose the contrary, i.e.,p is not a multiplier ofD. Then, by
Theorem 1.2,λ should be divisible byp. Applying of the same claim to the complement
difference set yieldsp | n(n − 1)/λ. But this is impossible, because the order|G| =
λ + n(n − 1)/λ + 4p2b of the groupG is divisible by p in this case2. 2
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Notes

1. In fact this inequality impliesb = a, because ofX X(−1) − λG = n and pa ‖ n.
2. Hereb is defined by the equalityn = 2p2b.
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