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Abstract. Manin and Schechtman defined the discriminantal arrangement of a generic hyperplane arrangement
as a generalization of the braid arrangement. This paper shows their construction is dual to the fiber zonotope
construction of Billera and Sturmfels, and thus makes sense even when the base arrangement is not generic. The
hyperplanes, face lattices and intersection lattices of discriminantal arrangements are studied. The discriminantal
arrangement over a generic arrangement is shown to be formal (and in some cases 3-formal), though itis in general
not free. An example of a free discriminantal arrangement over a generic arrangement is given.
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1. Introduction

Manin and Schechtman [8] defined discriminantal arrangement as a generalization of the
braid arrangement. The discriminantal arrangenm&nt, k) has as its complement the
manifold of general position parallel translates of an affine arrangemenhgperplanes

that is in general position ilR*. Manin and Schechtman then studied the intersection
lattice of discriminantal arrangements arising from a dense subset of general position affine
arrangements. Falk [6] studied the discriminantal arrangement associated with any general
position affine arrangement, and described the hyperplanes of the discriminantal arrange-
mentin terms of those of the base arrangement. In particular he showed that the intersection
lattice of the discriminantal arrangement does not depend soletyand k. Billera and
Sturmfels [2] defined the fiber zonotope as a quotient of a projection map from a cube onto
a zonotope. They gave the vectors of the fiber zonotope explicitly.

In this paper we show the following. The discriminantal arrangement as studied by Manin
and Schechtman (or more generally Falk) is the arrangement dual to the fiber zonotope of
the zonotope dual to the base arrangement. No general position assumption is needed:
the discriminantal arrangement can be defined for any essential arrangement. In all cases
the complement of the discriminantal arrangement is the manifold of (relatively) general
position parallel translates of the base arrangement. The hyperplanes of the discriminantal
arrangement correspond to minimal violations of general position conditions that can be
achieved by parallel translation of the base arrangement. By Billera and Sturmfels, a face of
the fiber zonotope corresponds to a regular zonotopal subdivision of the base zonotope, with
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vertices corresponding to regular cubical subdivisions. Thisis matched by a correspondence
between the faces of the discriminantal arrangement and the face posets of parallel translates
of the base arrangement. In Section 4 we conjecture a description of the intersection lattice
of the discriminantal arrangement based on a “very generic” arrangement.

Free discriminantal arrangements can arise from generic base arrangements (see exam-
ple in Section 5), but not from very generic base arrangements. A necessary condition
for the freeness of an arrangement is formality, a condition on the space of linear rela-
tions among the hyperplanes. We show that the discriminantal arrangement based on any
generic arrangement is formal. If the base arrangement is very generic, the discriminantal
arrangement is actually 3-formal.

Useful general references are [9] on hyperplane arrangements and [3] on oriented ma-
troids. Some of the material in this paper is described in the expository paper [1].

2. Discriminantal Arrangements

A hyperplanén R is a set of the fornil = {x € R* : a-x = b} wherea € R* (a # 0)
andb € R. An affine arrangemerih R” is a finite collection of hyperplanes. It is called
acentral arrangementor simply anarrangementif each hyperplane passes through the
origin (b = 0).

Let oy, o, . .., a, be nonzero vectors iR* such that nax; is a multiple of another.
Associated with these vectors is the central arrangement of hyperplanes with nagmals
inR*, A= {HY HY, ... HY}. Associated with the same set of vectors is the zonotope
Z = Z(A), which is the Minkowski sum of the line segmefitsy;, o], 1 < i < n. Iftwo
vectors are multiples of each other, the same hyperplane occurs twice; the set of hyperplanes
is then called anultiarrangementThe constructions here work also for multiarrangements,
but we avoid parallel vectors to simplify the presentation.

Forb = (b1,bs,...,b,) € R™, let A, be the affine arrangement of hyperplanes,

H; ={x € RF: a; x =0b;}. Thendy = A and.A, is called aparallel translateof

A. The affine arrangement, = {H1, Ho, ..., H, } is inrelatively general positioif for

all subsetsS of [n] = {1,2,...,n} with [S| < k, dim(,.g¢ H; < k —|S], and for all
subsetsS of [n] with |S| > k, ;.4 H; = . (Itis in general positiorif, moreover, the
dimension inequality holds as equality for &llwith |S| < k.) The idea is that the high
dimensional intersections, but not the parallelisms, of a nongeneral position arrangement
can be eliminated by parallel translation of the hyperplanes. U{gt) = {b € R" :

Ay, is in relatively general positign  We will show thatU(.A) is the complement of a
central hyperplane arrangementi?.

Example 2.1 Let A be the 2-arrangement defined by the normals= (0,1), az =
(=1,1), a3 = (1,0), andey = (1,1). (The corresponding zonotope is an octagon.)
Consider the four hyperplanés; in R*:

Dpy = {(b1,b2,b3,b4) : by + 2b3 — by = 0}

Dyg) = {(b1,b2,b3,b4) : by + bg — by = 0}

D[g] = {(b17b27b37b4) : 2b1 - b2 — b4 = 0}



DISCRIMINANTAL ARRANGEMENTS, FIBER POLYTOPES AND FORMALITY 231

Dy = {(b1,b2,b3,by) : by — ba — bz = 0}.

The hyperplaneD; consists of those “right-hand sideb"for which, in the arrangement
Ap, the three hyperplanes other thah intersect at a point. The complement of the
hyperplane arrangemefiDyy;, Do), D3}, D4 } thus consists of thode such that no three
of the hyperplanedi; intersect, that is, the general position parallel translate$.dflote
that this arrangement iR* is not essentially four dimensional; the intersection of all four
hyperplanes is a two-dimensional subspacRdf In fact this arrangement is isomorphic
to the two-dimensional arrangeme#t but this happens only iveryspecial cases. O

Assume that the normals to the hyperplanesiapanR”*. (The arrangement is then
calledessentia) Let C,, be then-cube with verticeste; (e; the standard unit vector);
let = be the linear map frond,, to Z satisfyingw(e;) = «;. Billera and Sturmfels [2]
defined the fiber polytope &5(C', Z) = 517 1/, 7(x) dx} C R", wherey ranges over
all measurable right inverses of(y : Z — R™). They proved the following facts about
the fiber zonotope.

1. The fiber polytope is afn — k)-dimensional zonotope.

2. The scaled fiber zonotogeol Z)%(C,,, Z) is the Minkowski sum of the line segments
[-Eg, Eg], where for eaclik + 1)-subsetS of [n], S = {51 < s2 < -+ < Sg4+1},

k+1

Eg = Z(—l)i det(og,, ..., 05, |, 0, 1y O ) €,
i=1

3. The face lattice of the fiber zonotop&C,,, Z) is isomorphic to the poset of regular
zonotopal subdivisions (to be defined later)Af The vertices correspond to regular
cubical subdivisions.

Definition 2.2 Let A be an essential arrangementohyperplanes irR* with normal
vectorsa, aq, . .., ay,. Thediscriminantal arrangement based ohis the arrangement
in R™ of hyperplanes with normal vectors the distinct, nonzero vectors of the form

k+1
Eg = Z(—l)’ det(ous,, .y 0,_, Qgyyse oy Oy ) - €,

i=1
assS = {s1 < s2 < -+ < sp41} ranges over thék + 1)-subsets ofn].

The discriminantal arrangement is thus the arrangement dual to the fiber zonotope.

Theorem 2.3 Let A be an essential arrangementofyperplanes irR*, and B(A) the
discriminantal arrangement based oh ThenU (.A), the set of relatively general position
translations, is the complementB{.A).

Proof: The complement of3(A) is the set ofb € R™ such that for all(k + 1)-
subsetsS of [n], Es # 0 impliesEs - b # 0. Recall thatU(A) = {b € R" :
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Ay is in relatively general positidn Since the normals to the hyperplanesfo$panRF,

a parallel translately, is in relatively general position if and only if for all subs&tof [n]

with |T'| > k, (", H; = 0, and it is of course equivalent to apply the empty intersection
criterion only to sets” of cardinalityk + 1. Thus we need to show the following are
equivalent, for the affine hyperplane arrangemépt= { H1, Hs, ..., H,, }:

1. forall (k + 1)-subsetd of [n], (| H; =0
€T

2. forall (k + 1)-subsetsS of [n] for whichEg # 0, Eg - b # 0.

We use two facts about linear dependencies. For any g€\, H; # 0 if and only if
the set{b; : i € T} satisfies all linear dependencies satisfied by th§aet: i € T'}. If
the rank of the sefa; : i € S}isk = |S| — 1, then every linear dependency on the set
{a; : i € S} is anonzero multiple cE¢.

Assume (1), and lef be a(k + 1)-subset of[n] with Eg # 0. Thus the rank of
{a; : i € S} is k, soEg gives the only linear dependency én; : i € S}. By (1),
Nics Hi = 0, so{b; : i € S} fails to satisfy the linear dependency givenBy. Thus
Es b #0.

Assume (2), and Iéf’ be a(k + 1)-subset ofn]. Choosely C T'sothat{a; : i € Tp}is
an independent set with sp@am®; : i € Tp} = spaf«; : i € T'}; then choose & + 1)-set
S containingTy with rank{c; : i € S} = k. ThusEg - b # 0, so{b; : ¢ € S} fails
to satisfy some linear dependency satisfied{by : i € S}. So ﬂ H; # (. Since

€S
() H: C () Hi = () Hi, we conclude thaf | H; # 0. O

icS i€Tp €T i€l

The arrangementl is calledgenericif n > k and every intersection df hyperplanes
has dimension zero. In this cagk, is in general position for some € R"™.

Manin and Schechtman [8] defined (in the case wieis generic) the discriminantal
arrangement as the complementif4). The theorem thus says that the arrangement dual
to the fiber zonotope is the same as the Manin-Schechtman arrangement. Since the fiber
zonotope is arfn — k)-dimensional polytope iR, the essential dimension #(.A) is
n — k. We will return to the correspondence between the discriminantal arrangement and
the fiber zonotope.

The discriminantal arrangement has at m@é@l) hyperplanes. If4 is generic, the
vectorsEg are nonzero and distinct. In that case4) has exactly(k_il) hyperplanes; for
eachS C [n] of sizek + 1, the hyperplane with norm& g consists of the set of points
such that in the affine arrangemedt thek + 1 hyperplanedd, , H,, ..., H, ., have a
common intersection. This is the case considered by Falk [6].

To describe the hyperplanes of the discriminantal arrangement in the arbitrary (essential)
case, we use the following convention. L&be an essential arrangementdiyperplanes
in R*, with normal vectorsy;, 1 < i < n. For S a subset ofn] we abbreviate ranf; :

i € S} torankS. A subsetS of [n] is called adependent sef rank.S < |S|. A setS'is
dependent if and only if there exists a veckoe R”™ such that in the affine arrangement
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Ap, dim ;. g H; > k — |S|. A minimaldependent sef has rank.S| — 1, and for such a
set there exists a vectbre R" such that indy,, dim (), H; = k — [S] + 1.

Theorem 2.4 Let.A be an essential arrangementohyperplanes iR*. For S a minimal
dependent set, defirigs to be the set of poinfs € R™ such that in the affine arrangement
Ap, dim ;. g H; = k — |S| + 1. Then the discriminantal arrangement basedis

B(A) = {Dg : S is a minimal dependent set

Proof: Let A be a central essential arrangement whose hyperplanes have narmals
ao, ..., a,. LetS be a minimal dependent set; rafik= |S| — 1. LetT be a(k + 1)-set
containingS with rankT = k. ThenEr defines a hyperplane #%.A) consisting of the set
of b € R™ which satisfy the linear dependencies{ef; : i € S}. The vectorb satisfies
the linear dependencies ffy; : i € S} if and only if in A, dim (). g H; = k — |S| + 1.
So E7 is the normal to the hyperplangs. Thus every set of the forvg is one of the
hyperplanes oB(.A).

Conversely, considdEr # 0, whereT is a(k + 1) subset ofn]. ThenEr is the unique
(up to scalar multiple) linear dependence{en, : i € T'}, soT contains a unique minimal
dependent sef, and as abovéb : Er - b = 0} = Dg. Thus every hyperplane @(.A)
is of the formDg for a unique minimal dependent s&t O

WhenA is a generic arrangement, this gives the correspondence of the hyperplanes of the
discriminantal arrangement wittt + 1)-subsets ofrn], as given by Manin and Schechtman
[8]. We look now at a nongeneric example.

Example 2.5 Let A be the 3-arrangement defined by the normegjs= (1,0,0), ay =
0,1,0), a3 = (1,1,0), 4 = (0,0, 1), andas = (1,0,1). The minimal dependent sets
areS, = {1,2,3}, So = {1,4,5}, andSs = {2,3,4,5}. The discriminantal arrangement
B(A) is a 5-arrangement of essential dimension 2, with hyperplanes

DSl = {(bl,bg,bg,b4,b5) N b1 + b2 — bg = 0}

DS2 {(bl,b27b37b4,b5) Zb1+b4—b5 :0}

Ds, = {(b1,b2,b3,b4,b5) : by — bz — by + b5 = 0}.

The zonotopeZ = Z(.A) is a 3-polytope with four hexagonal faces and eight quadrilateral
faces. Figure 1 is a drawing of one side of this polytope, with half of the 2-faces show-
ing. (Since zonotopes are centrally symmetric, this shows enough to determine the whole
polytope.) O

3. The Face Lattice
In the study of hyperplane arrangements, the term “combinatorial” is applied to properties

thatdepend only on the intersection lattice of the arrangement. By contrast the combinatorial
object of interest in zonotopes is the full face lattice: the set of all faces of the zonotope,
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Figure 1. 3-dimensional zonotope

partially ordered by inclusion. The intersection lattice can be determined from the face
lattice, but not vice versa. We study both lattices of the discriminantal arrangement/fiber
zonotope here. To clarify the connection between an arrangement and a zonotope, we turn
(finally) to oriented matroids (see [3]).

A sign vectoron a finite setF is a vector indexed by with coordinates from the set
{—,0,+}. We use the notatioa™ = {e¢ € E : 6. = +}, and similarly foro~ anda?.
The sign vector with all coordinateésis written 0, and —o denotes the coordinatewise
negation of a sign vectas. The producto - T of sign vectorso and = is given by
(o-T)e =0 if 0o #0,and(o - 7). = 7. Otherwise. An element € E separatesr and
Tif 00 = —7. # 0.

Definition 3.1 An oriented matroids a pairM = (E,K), whereFE is a finite set andC
is a set of sign vectors of satisfying

1. 0K

2. ifoeKthen—o € K;

3. ifo, 7€ Ktheno -1 € K;and
4

if o, 7 € K ande € E separates andr, then there existg € X such thatu, = 0
and for everyf € E that does not separateandr, p; = (o - 7)y = (T7-0);.

The setK is known as thesigned cocircuit spamf M. The signed cocircuit spakl
of an oriented matroid/ has a natural partial order < 7 if and only if e+ C 7+
ando~ C 7. The posefC is ranked and is generated by its elements of rgndalled
cocircuits ForI C F, the set{o € K(M) : (et Uo~) NI = (} is the cocircuit span of
another oriented matroitl/ /I, called thecontractionof M by I.

An oriented matroid is defined from a set of real vectors as follows.dsetos, . . .,
., be vectors ilRF, and letA be then x k matrix with thea; as rows. Associate with
eachn-vectorv in the column space A, v = Ax, the sign vector € {—, 0, +}" with
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o, =+ifv;,>00,=—if v, <0,ande; = 0if v; = 0. Let K be the set of all sign
vectors of elements of the column spacetdofThenM = ([n], K) is an oriented matroid.

The posetlC has natural interpretations in the hyperplane arrangemeand in the
zonotopeZ determined byx;, as, . . ., a,. Every pointx € R” is in the relative interior
of aunique face of the arrangemefit Two pointsx andy in R* are in the same (open) face
if and only if they are on the same hyperplanes and are on the same sides of the hyperplanes
that do not contain them. This is equivalent to equality of the sign vectoAxadnd Ay .
So we can identify elements &f with faces ofA. Furthermore, iff’ andG are faces of4
with associated sign vectassandr andF’ C G, theno < 7. So the poseXt is isomorphic
to the face semilattice oAfl.

Itis well known that the face semilattice of the zonotdpghe face lattice witl) removed)
is dual to that ofd. Thus there is an order-reversing isomorphism betwéamd the face
semilattice ofZ. What is it? To any sign vecter € [n] (whether it is inkC or not) assign

the setz [—a, o] + Z o;c;. This set is a zonotope contained4n The nonempty

i€(n] i€(n]
;=0 o #0

faces ofZ are exactly the zonotopes of this form associated with K.
Note that the maximal elements kfare the sign vectors with no zero coordinate. These
correspond to the chambers.dfand to the vertices of .

Example 3.2 (Example 2.1 continued) For four vectorsiR¥ Figure 2 shows the assign-
ments of sign vectors to the face lattices of the zonotope and the hyperplane arrangement.
|

The combinatorics of the fiber zonotope and discriminantal arrangement is related to
liftings of the oriented matroid. Let/ be the oriented matroid of the vectaxs, as, .. .,
o, in R*. Fix hy,he,...,h, € R, and letM’ be the oriented matroid of the vectors
(a1, h1), (a2, ha), ..., (an, hy) andeg 1 (the (k + 1)st standard unit vector) iR*+1.
ThenM is the contraction ofi/’ by the element + 1. Write K’ for the signed cocircuit
span ofM’ andT(K') = {o € {—,0,+}" : (o,+) € K'}. The setl'(K’) containsk.
Other elements df'(K') correspond to subzonotopesXthat are not faces of .

A zonotopal subdivision of the zonotop€” is a polyhedral subdivision df such that
each cell is a zonotope whose edges are translations of edgedm{3] it is proved that
the zonotopes associated with the elemenfB(@’) form a zonotopal subdivision df. A
zonotopal subdivision obtained in this way is callegbgular zonotopal subdivisiorThe
subdivision is called@ubicalif each cell is combinatorially a cube. The §&K’) with sign
sets ordered as before is isomorphic to the face poset of the subdivision of the zonotope
considered as a polyhedral complex. The regular zonotopal subdivision can be described
geometrically as follows. Lef’ be the zonotope whose oriented matroid4& Project the
topfaces ofZ’ along the vectoe, ., ontoZ. Theirimages subdividg. (These zonotopal
subdivisions are also studied in [5]; see that paper also for the appropriate definitions when
the generating vectors; may occur more than once.)

Example 3.3 Let Z be the zonotope generated by vectais= (1,0), a2 = (0, 1), and
as = (1,1); Z is a hexagon. Now consider the 3-dimensional zonotépgenerated by
8, = (1,0,0), 8, = (0,1,0), B3 = (1,1,1), andB, = (0,0,1). This is the convex hull
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Figure 2. Sign patterns on an octagon and arrangement of four lines

of the cubes” and—C, whereC has vertex sef(x1, 2, z3) : z; € {0,2}}. The vertices
of Z’ are the 14 nonzero vertices@fand—C'. The top vertices of’ are the top nonzero
vertices of the two cubeg0, 0, 2), (2,0, 2), (0,2,2), (2,2,2), (0,-2,0), (-2,0,0), and
(—2,—2,0). The top 2-faces are the square with supporting hyperplare 2 and the two
parallelograms with supporting hyperplangs— x; = 2 andzs — x5 = 2. The projection
of these ontars; = 0 subdivides the hexago# into the upper right square and the two
lower left parallelograms shown in Figure 3. O

The face lattice of the fiber zonotop&C,,, Z) is isomorphic to the poset of regular
zonotopal subdivisions aof, with vertices corresponding to regular cubical subdivisions
[2]. Thus we have a poset of sign vecto¥§ K')) associated with every face of the fiber
zonotope. The vertices of the fiber zonotope have associated oriented matroid liftings
M’ with the heightsh; chosen generically. This transfers to a correspondence between
the distinct posetd’(K’) of sign vectors (for different liftings\/’) and the faces of the
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0,2) (2,2)

(0,0)

(-2,0) (2,0)

(-2,-2) “¥—(0,-2)

Figure 3. Subdivided hexagon

discriminantal arrangement. We want to intergfét’’) in terms of the base arrangement
A.

Let A’ be the hyperplane arrangement whose oriented matrald’is Then A is the
induced arrangement on the hyperpldifig,; = {x € R*¥*! : 2., = 0}. The sign
vectorst of M’ with 7,,,; = + correspond to the faces gf above (on the positive side
of) H,.1. Let A, be the affine arrangement induced.dyon the hyperplane.; = 1,
considered as an affine arrangemenRif. Then A, is a parallel translate of the central
arrangemeny; in fact, A, = A_j,. Each face of4, is contained in a unique face gf
aboveH,, .1, and hence inherits a sign vector of length- 1 with ¢,,.1 = +. Dropping
the last coordinate gives a lengthsign vector with the natural interpretation; = 0 if
the face is contained in thiéh hyperplane ofd.; o; = + if the face is on the positive side
ando; = — if the face is on the negative side of tite hyperplane. Thus associated with
every faceF’ of the discriminantal arrangement is a poset of sign vectors isomorphic to the
face poset of any parallel translafg with b € F'. The “generic” oriented matroid liftings
(those associated with cubical subdivisions) give the relatively general position parallel
translates. Thus we get the following.

Theorem 3.4 Each open face df(.A) consists of those points € R* for which the face
poset ofA4;, is isomorphic to a fixed poset of sign vectdf$iC’).

Here we see that a regular zonotopal subdivisio# cbrresponds to a family of parallel
translatesd;, with the same face poset. Whatabout nonregular zonotopal subdivisions? The
face poset of such a subdivision is realized by an affine pseudoarrangement (arrangement of
codimension one surfaces) that agrees with the base arrangement outside a bounded region.

Example 3.5 (Example 2.5 continued) For Example 2.5 we observed that the discriminan-

tal arrangement is of essential dimension two, and has three hyperplanes. So we represent
B(A) by an arrangement of three linesR? (Figure 4). This arrangement has six cham-

bers and six one-dimensional faces, each of which corresponds to a zonotopal subdivision
of the original zonotopeZ. What are these subdivisions? In discussihgve refer to
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the hexagonal face with sign vector 689 as the “front hexagon,” and picture it as the
hexagon in the lower right of Figure 1; its minus (not pictured) is the “back hexagon.”
Similarly we talk about the “top” (at the top of the figure) and “bottom” (not pictured)
hexagon—they have sign vectors 0++00 ard-®@O0, respectively. The quadrilateral faces
in the picture have sign vectors (moving clockwise from upper rightp0—, —0—0—,
—0—+0 and—+0+0. The part o near these faces is referred to as the “left”; the “right” of
the polytope is not pictured. Now we describe regular zonotopal subdivisiafis 8fib-
division X; corresponds to the affine arrangemey, with b = (0,0,0,0,1). The new
vertices in the subdivision have sign vectors-++—, +—++— and ++++-. The maximal
cells of X, are two hexagonal prisms and two cubes. SubdiviSigms the minus ofx;.
Subdivisions¥:; andX4 are combinatorially equivalent t8; andX,; they correspond to
Ap, withb = (0,0, 1,0,0). The new vertices foE3 have sign vectors ++——, ++——+
and ++++ (and forX, the minuses of these).

> 2
Cy
Ch Cs
X6 25
Cs Cy
Cs
23 by

Figure 4. Subdivisions of three-dimensional zonotope

These four subdivisions ¢f correspond to the 1-faces on two lines of (the 2-dimensional
representation offf(.A). They have cubical subdivisions that are easy to describe. Cubical
subdivisionC; has interior vertices with sign vectors++—, +—++—, ++++— ++———
++—+— and ++++. It is a refinement of; but of no othery; that we have described
so far. Cubical subdivisiof’s has interior vertices with sign vectors—++—, +—++—,
++++—, —+——, ——++—, and——+++. It is a refinement oE; andX,. The cubical
subdivision(; is a refinement of a second subdivision, but it is of a different combinatorial
type. LetX; be the subdivision corresponding t,, with b = (1,0,0,0,0). The new
vertices of¥; have sign vectors ++—+, ——+—+ and————+. Four of its maximal cells
are cubes. The other is a twelve-sided zonotope, parallel to the zonotope generated by
vectorsay;, i = 2, 3,4, 5. The final subdivisiort is the minus of this. Figure 4 shows how
these subdivisions (along with four other cubical subdivisions) are related by refinement.
a
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4. The Intersection Lattice

Let us turn to the intersection lattice of the hyperplane arrangeseihis is the set of all
subspaces obtained as the intersection of some of the hyperplanes, ordered (conventionally)
by reverse inclusion. The latticeiianked that is, all chains up to a fixed subspd€eare

the same length, called thank, (K), of K. The intersection lattice is isomorphic to the
lattice of flats of the (unoriented) matroid underlying the oriented matroid. A flat in the
underlying matroid is just the zero set of an element in the signed cocircuit span of the
oriented matroid; in the hyperplane arrangement this amounts to saying that each face is a
subset of a unique subspace (intersection of hyperplanes) of the same dimension, and that
all maximal faces on one hyperplane have sign vectors with the same zero set. What in the
zonotope corresponds to an intersection of hyperplanes® Eofn], let K = (g H;.

Define thef(-zone ofZ to be the set of faces afoftheform 3, _ o[—av;, o] + Zies €0,

wheree; € {+, —}. TheK-zone is thus the collection of faces Bfwhose corresponding

faces inA are contained in and have the same dimensioR a§The dimension of a face

in the K-zone is thus codink = dim{c; : ¢ € S}.) Note that for each fac€ of Z the

faces that are translates Bfform a zone.

Now we consider the intersection lattice of the discriminantal arrangement and the zones
of the fiber zonotope. Recall that a hyperplane of the discriminantal arrangétfidint
corresponds to a minimal dependent subsétpfmeaning a minimal dependency of the
;). An element of the intersection lattice Bf A) is thus a subspace &"™ of the form
K = ., Ds,, where for eacli, S; is a minimal dependent subset[ef. The maximal
faces of3(.A) contained inK correspond to combinatorial types of parallel transladgs
such that for eachi, 1 < j < ¢, (;eq, Hi =k — [S;| + L.

These faces correspond to regular zonotopal subdivisiois &¥hat do the zonotopal
subdivisions corresponding to maximal faces of the same subgpdwe/e in common?
Given any two such zonotopal subdivisiods, andA-, there is a bijectio from the faces
of A; to the faces ofA, so that for every facé’ of A4, ¢(F’) is a translate of'. Conversely,
any two zonotopal subdivisions related in this way correspond to two maximal faces of the
same subspace in the intersection lattice of the discriminantal arrangement. Note that for
any regular zonotopal subdivisiofy —S is also a regular zonotopal subdivision, whose
cells are translates of the cells 8f In the discriminantal arrangement every face has an
opposite face, which of course spans the same subspace.

Example 4.1 (Example 2.5 continued) The only proper subspaces in the intersection lat-
tice of B(A) are the hyperplanes themselves. These have only two maximal faces each,
corresponding to opposite zonotopal subdivisiong ofThe chambers of the arrangement

all span the top element of the intersection lattice. They correspond to cubical regular
subdivisions ofZ. All cubical subdivisions ofZ have the same collection of cubes; in
different subdivisions they are in different positions. Each cubical subdivision has exactly
one translate of the cube, _ o[—av;, ;] for each independent sgtof sizedim Z. O

We turn now to the sizes of the lattices of the discriminantal arrangements. Recall (note
after Theorem 2.3) that fod a k-arrangement of hyperplanes3(A) has at most, ;)

hyperplanes, with equality ifl is generic. Actually itis clear tha#(.4) has exactl),(kil)
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hyperplanes if and only ifd is generic. Falk observed that the intersection lattices of the
discriminantal arrangements of different generic arrangements may differ in the number of
rank 2 elements.

Suppose first thatl is a generic arrangement. Then the intersection laftig8(.A))
has as a sublattice a truncated Boolean latfigg,, the lattice of all subsets df] with
at leastk + 1 elements (plus the empty set). To see this, consider & sét[n] with
|S| > k + 1. Then there is a parallel translatg, s of A for which(,_4 H; = 0 and all
other hyperplanes are in general position. The minimal subspad¥s4)fcontaining the
b(S) for the different sets are all distinct. (Those for whict6| = k + 1 are, of course,
the hyperplanes oB(.4).) In this sublatticeL,, , of L(B(.A)) every subspace of rank
(dimensionn — k — j whenB(A) is considered as am — k)-arrangement) is contained
in (;7) hyperplanes.

Now consider the rank two elementsbf3(A)). In any central arrangement every two
hyperplanes intersect in a rank two subspace, and every rank two subspace is contained
in at least two hyperplanes. Each rank two element in the truncated Boolean sublattice is
contained ink + 2 hyperplanes. The largest number of rank two elements would occur
if every rank two element not in the truncated Boolean sublattice is contained in exactly
two hyperplanes. According to Manin and Schechtman [8], this occurs for arrangements of
k + 3 hyperplanes iR* that form an open Zariski dense subset of all arrangements of that
size. Falk [6] gives an example of a generic arrangemeat six planes inR3 for which
B(A) has fewer rank two elements. He refers to Manin and Schechtman’s arrangements as
“sufficiently general.”

Definition 4.2 An arrangementd of n hyperplanes ilR* is very genericif for all 7,
L(B(.A)) achieves the maximum number of ranklements possible for a discriminantal
arrangement based orkearrangement with hyperplanes.

We conjecture the following description of the intersection latfi¢8(.A)) for a discrim-
inantal arrangemerfi(.4) of a very generic arrangemedt Forn > k+1 > 2let P(n, k)
be the following poset. The elements are §ets, Ss, . . ., S, } of subsets of1,2,...,n}
satisfying

1. foreach, |S;| >k +1
2. foreachl C {1,2,...,m}with [I] > 2,[| ] Si| > k+> (|Si| - k).
el el
The ordering is given by{S1,Ss, ..., S} < {T1,Ts,...,T,} if and only if for eachi
there existg such thatS; C 7). This is a ranked poset, with

m

rank{S1, Sa, ..., Sm} = > _(1Si] = k).
=1
Conjecture 4.3 Letn > k+1 > 2.

1. There exist arrangemeni of n hyperplanes irR* that are very generic, that is, all
rank sets of the intersection lattidg 3(.A)) are of maximum size.
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2. The intersection lattic&(B(.A)) of the discriminantal arrangement based on a very
generic arrangement of hyperplanes iR* is isomorphic toP(n, k).

The conjecture holds fot + 1 < n < k + 3 ([8, Proposition 4]). Falk's arrangement
fails to be very generic because of “second-order” dependencies: while the normals of the
base hyperplanes are in general position, the minimal linear dependencies have extra linear
relations beyond the Grassmanmuélér relations (see [3]). Our guess is that very generic
arrangements can be constructed by choosing the coordinates of the normal vectors from an
algebraicallyindependent set. Another candidate for a very generic arrangemecydithe
arrangemenf11]. This is obtained by taking normal vectaks = (1,¢;,t7, ... ,tf‘l) for
n arbitrary, distinct real numbers.

5. Freeness and Formality

Of special interest in the study of hyperplane arrangements is the question of whether a
given arrangement is free [9]. This is often difficult to determine. The notions of formality
[10] andi-formality [4] are useful as tools for deciding freeness. If an arrangement is free,
then it isi-formal for all i, but not conversely. We see in this section that the discriminantal
arrangement based on a generic arrangement is formal, but not necessarily free. We give
one example where the discriminantal arrangement is free. This cannot happen if the
base arrangement is very generic, but in that case we can prove higher formality for the
discriminantal arrangement. Edelman and Reiner [5] classified all multiarrangerhants

R? for which the discriminantal arrangemesitA) is free.

Example 5.1 (A free discriminantal arrangement) Let A be the central arrangement of
six planes irR? defined by the forms in the product

Qa=2yz(2z + 2y + 2)(6x + 3y + 2) (4 + y + 2).

By the adjoint construction in [6], the discriminantal arrangement can be written as an
arrangement of fifteen planesRy, with

@y = x(z—y)(+y)(z - 2)(x+22)(5z + 3y — 82)(x + 3y — 42) x
(x — 3y + 22)(x — 3y + 82)(Tx — 3y + 82)(11lx + 3y — 8z2) X
(2x + 3y — 2z)(4x — 3y + 22)(5x + 3y — 2z)(x — 3y — 4z).

A supersolvable arrangement can be obtained by adding ten hyperplanes of the ferm
3y — 4z = 0, in such a way that the addition-deletion theorem ([9, Theorem 4.51]) proves
B(A) free.

Discriminantal arrangements are not in general free, however. \Mhsma very generic
arrangement of = k + 3 hyperplanes ilR¥, the characteristic polynomial of the lattice
L(B(A)) is known not to factor. Thus in this case the discriminantal arrangement is not free
([9, Proposition 5.120]). Reiner (private communication) points out that since a localization
of a free arrangement is free ([9, Theorem 4.37]), the following more general statement
holds.
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Theorem 5.2 If A ¢ R” contains a very generic subarrangemenkof 3 hyperplanes,
thenB(.A) is not free.

Other known examples (such as Falk’s) of generic (but not very generic) arrangements of
k + 3 hyperplanes also give rise to nonfree discriminantal arrangements.

Therank (or essential dimension).A) of a hyperplane arrangemedtis defined to be
the rank of the top element of the intersection lattiged). An arrangement is formal
if the space of linear relations among the normals to the hyperplandsi®fgenerated
by the relations associated to the rank 2 subspacésg.if). Let F(A) andI(.A) be the
kernel and image, respectively, of the n@p, . , Rex — R* induced byey — a.
The elements of'(A) are called relations. Note thd{.4) has dimension equal to the
rankr(A) of A, sodim F(A) = |A| — r(A). For a subspac&’ in L(A), Ax denotes
the subarrangement of consisting of the hyperplanes containiAg There is a natural
inclusion mapF'(Ax) — F(A).

Definition 5.3 The arrangement is formalif the inclusions,F'(Ax) — F(A), induce a
surjection

T @ F(Ax) — F(A).

X€EL(A)
r(X)=2

A more general property known agormality (2 < i < r(.A)) involves certain relations
among relations corresponding to the codimensieubspaces id.(A). Wheni = 2
this reduces to formality. We define 3-formality as follows. Suppdsde formal, and let
R(A) be the kernel of the magp,. View R(.A) as a space of relations among the relations
corresponding to the rank 2 elementsidf4). For eacht” € L(.A) there is an inclusion
mapR(Ay) — R(A).

Definition 5.4 The arrangemem is 3-formalif .4 is formal and the inclusion®(Ay ) —
R(A), induce a surjection

T3 @ R(Ay) — R(A).

YeEL(A)
r(Y)=3

For examples and the general definition-dbrmality, see [4].

We use the following notation. L&?® be a finite set of integers. Lét(P, j) denote the
set of subsets aP havingj elements. Fof > j, letC(i,5) = C([i], 7). The sets’(P, j)
are ordered lexicographically, so we may speak of the maximal eleméritaf;).

We now return to discriminantal arrangements. Hdgerefers to a base arrangement,
which is assumed to be a generic arrangement dfyperplanes ilR*, and we write
B = B(Ap). SinceAy is generic, the truncated Boolean lattitg ;, can be viewed as a
sublattice ofL(B). Also, there is a bijection between the atomd.08) (the hyperplanes
of B) and those ofL,, ;. ThusB is identified withC'(n, k + 1) and ordered accordingly,
and all elements of’'(n, j) for k + 1 < j < n can be considered as elements/¢B).

Since|B| = (,%},) andr(B) = n — k, it follows thatdim F(B) = (,%,) — n + k.
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Let X € C(n,k + 2). Thus, as an element df(5), X is the intersection of + 2
hyperplanes and its rank i€ X) = 2. Sodim F(Bx) = (k+ 2) — 2 = k. Any three
distinct hyperplanes i’ (X, k + 1) determine a relation ifi'(Bx ), since their normals are
linearly dependent. We use the following notation to describe such relations.

Definition 5.5 For X € C(n,k +2) and@ € C(X,k — 1), let fo(X) € F(Bx) denote
the relation determined by the three hyperplaneS (X, k + 1) that containy.

For eachY” € C(n,j) with k + 2 < j < n, we define a map that assigns a relation in
F(By) to each hyperplane that is “large enough” in the lexicographical ordétorlLet
Y'[k] denote the firsk: elements oft” and letBy - be the set of hyperplanes Bf- which
containY'[k]. The mapyy : By — By, — F(By) is defined as follows.

Definition 5.6 LetY € C(n,j) withk +2 < j < n, andH = {a1,...,a5+1} €
By — By Witha; < az < --- < apy1). Leti be the smallest element bf[k] — H and
IetQ = {al, ey ak_l}. Then

gy (H) = fo({i} U H).

Note thatH is the maximal hyperplane occurring in the relatipn(H) with nonzero
coefficient; callH thelast hyperplanén gy (H). Also the setX = {i} U H is an element
of C(Y,k +2),sogy(H) = gx(H) € F(Bx). Thus eaclyy (H) is a relation associated
to arank 2 element iu(5).

Theorem 5.7 Let B = B(Ao) where Aq is generic. For eacl” € C(n,j) withk + 2 <
j < n, the arrangemenBy is formal. In particular,B is formal.

Proof: We know thatdim F(By) = (kil) —j+k = |By — Bypy|. Since each

gy (H) € Im(gy) has distinct last hyperplane, it follows that(g ) is a basis fol'(By ).

We have already seenthateggh H) € F(Bx)(= F((By)x))forsomeX € C(Y, k+2).
U

Next we show that if4, is very generic, theB8 = 5(Ap) is actually 3-formal. In fact we
do not use the entire strength of the definition of “very generic,” but only the condition on
rank two elements ok (). This is equivalent to the condition that every rank two element
notinC(n, k + 2) is contained in exactly two hyperplanes.

Thus for.Aq very generic and a rank two elemexite L(B) notinC(n, k + 2), we have
F(Bx) = 0. Recall thadim F(B) = (,',) —n + k, and for eachX € C(n, k + 2),
dim F'(Bx) = k. By Theorem 5.7 there is an exact sequence

0 — R(B) — @ F(Bx) — F(B) — 0,
XeC(n,k+2)

and thus

dimR(B)zk(ki2> - (kj_l) Yk

Next we define an important subset/6{B).
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Definiton 5.8 LetG = | ]  Im(gx).
Xel(n,k+2)

Recall that for anyy” € C(n,j) with k +2 < j < n and anyH € By — By, the
relationgy (H) is an element oF(BX) for someX e C(n,k + 2). Thus for eaclt’, we
have In{gy) C G. SinceG hask(,",) elements and each I ) is a basis fotF'(Bx),
there is an isomorphism

P rBx)~EPrRy

X€C(n,k+2) feag

k+2

HenceR(B) can be viewed as the kernel of the n@ Rf — F(B).
feG

OrderG by last hyperplanes in the relations as follows. §ef gx (H)andg’ = gx/(H),
sayg < ¢'if H < H' orif H = H andX < X’. Then for anyY € C(n,j) with
k+2 < j <nandforanyd € By — By, the relationgy (H) € G is minimal among
the relations irG N F'(By ) having last hyperplan& . In particular whert” = [n], gj,) (H)
is minimal among all relations i6¥ having last hyperplané .

The proof of the next theorem is much like the proof of Theorem 5.7. To showsttsat
3-formal, we demonstrate sufficiently many linearly independent elemef®g3)f, where
each one is actually an element®f5y-) for some rank 3 subspagdé € L(B).

Theorem 5.9 If Ay is very generic, thel8 = B(Ap) is 3-formal.

Proof: First note that

n n
|G— Im(g[n])\ = k(/ﬂ-l—Q) — (/{i+ 1) +n—k.

Choose som¢ € G — Im(gy,)). Let H be the last hyperplane ify and letg = g, (H).
Then there are sef§ and X’ in C'(n, k+2), withg = gx (H), f = gx/(H), X < X’ and
XNX’' = H. Thus bothf andg are elements af' (By ), whereY = XUX' € C(n, k+3).
We know thaty € Im(gy ). Sincef andg have the same last hyperplarfeg Im(gy ).
The set Ingy ) is a basis fof'(By ), so there is a relatiom(f) € R(By) having nonzero
coefficient onf and zero coefficients outside the set(ys) U {f}. By the ordering on
G, the coefficient ory is the last nonzero coefficient of(f). Hence the sefw(f) | f €
G —Im(gp,;)} is a basis forR(B), andB is 3-formal. O

We remark that our technigues might be used to show fhat i-formal (¢ > 4) in
the very generic case, but we do not have enough information about the Iati¢dsee
Conjecture 4.3). We know of no example of an arrangem&ntgeneric or otherwise, for
which B(Ap) fails to bei-formal. In the following exampledq is generic, but not very
generic, yet is 3-formal.

Example 5.10 Let Ao have normalsal = (2,2,1), as = (2,3,2), ag = (1,2,2),
ay = (0,0,1), a5 = (0,1,0), ag = (1,0,0), a7 = (3, 1, 1). ThenB B(Ap) is an
arrangement of 35 planes R’ W|th rank 4, SOdlmF = Z) — 743 =31. In ([6,
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Example 3.2]) it was shown that the arrangemdpt— a7 is not very generic. Thusglg
is not very generic. In particular, there are four rank 2 elem&nts L(5) — C(7,5) that
are the intersection of three or more hyperplane8.ofhey are:

X1 = 123411456 N 2356
Xy = 1236 N 1245 N 3456
Xs 1245 N 1346 N 2356
Xy 1256 N 1346 N 2345.

EachF'(Bx,) has dimension 1, so by the earlier exact sequetice R(B) = 3(;) +4 -
31 =36. Fori =1,...,4let f; be a nonzero relation if(Bx,). Let

G = U Im(gx) | U{f1, f2, f3, fa}s

XeC(7,5)

ordered as before, with the additional relations as the largest four elements. As in the proof
of Theorem 5.9R(B) contains 32 linearly independent elements fromAti8y ), for rank
3 elementy” of L(B).

We know that the set I(g,,)) is a basis forF'(B) so it is clear that for each there
is a relationw(f;) € R(B) having nonzero coefficient ofy. What is needed is such a
relation inR(By ) for some rank 3 element df(53). It turns out that eacX; contains the
rank 3 element” that is the intersection of the following hyperplanes: 1234, 1235, 1236,
1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456. Observe that
|By| = 15, sodim F'(By) = 12. Itis not difficult to check that for each of the twelve
H € By —{1234,1235,1236}, the relationg,,)(H) is in F(By), so Im(g(,,) contains a
basis forF'(By ). Since eaclyf; € F'(By), we can choose eaah(f;) € R(By). ThusB
is 3-formal. ]

Discriminantal arrangements can be defined over the complex nur@bdrsthis case
Theorem 5.7 and Theorem 5.9 still hold. An arrangeméint C™ is called aK (, 1) ar-
rangementif the compleme@t® — J ;. , H isaK (7, 1) space. AllK(r, 1) arrangements
are formal [7]. It would be interesting to know which (if any) discriminantal arrangements
areK (m,1). Edelman and Reiner ([5, Section 4]) give an example of a free discriminantal
arrangement (based on a nongeneric arrangement) which is(aotl).
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