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Abstract. Let D be a(v, k, A) difference set over an abelian groGpwith evenn = k — A. Assume that € N
satisfies the congruencess qifi (mod exgG)) for each prime divisog; of n/2 and some integef; . In [4] it was
shown that is a multiplier of D provided thah > A, (n/2, 1) = 1 and(n/2, v) = 1. In this paper we show that
the conditiomn > A may be removed. As a corollary we obtain that in the case-ef2p® whenp is a prime,p
should be a multiplier oD. This answers an open question mentioned in [2].
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1. Introduction

Let G be afinite abelian group with unit 1, where the group operation is written multiplica-
tively. We use exfG) to denote an exponent & andZG for a group algebra of over
integers.

For an arbitraryX = 3" %9 € ZG andm € Z, we setX™ = > ; xgg™. If
(m, |G|) = 1, then the mapping — X™ is an automorphism of the group algel@&.
An integerm is calleda (numerica) multiplier of X if XM = Xgfor a suitableg € G.

If T is a subset 06, then we use the same letter for the elenehi, t € ZG. In what
follows we use a notatiohX|, X € ZG for a sum of all coefficients oK. The mapping
X — | X] is a homomorphism af -algebras. It satisfies the equalyG = | X|G.

A subsefT of G is calleda (v, k, 1)-difference seif it satisfies the equality

TTY =n+AG (1)

wheren=k — A, k= |T|,v = |G]|.
In 1967 Mann and Zaremba proved the following (Theorem 4 in [4]).

Theorem 1.1 Let G be an abelian group and D be a difference set over G with parameters
(v,k, A). Assume that n= 2m, (m, |G|) = 1,(m,A) = 1,n > X and for some te N,

t = qifi (mod expG)) for every prime divisor gof m and some integer;.fThen t is a
multiplier.

In this paper we prove

Theorem 1.2 Theoreml.1 remains true if we remove the condition-na.
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As a consequence we obtain the following

Corollary 1.1 Let D a (v, k, A)-difference set and n= 2p™ for some odd prime p
(p, IG]) = 1. Then p is a multiplier of D.

This claim answers an open question from [2].

In [5] the following situation was studied. L& be an abelian difference set over a group
G. Assume thah = k— A = 3mwhere(m, |G|) = 1 and there exists an integesatisfying
t = qifi (mod exgG)) for each prime divisog; of m. In the case of|G|, 3- 13) = 1 Qiu
Weisheng proved in [5] thétis a multiplier of D provided that one of six conditions of
Theorem 5 of [5] holds. Here we strengthen his result and prove the following claim.

Theorem 1.3 Let D be a(v, k, A)-difference set over an abelian group G. Assume that

n=k-—A = 3m with(m,|G]) = 1 and t be an integer satisfying the congruence

t= qifi (mod exgG)) for each prime divisor gof n and a suitable exponen. if t is not a

multiplier of D, then m is a square and exactly one of the following conditions is satisfied.

(i) 11 | |G| and for each prime divisor p ofG| ord,(t) is even if p= 11 and odd
otherwise t? is a multiplier of D,

(i) 13 || |G| and for each prime divisor p ofG| ordy(t) is even if p= 13 and odd
otherwise t* is a multiplier of D.

2. Basic facts

In what follows G* will stand for a group of permutations acting @which consists of
all mappingsg — g™, (m, |G|) = 1. Itis a well-known fact thaG* = ZpG) and two
numberam;, m, € G* induce the same permutation if and onlyrf = my(mod exgG)).

For two natural numbens, » we denoteD(n, 1) = {X € ZG | XXV = n + AG}.
Clearly,X € D(n, ») implies|X|? = n+ A|G]|.

If X =3 gec X909 € ZGandY = } . Yg9 € ZG, then we writeX = Y(modm), m €
Z if Xy = yg(modm) holds for allg € G.

First we list a few elementary properties of elements fidm, A). We omit proofs, since
they are straightforward.

Proposition 2.1 An integer t is a multiplier of Xe D(n, 1) if and only if X® XD —
AG =ng,geC.

Proposition 2.2 Forany X Y € D(n, 1), |x||y| > Oit holds that XY— 1G € D(n?, 0).

The setD (n?, 0) contains elements of the forfang, g € G. Following [5] we call these
elementdrivial.

Proposition 2.3 Let X = } (5 Xgg € D(n2, 0). If all x4 are non-negativethen X =
ng, g € G (i.e,, X is trivial).
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Proof:  The equatiorX X = n? implies -y x5 = n® and}" g Xg = n. _

If X'is non-trivial, then there are at least tgo# h € G with non-zeroxg andx;. Since
all x; are non-negativegh~! # 1 appears in the produgt X~V with positive coefficient,
a contradiction. a

Proposition 2.4 Let X = dee Xgg € D(n?, 0). If X = 0(modn), then X= £ng, g €
G (i.e., X is trivial).

Proof: By assumptionX = nY,Y € ZG, implying Y Y = 1. Lety,, g € G be the
coefficients ofY. Then_, ¢ y5 = 1. Now the claim is evident. O

Next claim plays the central role in this chapter. In fact, it is the straight consequence of
Lemma 7.5 from [3]. Nevertheless, we prefer to give here an independent original proof.

Lemma 2.5 Let Xe D(n, 1) forsomenx € Z. Let p| n be a prime divisor relatively
prime to|G|. Then for any je Z, X(®) XD — 1G = 0(mod p?), where B || n.

Proof: Itis sufficient to prove the claim only for non-negatiye
Defineb to be the maximal natural number satisfying the property

Vj ezt XPIXED _ 4G = 0(mod p°).

It is clear that our claim is equivalent to the inequabity a.'
By the definition ofb there existg € Z* such that

XPIXED _ 4G = 0(mod p°),
XD G # 0(mod pb”)-

In other words X(P) XD — 4G = p°Y, whereY e ZG satisfiesY 2 0(mod p). The
direct computations give us

1
@
1

— @(X(DZj)X(*pj) _ ,\G)(x(p")xH) _ AG)

vy — (XPIXD )\G)(p”(x(pj)x(—l) —20)

n XPHXED — G
P° P ‘
By the definition ofb,

XEHXED oG
S

ZG.
pb
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Thus we haver®)Y = £.7,7 € ZG. If b < a, thenYP'+1 = Y(P)Y = 0(mod p),
i.e., Y is nilpotent in the group algebia,G. But this algebra is semisimple, therefore
Y = 0(mod p), a contradiction. O

As a corollary we obtain the following statement whose parts (i) and (ii) are equivalent
to Lemma 2 of [5].

Lemma 2.6 Let Xe D(n, 1) and let m| n be a divisor of n relatively prime tG]|.
Assume also that there exists an integer t satisfying the following condition
For every prime p dividing m there exists an integer j such that&pt (mod exgG)).
Then there exists; ¥ ZG such that
(i) XOXED 4G =mY;
(i) VY = (3
(i) XYy = (n/m)X®,

Proof:  (i)—(ii) Let p|m be a prime. By assumptioK® = X®". Now Lemma 2.5
gives usXP) XD _ AG = 0(mod p°), p° | n. ThusX® XD — AG = 0(mod p°) for
every primep dividing m. This impliesX® XY — AG = mY; for someY; € ZG. By
Proposition 2.2 we haven¥,)(mY))Y = n?, whenceY, Y™ = (n/m)2.

To get (iii) it is sufficient to multiply both sides of the identitly® XD — LG = mY,
by X and to collect the terms. |

Using this lemma and Proposition 2.3 one can easily prove the well-kS@vand Mul-
tiplier Theorem

Second Multiplier Theorem  Keep the assumptions of the previous claiminladdition,
m > A, then t is a multiplier of X

Proof: Consider the equalitk ® XY — AG = mY;, Y; € ZG, which holds due to (i)
of Lemma 2.6. We claim thah > A implies that all coefficients of; are non-negative.
Indeed, if it is not the case, then the minimal coefficient in the right side of the equality is
less or equal te-m. On the other hand the minimal coefficient in the left part is greater or
equal to—A > —m. Contradiction.

Since coefficients of; are non-negative, part (ii) of Lemma 2.6 together with Proposi-
tion 2.3 yieldY; = (n/m)g, g € G, whenceX® XY — G = ng. By Proposition 2.1t
is a multiplier of X. a

Lemma2.7 Let Xe D(n, 1), (n, |G|) = 1. Assume that X= X“Pg, g e G. Thenn is
asquare.

Proof: This is a direct consequence of Theorem 7.2 from [3]. O
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3. Multipliers

Lemma 3.1 Let X € ZG be an element satisfying the equatioh ¥ nkh for some
k e N,h e G. Then(n, |G|) = Limplies X= +ng for some ¢ G.

Proof: Denote byd the greatest common divisor of the coefficientsXofWe can write
thatX = dY,Y € ZG. ltis clear that the greatest common divisor of the coefficients of
Y is equal to one andt* = m*h, m = n/d. Our proof will be finished if we show that

Y = #g,g € G. If m # 1, then a primep | m gives us the congruend& = 0(mod p).

But (p, |G]) = 1, whenceY = 0(mod p). Hencep divides the greatest common divisor
of the coefficients off, a contradiction. Hence = +1 andY* = +h. This implies that

Y € ZGis a unit ofZG. Hence, (see Corollary 37.6 [1Y) = +9, g € G. a

Corollary 3.2 Let X € ZG be an element invertible @G. Assume that for somest G*
there exists Ye ZG such that XY= |Y|X®, (]Y[, |G]) = 1. If t is a multiplier of Y, then
t is also a multiplier of X.

Proof:  Sincet is a multiplier ofY, Y® = hY, h € G. Letl be a natural number such that

t' is a multiplier of X, i.e., X®*) = Xg, g € G. One can write the sequence of equalities:
[Y|X® = hyY X

[Y|X® = hyY X©

[YIX®) = hyy XEH),
whereh; = 1,h, = h, ..., h, are elements o6. SinceX®™ = Xg, g € G, we have

VI XOXE  XEDX = (hehy. . g HY' X XOX® | XED,
Since X is invertible inQG, we obtainh|Y|' = Y',h € G. By the previous statement
Y = 4]Y|g, g € G. Taking into account thag| = 1, we getY = |Y|g. After substitution
of Y = |Y|g into the equality Y| X® = Y X and cancelling ofY| we getX® = gX. O

In what follows, byMy (X) whereX € ZG andH < G* we denote a subgroup &f
consisting of all multipliers ok, i.e.,

Mu(X)={te H| XY =g X, g € G}.

Theorem 3.1 Let X € D(n,A),(n,|G|]) = 1. Take any te G* and denote Y =
XOXED )G, Then

M) (X) = Mgy (V).
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Proof: By definition ofY; M), (X) C M, (Y:). To prove the inverse inclusion we multiply
both sides of the equality; = X® XY — AG by X. After simple transformations we
obtain

Y| X® =Y, X. 2
The groupMy, (Yy) is cyclic, hence it has a generator, ajor somel (i.e., Yt(t') = g¥).

To finish the proof we have to show thiatis a multiplier of X. Applyingt to (2)1 — 1
times we obtain

IY; | X® =Y, X
Vi X® = Y{XO

|Yt|X(") _ Yt(tlfl)x(tpl)
By multiplication of all these equalities we obtain
Y XEO(XED L XO) = YL EIX(XO LX),

Since(n, |G|) = 1,n 4+ A|G| # 0 which implies thaiX is invertible inQG. Hence one
can cancel the common factors in the both sides of the latter equality. This gives

V' X = (Y.L VD)X -
We claim that (and, thereforet') is a multiplier of the elemeni; ... Y," . Indeed,
- | " -
(Yo YOO =0 v =y YT Iyg=g(Y... ).

sincelY; -...- Y | = Y| = n' is relatively prime tdG|, the equality (3) shows that
andt' satisfy the condition of Corollary 3.2. Hentleis a multiplier of X. a

To formulate nextresults we need an additional notation. For any elétnen} ¢ X409
€ ZG by [X], we denote a subgroup generated by ggat?! | x4 # 0 andx # O}.

Lemma 3.3 Let X € D(n,A), (n,|G]) = 1. Define Y = XOXED —AG,t € G*.
Assume that n is a non-square. Then the permutaien §', § € G/[Y;] is of odd order.

Proof: Sincen is a non-squargG| is odd. Denote the natural projecti@ — G/[Y;]
by f. Considerf (X). Itis clear thatf (X) satisfies the equatioh(X) f (X)™Y = n+1 G
(hereG = G/[Y], » = A|[Y{]]). One can easily find that(Y;) = |Y;|g, for a suitable
g € G. Applying f to both sides of the identity; | X® = Y; X we obtainf (X)® = g f(X),
i.e.,t is a multiplier of f (X).
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To prove the claim let us assume the contrary, t#!, = 1(mod exgG)) andt™ #
1(mod exgG)). Denotet™ by s. SinceG is of odd order an@? = 1(mod exgG)), the
groupG is a direct prodch G1 x G_; whereG,={ge G| §°=3%},a= =+ 1. Since
s # 1(mod exr{G)) G_; is nontrivial.

Leth:G — G_; be a natural projection. Deno@ = h(f(X)). Itis clear thatZ
satisfies the equatiod 2™ = n + uG_1, 1 € Z. Sincet is a multiplier of f (X),
Z® = 7g,g € G_1. From here, it follows thati Z = Z™ = z® = zD for a suitable
u € G_;. In other words-1 is a multplier ofZ. Due to Lemma 2.7 should be a square,
a contradiction. O

Corollary 3.4 Keep the notations and the assumptions of the previous statement. Suppose
in addition, that[Y;] is a subgroup of a prime ordesay p. Ift is of even order modula p
then p| |G|.

Proof: This is rather simple, so we omit. a

4. Proof of Theorem 1.3

In this sectionX always denotes @, k, A)-difference set over an abelian groGp As we
mentioned beforeX € D(n, A) wheren = k — A. In what follows we assume that there
exists a divisom of n such that

@ (m, |G) =1
(i) There exists anumbesuch thatfor every primp | m, t = p! (mod exgG)) for somej.

Due to Lemma 2.6 the conditions above impl{ X-2 — LG = mY,, whereY; € ZG
should satisfy the equation

2
VYD = (E) . (4)

m

In this section we consider the caséan € {2, 3}. It should be mentioned that all results
concerning here with the casgm = 2 are known due to [4]. The results about the
casen/m = 3 strengthen ones obtained in [5]. We devote the next section to the detailed
investigation of the case/m = 2.

Lemma 4.1 Let X be a difference set. Assume thdtmis a prime say q. Then
(n, |G|) = 1. If, in addition t is not a multiplier then(m, q) = 1.

Proof: Due to the assumption = gmand(m, |G|) = 1. Hence, if(n, |G|) # 1, then
(n,|G|) =q. SinceX is a difference set,X| = n+ A and(n + A)?> = n+ A|G|. Both
n and |G| are divisible byg. Thereforeq | A, which in turn, impliesq | m. Asq|m
contradicts the assumptigm, |G|) = 1, we must havén, |G|) = 1.
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If g | m, then Lemma 2.6 implies tha® X~V —1G = 0(modn). From Propositions 2.1,
2.2 and 2.4 it follows that is a multiplier of X, a contradiction. O

Thuswe have|G|, 2) = 1inthe case/m = 2, and(|G|, 3) = 1if n/m = 3. Moreover,
Lemma 4.1 implies that is not a square if is not a multiplier. Therefore the order &f
is odd for both values afi/m.

In what follows we assume thiais not a multiplier. Under this assumption the elemént
defined above is a non-trivial solution of (4). All these solutions were found in [5]. They are:

@

Yi = 0(—24+y+ Y3+ ¥y + ¥ +y), gyeG, [Yi=(y),
y'=1 n/m=3,
(i)
Yo =9y =Y+ Y + VP +y" + Yy +yR 4P, g.yeG,
a=24 [Y]=(y), y®=1 n/m=3
(iii)

Yi=0(-1+y+y?+y), 0yeG, [Yl=(y, Yy =1 nm=2

First we show that) may be assumed to be equal to 1 in all three cases (i)—(iii). We shall
prove it only for the case (iii), since all other cases can be considered analogously.

Proposition 4.2 There exists a translation hX € G of X such that
hX)OhX) Y —AG =m(=1+y+ y? + yH.

Proof: By definitonmg(—1+y + y2 + y*) = mY, = XOXED — AG. Therefore it is
sufficient to show thag) = h'~* for a suitablen € G.
Rewrite the identity X = Y, X as

2XO 4 gX = (gy)X + (gY¥?) X + (gyh X

and consider this equality as one of multisets. Then products of all elements in both sides
should be equal. Therefore, settifig= [ [, .« X, we can write

P2gn f =@y f@) - f @y,
After simple transformations we obtain

f2-2 _ g2IX]

g
SinceG is of odd orderg Xl = f~1. Raising both sides to a power f] yields

(f\X\)t_l — gXF = gnHIel = gn,

But (n, |G|) = 1, hencgg is (t — 1)th power, as claimed. o
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Proposition 4.3 Assume that t is not a multiplier. Then t restricted [ofj] is of even
order.

Proof: The groupl:]is of prime order in all three cases (i)—(iii). Denote itBy, where
p = I[Yi]l. One can easily check that every element of odd order Zgms a multiplier
of Y, in all three cases (i)—(iii). Hence, if the order of the restriction oh C,, is odd then
t is a multiplier ofY;. By Theorem 3.1t should be a multiplier ok, a contradiction. O

Corollary 4.4 m is a square.

Proof: Asabove denoter] by Cy,, wherepis a prime. Let| be a prime divisor ofn. By
the assumptiort,= g’/ (mod exgG)) for somej. Sincet restricted orC,, is of even order,

there exists such that' = —1(mod p). Thusq! = —1(mod p). Now Theorem 7.2 of
[3] says that the exponent gfin the decomposition ah into the product of prime powers
should be even. O

Next result will immediately imply Theorem 1.3.

We remind that orgl(t) (see [2]) means the order 6fmodulo a primep. A trivial
observation shows that gg@) of a non-squaréeis always even. The vice versa is not true
in general, but ifo = 3(mod 4, thent has an even order if and only if it is a non-square.

Theorem 4.1 As above we assume that t is not a multiplier afidne {2, 3}. Then
(i) fn/m = 2, then m is a squate7 || |G|, ordy(t) is even for p= 7 and odd for all
other prime divisors ofG|, t? is a multiplier of X.
(i) 1fn/m = 3, then m is a square and exactly one of two cases holds
— 11| |G], ord,(t) is even for p= 11and odd for all other prime divisors ¢6G|, t2
is a multiplier of X
— 13| |G|, ordy(t) is even for p= 13 and odd for all other prime divisors ¢G|, t4
is a multiplier of X.

Proof:

(i) The case ofn/m=2. InthiscaseY; = g(—1+y+y?+y".g.ye Gy =1,
and [Y;] = Cy. By Proposition 4.3 orglt) is even. Hence, by Corollary 3.4,|[7|G]|.
Corollary 4.4 says thah is a square. Ip # 7 is a prime divisor ofG|, then it follows
from Lemma 3.3 that orglt) is odd. Finally, it is easy to check that any square is a
multiplier of Y;. Thereforey,'”) = Y;, whence, by Theorem 3.2 is a multiplier ofX.

(i) The case oin/m= 3. There are two opportunities fok only:

Yi=09(—24+y+ Y3+ vy +yo4+yY), g.yeG, [Y=(y., y1=1
Y; :g(_y_yS_y9+y7+y8+yll+ya+y3a+y9a)’
g, yEGv a:29 47 [Yt] = (y>’ y13:1'

To prove the claim fon/m = 3 one should repeat all the arguments we used above in
the casen/m = 2. a
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5. Proof of Theorem 1.2

Here we consider the cas¢m = 2 in more detail. It should be mentioned that the case
n/m = 3 may be treated in the same way.

We know that ifn/m = 2 andt is not a multiplier, thenG| = 7h, (h,7) = 1. Hence
G = H x C; whereCy is the unique subgroup of order 7. Further, by Theoremm %, g2
for a suitableg € N.

Due to Lemma 3.3 the restriction bfon H is of odd order, sayl2+ 1. On the other
hand ord(t) is even, hencé® = —1(mod 7. By Proposition 4.2 we may assume that
XOXED 4G = m(=14 y + y? + y%), (y) = C7. Multiplication of the both sides of
this equality byX gives us X© = (=1 + y + y? + y*) X. Applying t to the both sides
implies

2X = XO(=14y+y +yH0 = XO(=14+y+y? +yH P

1
= SXE14y+ Y YD1y Ty Py =2X
Finally, we obtainedX® = X.

Lets = t3@+D, Thens = —1(mod 7) ands = 1(mod exgH)). Moreover, X = X
implies that X® = 2X® = XY, whereY; = —1+ y + y? + y*. Therefore,

2X©® =2XU = XY, = X(=1+y + Y2+ yH).
The setX can be written in the form

X=>"hA, A, CC (5)

heH

Then X® = 2X® = ¥, . 2h A" Taking into account the Eq. (5) we geAZ > =
(-1+y+y>+yHA,forallh e H.

Lemma 5.1 Let B c Cy satisfy the equatio2BY = (=1 + y + y?> + y)B. Then
Be{l,y+y>+ vy, 1+y0+y>+y3 Cr).

Proof: Consider the equation
22V = (-1+y+y* +yhz zezC (6)

One can easily verify that (6) is a linear equationfoAt first we consider all solutions of (6)
admitting 2 as a multiplier. In this cagés a linear combination = zo1+z1(y+ Y2+ y*) +
2,C7. Substitution of this expression into (6) gives us2 2(z1 (Y + Y2+ y*) +2,C7) Y =
20+ 20(Y + Y2 + Y + 2(Z1(y + Y2 + ¥*) + 2,C7) "V From here it follows thato = 0
andz = z(y + y? + y* + 2C;. In other wordsz is linear combination off + y? + y*
and 1+ y8 + y® + y3.
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Now consider the general case, i.B.,C Cy is a solution of (6). We assuni to be
nonempty. The completioi; — B of B is a solution of (6) as well. So we can assume the
|B| < 3. Take an elemer® + B®@ + B®. It also satisfies (6) and has 2 as a multiplier. By
previous paragrapB + B@ 4+ B®@ = zy(y + y?2 + y*) + z2(1 + y® + y° + y®) for some
non-negative integers;, z,. The numberg,, z, satisfy the equation|B| = 3z, + 4z.
Since|B| < 3 andz;, z, are non-negative integers, = |B|, z, = 0 is the only solution of
this equation. This immediately implies the inclusBrC y+y2+y*. If B = y+y2+y4,
then there is nothing to prove. AssurBe# y + y? + y*. Since bothB andy + y? + y*
are solutions, the set+ y? + y* — B has the same property. Thus we can assume that
|IB| = 1,i.e.,B =y forsomei = 1,2 4. The direct substitution of instead ofB into
(6) gives us

2y =y (—1+y+ Yy +ryh e 2y +y =y (y+ YR+ YA

But the non-zero coefficients in the right side of the latter equation are ones only. Therefore
y' cannot be a solution of (6) for any O

The lemma we have proved above gives only four valueg\forLet

Ho={heH | A, =0},

Hi={heH | Av=y+y*+y"
Ho={heH | An=1+Yy+y°+ V%,
Hy={heH | Ay =Cq}.

ThenH = Ho U H1 U H, U Hg is a partition ofH and X = Hi(y + Y2+ y*) + Ho(1 +
y® + y° + y3) 4+ H3C;. DenotelH;| = h;. Clearly 212 4+ A = 3h; + 4h;, + 7h3 (we remind
thatm = 2g?). Let x be an irreducible character éf andp be a non-principal one of
C;. Thenp ® x is airreducible character @ = C; x H. SinceG is abelian,o ® x is
also a one-dimensional representatiorZ@. Hence a valug = (p ® x)(X) is equal to
X(HD)p(y + y? + y9) + x(H)p(L + ¥° + ¥° + ¥°) + x(Hg)p(C7). Sincep(Cy) = 0,
thenp(1+y° +y° +y%) = —p(y + ¥? + y*) andz = p(y + y* + yH (x (H1) — x(H2)).
SinceX satisfies the equatiod X = 292 4- AG, we can write

2z=p(y+ y* + ¥YHo(y + y2 + ¥y (x (H1 — H)(x (H1 — Hp)) = 292
Taking into account that (y + y? + y*)p(y + y2 + y*) = 2 we obtain
x(Hi — Ho) x (Hy — Hp) = g2

for all irreducible characters of the growp. Therefore(H; — Hy)(Hy — H)Y = g2
This equation implies two onesh; — hy)? = g2, h; + h, = g2
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Thus we have the following equation fbg, hy, hs

hl—h2=:|:q
hy +hy = g2
3hy 4+ 4hy + 7hs = A + 292

This system has the following solutions:

2 a2
CFa o, T%PEd

h: h:
! r2 2 2

The last expression gives us the inequality: (39> — q)/2. Applying this inequality to
the complement difference s&t\ X we obtain:

20%20° -1 _ 34’1
A -2

Thus we have the following scope far

2 _ 2 _
30°—q << 4q(2q 1). @)
2 3g-1

Proof of Theorem 1.2: Assume the contrary, i.a.is not a multiplier. Then satisfies (7).
Since(g?, 1) = 1 anda | 20%2(2g% — 1), the numbet = (492 — 2)/A is an integer. From
the inequality (7) it follows that

3>2 >1

2
4q —2>|>3q—1
3g2-q -~ ~ 20

and we have the only solutidn= 2, i.e.,A = 29% — 1. But in this case > A, and by
Theorem 4 of [4} is a multiplier of X, a contradiction. |

As a consequence we are able to give a proof of Corollary 1.1.

Proof of Corollary 1.1:  Suppose the contrary, i.e,is not a multiplier ofD. Then, by
Theorem 1.2 should be divisible byp. Applying of the same claim to the complement
difference set yieldgp | n(n — 1)/A. But this is impossible, because the ord&i =

A +n(n — 1)/x 4+ 4p? of the groupG is divisible by p in this casé. O
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Notes

1. In fact this inequality implies = a, because oK X-P — G = nandp? | n.
2. Hereb is defined by the equality = 2p?.
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