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Abstract. Manin and Schechtman defined the discriminantal arrangement of a generic hyperplane arrangement
as a generalization of the braid arrangement. This paper shows their construction is dual to the fiber zonotope
construction of Billera and Sturmfels, and thus makes sense even when the base arrangement is not generic. The
hyperplanes, face lattices and intersection lattices of discriminantal arrangements are studied. The discriminantal
arrangement over a generic arrangement is shown to be formal (and in some cases 3-formal), though it is in general
not free. An example of a free discriminantal arrangement over a generic arrangement is given.
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1. Introduction

Manin and Schechtman [8] defined discriminantal arrangement as a generalization of the
braid arrangement. The discriminantal arrangementB(n, k) has as its complement the
manifold of general position parallel translates of an affine arrangement ofn hyperplanes
that is in general position inRk. Manin and Schechtman then studied the intersection
lattice of discriminantal arrangements arising from a dense subset of general position affine
arrangements. Falk [6] studied the discriminantal arrangement associated with any general
position affine arrangement, and described the hyperplanes of the discriminantal arrange-
ment in terms of those of the base arrangement. In particular he showed that the intersection
lattice of the discriminantal arrangement does not depend solely onn andk. Billera and
Sturmfels [2] defined the fiber zonotope as a quotient of a projection map from a cube onto
a zonotope. They gave the vectors of the fiber zonotope explicitly.

In this paper we show the following. The discriminantal arrangement as studied by Manin
and Schechtman (or more generally Falk) is the arrangement dual to the fiber zonotope of
the zonotope dual to the base arrangement. No general position assumption is needed:
the discriminantal arrangement can be defined for any essential arrangement. In all cases
the complement of the discriminantal arrangement is the manifold of (relatively) general
position parallel translates of the base arrangement. The hyperplanes of the discriminantal
arrangement correspond to minimal violations of general position conditions that can be
achieved by parallel translation of the base arrangement. By Billera and Sturmfels, a face of
the fiber zonotope corresponds to a regular zonotopal subdivision of the base zonotope, with
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vertices corresponding to regular cubical subdivisions. This is matched by a correspondence
between the faces of the discriminantal arrangement and the face posets of parallel translates
of the base arrangement. In Section 4 we conjecture a description of the intersection lattice
of the discriminantal arrangement based on a “very generic” arrangement.

Free discriminantal arrangements can arise from generic base arrangements (see exam-
ple in Section 5), but not from very generic base arrangements. A necessary condition
for the freeness of an arrangement is formality, a condition on the space of linear rela-
tions among the hyperplanes. We show that the discriminantal arrangement based on any
generic arrangement is formal. If the base arrangement is very generic, the discriminantal
arrangement is actually 3-formal.

Useful general references are [9] on hyperplane arrangements and [3] on oriented ma-
troids. Some of the material in this paper is described in the expository paper [1].

2. Discriminantal Arrangements

A hyperplanein Rk is a set of the formH = {x ∈ Rk : α ·x = b}whereα ∈ Rk (α 6= 0)
andb ∈ R. An affine arrangementin Rk is a finite collection of hyperplanes. It is called
a central arrangement(or simply anarrangement) if each hyperplane passes through the
origin (b = 0).

Let α1,α2, . . . ,αn be nonzero vectors inRk such that noαi is a multiple of another.
Associated with these vectors is the central arrangement of hyperplanes with normalsαi
in Rk, A = {H0

1 , H
0
2 , . . . , H

0
n}. Associated with the same set of vectors is the zonotope

Z = Z(A), which is the Minkowski sum of the line segments[−αi,αi], 1 ≤ i ≤ n. If two
vectors are multiples of each other, the same hyperplane occurs twice; the set of hyperplanes
is then called amultiarrangement. The constructions here work also for multiarrangements,
but we avoid parallel vectors to simplify the presentation.

For b = (b1, b2, . . . , bn) ∈ Rn, let Ab be the affine arrangement ofn hyperplanes,
Hi = {x ∈ Rk : αi · x = bi}. ThenA0 = A andAb is called aparallel translateof
A. The affine arrangementAb = {H1, H2, . . . , Hn} is in relatively general positionif for
all subsetsS of [n] = {1, 2, . . . , n} with |S| ≤ k, dim

⋂
i∈S Hi ≤ k − |S|, and for all

subsetsS of [n] with |S| > k,
⋂
i∈S Hi = ∅. (It is in general positionif, moreover, the

dimension inequality holds as equality for allS with |S| ≤ k.) The idea is that the high
dimensional intersections, but not the parallelisms, of a nongeneral position arrangement
can be eliminated by parallel translation of the hyperplanes. LetU(A) = {b ∈ Rn :
Ab is in relatively general position}. We will show thatU(A) is the complement of a
central hyperplane arrangement inRn.

Example 2.1 Let A be the 2-arrangement defined by the normalsα1 = (0, 1), α2 =
(−1, 1), α3 = (1, 0), andα4 = (1, 1). (The corresponding zonotope is an octagon.)
Consider the four hyperplanesD[i] in R4:

D[1] = {(b1, b2, b3, b4) : b2 + 2b3 − b4 = 0}
D[2] = {(b1, b2, b3, b4) : b1 + b3 − b4 = 0}
D[3] = {(b1, b2, b3, b4) : 2b1 − b2 − b4 = 0}
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D[4] = {(b1, b2, b3, b4) : b1 − b2 − b3 = 0}.

The hyperplaneD[i] consists of those “right-hand sides”b for which, in the arrangement
Ab, the three hyperplanes other thanHi intersect at a point. The complement of the
hyperplane arrangement{D[1], D[2], D[3], D[4]} thus consists of thoseb such that no three
of the hyperplanesHi intersect, that is, the general position parallel translates ofA. Note
that this arrangement inR4 is not essentially four dimensional; the intersection of all four
hyperplanes is a two-dimensional subspace ofR4. In fact this arrangement is isomorphic
to the two-dimensional arrangementA, but this happens only inveryspecial cases. 2

Assume that the normals to the hyperplanes ofA spanRk. (The arrangementA is then
calledessential.) Let Cn be then-cube with vertices±ei (ei the standard unit vector);
let π be the linear map fromCn to Z satisfyingπ(ei) = αi. Billera and Sturmfels [2]
defined the fiber polytope asΣ(Cn, Z) = 1

vol Z {
∫
Z
γ(x) dx} ⊆ Rn, whereγ ranges over

all measurable right inverses ofπ (γ : Z → Rn). They proved the following facts about
the fiber zonotope.

1. The fiber polytope is an(n− k)-dimensional zonotope.

2. The scaled fiber zonotope(volZ)Σ(Cn, Z) is the Minkowski sum of the line segments
[−ES ,ES ], where for each(k + 1)-subsetS of [n], S = {s1 < s2 < · · · < sk+1},

ES =
k+1∑
i=1

(−1)i det(αs1 , . . . ,αsi−1 ,αsi+1 , . . . ,αsk+1) · esi .

3. The face lattice of the fiber zonotopeΣ(Cn, Z) is isomorphic to the poset of regular
zonotopal subdivisions (to be defined later) ofZ. The vertices correspond to regular
cubical subdivisions.

Definition 2.2 Let A be an essential arrangement ofn hyperplanes inRk with normal
vectorsα1, α2, . . . , αn. Thediscriminantal arrangement based onA is the arrangement
in Rn of hyperplanes with normal vectors the distinct, nonzero vectors of the form

ES =
k+1∑
i=1

(−1)i det(αs1 , . . . ,αsi−1 ,αsi+1 , . . . ,αsk+1) · esi ,

asS = {s1 < s2 < · · · < sk+1} ranges over the(k + 1)-subsets of[n].

The discriminantal arrangement is thus the arrangement dual to the fiber zonotope.

Theorem 2.3 LetA be an essential arrangement ofn hyperplanes inRk, andB(A) the
discriminantal arrangement based onA. ThenU(A), the set of relatively general position
translations, is the complement ofB(A).

Proof: The complement ofB(A) is the set ofb ∈ Rn such that for all(k + 1)-
subsetsS of [n], ES 6= 0 implies ES · b 6= 0. Recall thatU(A) = {b ∈ Rn :
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Ab is in relatively general position}. Since the normals to the hyperplanes ofA spanRk,
a parallel translateAb is in relatively general position if and only if for all subsetsT of [n]
with |T | > k,

⋂
i∈T Hi = ∅, and it is of course equivalent to apply the empty intersection

criterion only to setsT of cardinalityk + 1. Thus we need to show the following are
equivalent, for the affine hyperplane arrangementAb = {H1, H2, . . . , Hn}:

1. for all (k + 1)-subsetsT of [n],
⋂
i∈T

Hi = ∅

2. for all (k + 1)-subsetsS of [n] for whichES 6= 0, ES · b 6= 0.

We use two facts about linear dependencies. For any setT ,
⋂
i∈T Hi 6= ∅ if and only if

the set{bi : i ∈ T} satisfies all linear dependencies satisfied by the set{αi : i ∈ T}. If
the rank of the set{αi : i ∈ S} is k = |S| − 1, then every linear dependency on the set
{αi : i ∈ S} is a nonzero multiple ofES .

Assume (1), and letS be a (k + 1)-subset of[n] with ES 6= 0. Thus the rank of
{αi : i ∈ S} is k, soES gives the only linear dependency on{αi : i ∈ S}. By (1),⋂
i∈S Hi = ∅, so{bi : i ∈ S} fails to satisfy the linear dependency given byES . Thus

ES · b 6= 0.
Assume (2), and letT be a(k+1)-subset of[n]. ChooseT0 ⊆ T so that{αi : i ∈ T0} is

an independent set with span{αi : i ∈ T0} = span{αi : i ∈ T}; then choose a(k+ 1)-set
S containingT0 with rank{αi : i ∈ S} = k. ThusES · b 6= 0, so{bi : i ∈ S} fails

to satisfy some linear dependency satisfied by{αi : i ∈ S}. So
⋂
i∈S

Hi 6= ∅. Since⋂
i∈S

Hi ⊆
⋂
i∈T0

Hi =
⋂
i∈T

Hi, we conclude that
⋂
i∈T

Hi 6= ∅.

The arrangementA is calledgenericif n ≥ k and every intersection ofk hyperplanes
has dimension zero. In this caseAb is in general position for someb ∈ Rn.

Manin and Schechtman [8] defined (in the case whenA is generic) the discriminantal
arrangement as the complement ofU(A). The theorem thus says that the arrangement dual
to the fiber zonotope is the same as the Manin-Schechtman arrangement. Since the fiber
zonotope is an(n − k)-dimensional polytope inRn, the essential dimension ofB(A) is
n − k. We will return to the correspondence between the discriminantal arrangement and
the fiber zonotope.

The discriminantal arrangement has at most
(
n
k+1

)
hyperplanes. IfA is generic, the

vectorsES are nonzero and distinct. In that caseB(A) has exactly
(
n
k+1

)
hyperplanes; for

eachS ⊆ [n] of sizek + 1, the hyperplane with normalES consists of the set of pointsb
such that in the affine arrangementAb thek+ 1 hyperplanesHs1 ,Hs2 , . . . ,Hsk+1 have a
common intersection. This is the case considered by Falk [6].

To describe the hyperplanes of the discriminantal arrangement in the arbitrary (essential)
case, we use the following convention. LetA be an essential arrangement ofn hyperplanes
in Rk, with normal vectorsαi, 1 ≤ i ≤ n. ForS a subset of[n] we abbreviate rank{αi :
i ∈ S} to rankS. A subsetS of [n] is called adependent setif rankS < |S|. A setS is
dependent if and only if there exists a vectorb ∈ Rn such that in the affine arrangement
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Ab, dim
⋂
i∈S Hi > k − |S|. A minimaldependent setS has rank|S| − 1, and for such a

set there exists a vectorb ∈ Rn such that inAb, dim
⋂
i∈S Hi = k − |S|+ 1.

Theorem 2.4 LetA be an essential arrangement ofn hyperplanes inRk. ForS a minimal
dependent set, defineDS to be the set of pointsb ∈ Rn such that in the affine arrangement
Ab, dim

⋂
i∈S Hi = k − |S|+ 1. Then the discriminantal arrangement based onA is

B(A) = {DS : S is a minimal dependent set}.

Proof: Let A be a central essential arrangement whose hyperplanes have normalsα1,
α2, . . . , αn. LetS be a minimal dependent set; rankS = |S| − 1. LetT be a(k + 1)-set
containingS with rankT = k. ThenET defines a hyperplane ofB(A) consisting of the set
of b ∈ Rn which satisfy the linear dependencies of{αi : i ∈ S}. The vectorb satisfies
the linear dependencies of{αi : i ∈ S} if and only if inAb dim

⋂
i∈S Hi = k − |S|+ 1.

SoET is the normal to the hyperplaneDS . Thus every set of the formDS is one of the
hyperplanes ofB(A).

Conversely, considerET 6= 0, whereT is a(k+ 1) subset of[n]. ThenET is the unique
(up to scalar multiple) linear dependence on{αi : i ∈ T}, soT contains a unique minimal
dependent setS, and as above{b : ET · b = 0} = DS . Thus every hyperplane ofB(A)
is of the formDS for a unique minimal dependent setS.

WhenA is a generic arrangement, this gives the correspondence of the hyperplanes of the
discriminantal arrangement with(k+1)-subsets of[n], as given by Manin and Schechtman
[8]. We look now at a nongeneric example.

Example 2.5 Let A be the 3-arrangement defined by the normalsα1 = (1, 0, 0), α2 =
(0, 1, 0), α3 = (1, 1, 0), α4 = (0, 0, 1), andα5 = (1, 0, 1). The minimal dependent sets
areS1 = {1, 2, 3}, S2 = {1, 4, 5}, andS3 = {2, 3, 4, 5}. The discriminantal arrangement
B(A) is a 5-arrangement of essential dimension 2, with hyperplanes

DS1 = {(b1, b2, b3, b4, b5) : b1 + b2 − b3 = 0}
DS2 = {(b1, b2, b3, b4, b5) : b1 + b4 − b5 = 0}
DS3 = {(b1, b2, b3, b4, b5) : b2 − b3 − b4 + b5 = 0}.

The zonotopeZ = Z(A) is a 3-polytope with four hexagonal faces and eight quadrilateral
faces. Figure 1 is a drawing of one side of this polytope, with half of the 2-faces show-
ing. (Since zonotopes are centrally symmetric, this shows enough to determine the whole
polytope.) 2

3. The Face Lattice

In the study of hyperplane arrangements, the term “combinatorial” is applied to properties
that depend only on the intersection lattice of the arrangement. By contrast the combinatorial
object of interest in zonotopes is the full face lattice: the set of all faces of the zonotope,
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Figure 1. 3-dimensional zonotope

partially ordered by inclusion. The intersection lattice can be determined from the face
lattice, but not vice versa. We study both lattices of the discriminantal arrangement/fiber
zonotope here. To clarify the connection between an arrangement and a zonotope, we turn
(finally) to oriented matroids (see [3]).

A sign vectoron a finite setE is a vector indexed byE with coordinates from the set
{−, 0,+}. We use the notationσ+ = {e ∈ E : σe = +}, and similarly forσ− andσ0.
The sign vector with all coordinates0 is written 0, and−σ denotes the coordinatewise
negation of a sign vectorσ. The productσ · τ of sign vectorsσ and τ is given by
(σ · τ )e = σe if σe 6= 0, and(σ · τ )e = τe otherwise. An elemente ∈ E separatesσ and
τ if σe = −τe 6= 0.

Definition 3.1 An oriented matroidis a pairM = (E,K), whereE is a finite set andK
is a set of sign vectors onE satisfying

1. 0 ∈ K;

2. if σ ∈ K then−σ ∈ K;

3. if σ, τ ∈ K thenσ · τ ∈ K; and

4. if σ, τ ∈ K ande ∈ E separatesσ andτ , then there existsµ ∈ K such thatµe = 0
and for everyf ∈ E that does not separateσ andτ , µf = (σ · τ )f = (τ · σ)f .

The setK is known as thesigned cocircuit spanof M . The signed cocircuit spanK
of an oriented matroidM has a natural partial order:σ ¹ τ if and only if σ+ ⊆ τ+

andσ− ⊆ τ−. The posetK is ranked and is generated by its elements of rank1, called
cocircuits. ForI ⊆ E, the set{σ ∈ K(M) : (σ+ ∪ σ−) ∩ I = ∅} is the cocircuit span of
another oriented matroidM/I, called thecontractionof M by I.

An oriented matroid is defined from a set of real vectors as follows. Letα1, α2, . . . ,
αn be vectors inRk, and letA be then × k matrix with theαi as rows. Associate with
eachn-vectorv in the column space ofA, v = Ax, the sign vectorσ ∈ {−, 0,+}n with
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σi = + if vi > 0, σi = − if vi < 0, andσi = 0 if vi = 0. LetK be the set of all sign
vectors of elements of the column space ofA. ThenM = ([n],K) is an oriented matroid.

The posetK has natural interpretations in the hyperplane arrangementA and in the
zonotopeZ determined byα1,α2, . . . ,αn. Every pointx ∈ Rk is in the relative interior
of a unique face of the arrangementA. Two pointsx andy in Rk are in the same (open) face
if and only if they are on the same hyperplanes and are on the same sides of the hyperplanes
that do not contain them. This is equivalent to equality of the sign vectors ofAx andAy.
So we can identify elements ofK with faces ofA. Furthermore, ifF andG are faces ofA
with associated sign vectorsσ andτ andF ⊆ G, thenσ ¹ τ . So the posetK is isomorphic
to the face semilattice ofA.

It is well known that the face semilattice of the zonotopeZ (the face lattice with∅ removed)
is dual to that ofA. Thus there is an order-reversing isomorphism betweenK and the face
semilattice ofZ. What is it? To any sign vectorσ ∈ [n] (whether it is inK or not) assign

the set
∑
i∈[n]
σi=0

[−αi,αi] +
∑
i∈[n]
σi 6=0

σiαi. This set is a zonotope contained inZ. The nonempty

faces ofZ are exactly the zonotopes of this form associated withσ ∈ K.
Note that the maximal elements ofK are the sign vectors with no zero coordinate. These

correspond to the chambers ofA and to the vertices ofZ.

Example 3.2 (Example 2.1 continued) For four vectors inR2 Figure 2 shows the assign-
ments of sign vectors to the face lattices of the zonotope and the hyperplane arrangement.
2

The combinatorics of the fiber zonotope and discriminantal arrangement is related to
liftings of the oriented matroid. LetM be the oriented matroid of the vectorsα1,α2, . . . ,
αn in Rk. Fix h1, h2, . . . , hn ∈ R, and letM ′ be the oriented matroid of the vectors
(α1, h1), (α2, h2), . . . , (αn, hn) andek+1 (the(k + 1)st standard unit vector) inRk+1.
ThenM is the contraction ofM ′ by the elementn + 1. WriteK′ for the signed cocircuit
span ofM ′ andT (K′) = {σ ∈ {−, 0,+}n : (σ,+) ∈ K′}. The setT (K′) containsK.
Other elements ofT (K′) correspond to subzonotopes ofZ that are not faces ofZ.

A zonotopal subdivision∆ of the zonotopeZ is a polyhedral subdivision ofZ such that
each cell is a zonotope whose edges are translations of edges ofZ. In [3] it is proved that
the zonotopes associated with the elements ofT (K′) form a zonotopal subdivision ofZ. A
zonotopal subdivision obtained in this way is called aregular zonotopal subdivision. The
subdivision is calledcubicalif each cell is combinatorially a cube. The setT (K′) with sign
sets ordered as before is isomorphic to the face poset of the subdivision of the zonotope
considered as a polyhedral complex. The regular zonotopal subdivision can be described
geometrically as follows. LetZ ′ be the zonotope whose oriented matroid isM ′. Project the
top faces ofZ ′ along the vectorek+1 ontoZ. Their images subdivideZ. (These zonotopal
subdivisions are also studied in [5]; see that paper also for the appropriate definitions when
the generating vectorsαi may occur more than once.)

Example 3.3 Let Z be the zonotope generated by vectorsα1 = (1, 0), α2 = (0, 1), and
α3 = (1, 1); Z is a hexagon. Now consider the 3-dimensional zonotopeZ ′ generated by
β1 = (1, 0, 0), β2 = (0, 1, 0), β3 = (1, 1, 1), andβ4 = (0, 0, 1). This is the convex hull
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Figure 2. Sign patterns on an octagon and arrangement of four lines

of the cubesC and−C, whereC has vertex set{(x1, x2, x3) : xi ∈ {0, 2}}. The vertices
of Z ′ are the 14 nonzero vertices ofC and−C. The top vertices ofZ ′ are the top nonzero
vertices of the two cubes:(0, 0, 2), (2, 0, 2), (0, 2, 2), (2, 2, 2), (0,−2, 0), (−2, 0, 0), and
(−2,−2, 0). The top 2-faces are the square with supporting hyperplanex3 = 2 and the two
parallelograms with supporting hyperplanesx3−x1 = 2 andx3−x2 = 2. The projection
of these ontox3 = 0 subdivides the hexagonZ into the upper right square and the two
lower left parallelograms shown in Figure 3. 2

The face lattice of the fiber zonotopeΣ(Cn, Z) is isomorphic to the poset of regular
zonotopal subdivisions ofZ, with vertices corresponding to regular cubical subdivisions
[2]. Thus we have a poset of sign vectors (T (K′)) associated with every face of the fiber
zonotope. The vertices of the fiber zonotope have associated oriented matroid liftings
M ′ with the heightshi chosen generically. This transfers to a correspondence between
the distinct posetsT (K′) of sign vectors (for different liftingsM ′) and the faces of the
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Figure 3. Subdivided hexagon

discriminantal arrangement. We want to interpretT (K′) in terms of the base arrangement
A.

Let A′ be the hyperplane arrangement whose oriented matroid isM ′. ThenA is the
induced arrangement on the hyperplaneHn+1 = {x ∈ Rk+1 : xk+1 = 0}. The sign
vectorsτ of M ′ with τn+1 = + correspond to the faces ofA′ above (on the positive side
of) Hn+1. LetA∗ be the affine arrangement induced byA′ on the hyperplanexk+1 = 1,
considered as an affine arrangement inRk. ThenA∗ is a parallel translate of the central
arrangementA; in fact,A∗ = A−h. Each face ofA∗ is contained in a unique face ofA′
aboveHn+1, and hence inherits a sign vector of lengthn + 1 with σn+1 = +. Dropping
the last coordinate gives a lengthn sign vector with the natural interpretation:σi = 0 if
the face is contained in theith hyperplane ofA∗; σi = + if the face is on the positive side
andσi = − if the face is on the negative side of theith hyperplane. Thus associated with
every faceF of the discriminantal arrangement is a poset of sign vectors isomorphic to the
face poset of any parallel translateAb with b ∈ F . The “generic” oriented matroid liftings
(those associated with cubical subdivisions) give the relatively general position parallel
translates. Thus we get the following.

Theorem 3.4 Each open face ofB(A) consists of those pointsb ∈ Rk for which the face
poset ofAb is isomorphic to a fixed poset of sign vectors,T (K′).

Here we see that a regular zonotopal subdivision ofZ corresponds to a family of parallel
translatesAb with the same face poset. What about nonregular zonotopal subdivisions? The
face poset of such a subdivision is realized by an affine pseudoarrangement (arrangement of
codimension one surfaces) that agrees with the base arrangement outside a bounded region.

Example 3.5 (Example 2.5 continued) For Example 2.5 we observed that the discriminan-
tal arrangement is of essential dimension two, and has three hyperplanes. So we represent
B(A) by an arrangement of three lines inR2 (Figure 4). This arrangement has six cham-
bers and six one-dimensional faces, each of which corresponds to a zonotopal subdivision
of the original zonotopeZ. What are these subdivisions? In discussingZ we refer to
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the hexagonal face with sign vector 000−− as the “front hexagon,” and picture it as the
hexagon in the lower right of Figure 1; its minus (not pictured) is the “back hexagon.”
Similarly we talk about the “top” (at the top of the figure) and “bottom” (not pictured)
hexagon—they have sign vectors 0++00 and 0−−00, respectively. The quadrilateral faces
in the picture have sign vectors (moving clockwise from upper right)−+00−, −0−0−,
−0−+0 and−+0+0. The part ofZ near these faces is referred to as the “left”; the “right” of
the polytope is not pictured. Now we describe regular zonotopal subdivisions ofZ. Sub-
division Σ1 corresponds to the affine arrangementAb, with b = (0, 0, 0, 0, 1). The new
vertices in the subdivision have sign vectors +−−+−, +−++− and ++++−. The maximal
cells ofΣ1 are two hexagonal prisms and two cubes. SubdivisionΣ2 is the minus ofΣ1.
SubdivisionsΣ3 andΣ4 are combinatorially equivalent toΣ1 andΣ2; they correspond to
Ab, with b = ±(0, 0, 1, 0, 0). The new vertices forΣ3 have sign vectors ++−−−, ++−−+
and ++−++ (and forΣ4 the minuses of these).
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Figure 4. Subdivisions of three-dimensional zonotope

These four subdivisions ofZ correspond to the 1-faces on two lines of (the 2-dimensional
representation of)B(A). They have cubical subdivisions that are easy to describe. Cubical
subdivisionC1 has interior vertices with sign vectors +−−+−, +−++−, ++++−, ++−−−,
++−+− and ++−++. It is a refinement ofΣ1 but of no otherΣi that we have described
so far. Cubical subdivisionC2 has interior vertices with sign vectors +−−+−, +−++−,
++++−, −−+−−, −−++−, and−−+++. It is a refinement ofΣ1 andΣ4. The cubical
subdivisionC1 is a refinement of a second subdivision, but it is of a different combinatorial
type. LetΣ5 be the subdivision corresponding toAb, with b = (1, 0, 0, 0, 0). The new
vertices ofΣ5 have sign vectors−++−+,−−+−+ and−−−−+. Four of its maximal cells
are cubes. The other is a twelve-sided zonotope, parallel to the zonotope generated by
vectorsαi, i = 2, 3, 4, 5. The final subdivisionΣ6 is the minus of this. Figure 4 shows how
these subdivisions (along with four other cubical subdivisions) are related by refinement.
2
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4. The Intersection Lattice

Let us turn to the intersection lattice of the hyperplane arrangementA. This is the set of all
subspaces obtained as the intersection of some of the hyperplanes, ordered (conventionally)
by reverse inclusion. The lattice isranked, that is, all chains up to a fixed subspaceK are
the same length, called therank, r(K), ofK. The intersection lattice is isomorphic to the
lattice of flats of the (unoriented) matroid underlying the oriented matroid. A flat in the
underlying matroid is just the zero set of an element in the signed cocircuit span of the
oriented matroid; in the hyperplane arrangement this amounts to saying that each face is a
subset of a unique subspace (intersection of hyperplanes) of the same dimension, and that
all maximal faces on one hyperplane have sign vectors with the same zero set. What in the
zonotope corresponds to an intersection of hyperplanes? ForS ⊆ [n], letK =

⋂
i∈S Hi.

Define theK-zone ofZ to be the set of faces ofZ of the form
∑
i∈S [−αi,αi] +

∑
i6∈S εiαi,

whereεi ∈ {+,−}. TheK-zone is thus the collection of faces ofZ whose corresponding
faces inA are contained in and have the same dimension asK. (The dimension of a face
in theK-zone is thus codimK = dim{αi : i ∈ S}.) Note that for each faceF of Z the
faces that are translates ofF form a zone.

Now we consider the intersection lattice of the discriminantal arrangement and the zones
of the fiber zonotope. Recall that a hyperplane of the discriminantal arrangementB(A)
corresponds to a minimal dependent subset of[n] (meaning a minimal dependency of the
αi). An element of the intersection lattice ofB(A) is thus a subspace ofRn of the form
K =

⋂q
i=1DSi , where for eachi, Si is a minimal dependent subset of[n]. The maximal

faces ofB(A) contained inK correspond to combinatorial types of parallel translatesAb

such that for eachj, 1 ≤ j ≤ q,
⋂
i∈Sj Hi = k − |Sj |+ 1.

These faces correspond to regular zonotopal subdivisions ofZ. What do the zonotopal
subdivisions corresponding to maximal faces of the same subspaceK have in common?
Given any two such zonotopal subdivisions,∆1 and∆2, there is a bijectionφ from the faces
of ∆1 to the faces of∆2 so that for every faceF of ∆1,φ(F ) is a translate ofF . Conversely,
any two zonotopal subdivisions related in this way correspond to two maximal faces of the
same subspace in the intersection lattice of the discriminantal arrangement. Note that for
any regular zonotopal subdivisionS, −S is also a regular zonotopal subdivision, whose
cells are translates of the cells ofS. In the discriminantal arrangement every face has an
opposite face, which of course spans the same subspace.

Example 4.1 (Example 2.5 continued) The only proper subspaces in the intersection lat-
tice of B(A) are the hyperplanes themselves. These have only two maximal faces each,
corresponding to opposite zonotopal subdivisions ofZ. The chambers of the arrangement
all span the top element of the intersection lattice. They correspond to cubical regular
subdivisions ofZ. All cubical subdivisions ofZ have the same collection of cubes; in
different subdivisions they are in different positions. Each cubical subdivision has exactly
one translate of the cube

∑
i∈S [−αi,αi] for each independent setS of sizedimZ. 2

We turn now to the sizes of the lattices of the discriminantal arrangements. Recall (note
after Theorem 2.3) that forA a k-arrangement ofn hyperplanes,B(A) has at most

(
n
k+1

)
hyperplanes, with equality ifA is generic. Actually it is clear thatB(A) has exactly

(
n
k+1

)
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hyperplanes if and only ifA is generic. Falk observed that the intersection lattices of the
discriminantal arrangements of different generic arrangements may differ in the number of
rank 2 elements.

Suppose first thatA is a generic arrangement. Then the intersection latticeL(B(A))
has as a sublattice a truncated Boolean latticeLn,k, the lattice of all subsets of[n] with
at leastk + 1 elements (plus the empty set). To see this, consider a setS ⊆ [n] with
|S| ≥ k + 1. Then there is a parallel translateAb(S) of A for which

⋂
i∈S Hi = 0 and all

other hyperplanes are in general position. The minimal subspaces ofB(A) containing the
b(S) for the different setsS are all distinct. (Those for which|S| = k + 1 are, of course,
the hyperplanes ofB(A).) In this sublatticeLn,k of L(B(A)) every subspace of rankj
(dimensionn − k − j whenB(A) is considered as an(n − k)-arrangement) is contained
in

(
k+j
k+1

)
hyperplanes.

Now consider the rank two elements ofL(B(A)). In any central arrangement every two
hyperplanes intersect in a rank two subspace, and every rank two subspace is contained
in at least two hyperplanes. Each rank two element in the truncated Boolean sublattice is
contained ink + 2 hyperplanes. The largest number of rank two elements would occur
if every rank two element not in the truncated Boolean sublattice is contained in exactly
two hyperplanes. According to Manin and Schechtman [8], this occurs for arrangements of
k+ 3 hyperplanes inRk that form an open Zariski dense subset of all arrangements of that
size. Falk [6] gives an example of a generic arrangementA of six planes inR3 for which
B(A) has fewer rank two elements. He refers to Manin and Schechtman’s arrangements as
“sufficiently general.”

Definition 4.2 An arrangementA of n hyperplanes inRk is very genericif for all r,
L(B(A)) achieves the maximum number of rankr elements possible for a discriminantal
arrangement based on ak-arrangement withn hyperplanes.

We conjecture the following description of the intersection latticeL(B(A)) for a discrim-
inantal arrangementB(A) of a very generic arrangementA. Forn ≥ k+1 ≥ 2 letP (n, k)
be the following poset. The elements are sets{S1, S2, . . . , Sm} of subsets of{1, 2, . . . , n}
satisfying

1. for eachi, |Si| ≥ k + 1

2. for eachI ⊆ {1, 2, . . . ,m} with |I| ≥ 2, |
⋃
i∈I

Si| > k +
∑
i∈I

(|Si| − k).

The ordering is given by{S1, S2, . . . , Sm} ¹ {T1, T2, . . . , Tp} if and only if for eachi
there existsj such thatSi ⊆ Tj . This is a ranked poset, with

rank{S1, S2, . . . , Sm} =
m∑
i=1

(|Si| − k).

Conjecture 4.3 Letn ≥ k + 1 ≥ 2.

1. There exist arrangementsA of n hyperplanes inRk that are very generic, that is, all
rank sets of the intersection latticeL(B(A)) are of maximum size.
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2. The intersection latticeL(B(A)) of the discriminantal arrangement based on a very
generic arrangement ofn hyperplanes inRk is isomorphic toP (n, k).

The conjecture holds fork + 1 ≤ n ≤ k + 3 ([8, Proposition 4]). Falk’s arrangement
fails to be very generic because of “second-order” dependencies: while the normals of the
base hyperplanes are in general position, the minimal linear dependencies have extra linear
relations beyond the Grassmann-Pl¨ucker relations (see [3]). Our guess is that very generic
arrangements can be constructed by choosing the coordinates of the normal vectors from an
algebraically independent set. Another candidate for a very generic arrangement is thecyclic
arrangement[11]. This is obtained by taking normal vectorsαi = (1, ti, t2i , . . . , t

k−1
i ) for

n arbitrary, distinct real numbersti.

5. Freeness and Formality

Of special interest in the study of hyperplane arrangements is the question of whether a
given arrangement is free [9]. This is often difficult to determine. The notions of formality
[10] andi-formality [4] are useful as tools for deciding freeness. If an arrangement is free,
then it isi-formal for all i, but not conversely. We see in this section that the discriminantal
arrangement based on a generic arrangement is formal, but not necessarily free. We give
one example where the discriminantal arrangement is free. This cannot happen if the
base arrangement is very generic, but in that case we can prove higher formality for the
discriminantal arrangement. Edelman and Reiner [5] classified all multiarrangementsA in
R2 for which the discriminantal arrangementB(A) is free.

Example 5.1 (A free discriminantal arrangement) LetA be the central arrangement of
six planes inR3 defined by the forms in the product

QA = xyz(2x+ 2y + z)(6x+ 3y + z)(4x+ y + z).

By the adjoint construction in [6], the discriminantal arrangement can be written as an
arrangement of fifteen planes inR3, with

QB(A) = x(x− y)(x+ y)(x− z)(x+ 2z)(5x+ 3y − 8z)(x+ 3y − 4z)×
(x− 3y + 2z)(x− 3y + 8z)(7x− 3y + 8z)(11x+ 3y − 8z)×
(2x+ 3y − 2z)(4x− 3y + 2z)(5x+ 3y − 2z)(x− 3y − 4z).

A supersolvable arrangement can be obtained by adding ten hyperplanes of the formcx−
3y − 4z = 0, in such a way that the addition-deletion theorem ([9, Theorem 4.51]) proves
B(A) free.

Discriminantal arrangements are not in general free, however. WhenA is a very generic
arrangement ofn = k + 3 hyperplanes inRk, the characteristic polynomial of the lattice
L(B(A)) is known not to factor. Thus in this case the discriminantal arrangement is not free
([9, Proposition 5.120]). Reiner (private communication) points out that since a localization
of a free arrangement is free ([9, Theorem 4.37]), the following more general statement
holds.
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Theorem 5.2 If A ⊂ Rk contains a very generic subarrangement ofk + 3 hyperplanes,
thenB(A) is not free.

Other known examples (such as Falk’s) of generic (but not very generic) arrangements of
k + 3 hyperplanes also give rise to nonfree discriminantal arrangements.

The rank (or essential dimension)r(A) of a hyperplane arrangementA is defined to be
the rank of the top element of the intersection latticeL(A). An arrangementA is formal
if the space of linear relations among the normals to the hyperplanes ofA is generated
by the relations associated to the rank 2 subspaces inL(A). Let F (A) andI(A) be the
kernel and image, respectively, of the map

⊕
H∈AReH −→ Rk induced byeH → αH .

The elements ofF (A) are called relations. Note thatI(A) has dimension equal to the
rank r(A) of A, sodimF (A) = |A| − r(A). For a subspaceX in L(A), AX denotes
the subarrangement ofA consisting of the hyperplanes containingX. There is a natural
inclusion map,F (AX) ↪→ F (A).

Definition 5.3 The arrangementA is formal if the inclusions,F (AX) ↪→ F (A), induce a
surjection

π2 :
⊕

X∈L(A)
r(X)=2

F (AX) −→ F (A).

A more general property known asi-formality (2 ≤ i < r(A)) involves certain relations
among relations corresponding to the codimensioni subspaces inL(A). When i = 2
this reduces to formality. We define 3-formality as follows. SupposeA is formal, and let
R(A) be the kernel of the mapπ2. ViewR(A) as a space of relations among the relations
corresponding to the rank 2 elements ofL(A). For eachY ∈ L(A) there is an inclusion
mapR(AY ) ↪→ R(A).

Definition 5.4 The arrangementA is3-formalif A is formal and the inclusions,R(AY ) ↪→
R(A), induce a surjection

π3 :
⊕

Y∈L(A)
r(Y )=3

R(AY ) −→ R(A).

For examples and the general definition ofi-formality, see [4].
We use the following notation. LetP be a finite set of integers. LetC(P, j) denote the

set of subsets ofP havingj elements. Fori ≥ j, letC(i, j) = C([i], j). The setsC(P, j)
are ordered lexicographically, so we may speak of the maximal element ofC(P, j).

We now return to discriminantal arrangements. HereA0 refers to a base arrangement,
which is assumed to be a generic arrangement ofn hyperplanes inRk, and we write
B = B(A0). SinceA0 is generic, the truncated Boolean latticeLn,k can be viewed as a
sublattice ofL(B). Also, there is a bijection between the atoms ofL(B) (the hyperplanes
of B) and those ofLn,k. ThusB is identified withC(n, k + 1) and ordered accordingly,
and all elements ofC(n, j) for k + 1 ≤ j ≤ n can be considered as elements ofL(B).
Since|B| =

(
n
k+1

)
andr(B) = n− k, it follows thatdimF (B) =

(
n
k+1

)
− n+ k.



DISCRIMINANTAL ARRANGEMENTS, FIBER POLYTOPES AND FORMALITY 243

Let X ∈ C(n, k + 2). Thus, as an element ofL(B), X is the intersection ofk + 2
hyperplanes and its rank isr(X) = 2. SodimF (BX) = (k + 2) − 2 = k. Any three
distinct hyperplanes inC(X, k+1) determine a relation inF (BX), since their normals are
linearly dependent. We use the following notation to describe such relations.

Definition 5.5 ForX ∈ C(n, k + 2) andQ ∈ C(X, k − 1), let fQ(X) ∈ F (BX) denote
the relation determined by the three hyperplanes inC(X, k + 1) that containQ.

For eachY ∈ C(n, j) with k + 2 ≤ j ≤ n, we define a map that assigns a relation in
F (BY ) to each hyperplane that is “large enough” in the lexicographical order onBY . Let
Y [k] denote the firstk elements ofY and letBY [k] be the set of hyperplanes ofBY which
containY [k]. The mapgY : BY − BY [k] −→ F (BY ) is defined as follows.

Definition 5.6 Let Y ∈ C(n, j) with k + 2 ≤ j ≤ n, andH = {a1, . . . , ak+1} ∈
BY −BY [k] (with a1 < a2 < · · · < ak+1). Let i be the smallest element ofY [k]−H and
letQ = {a1, . . . , ak−1}. Then

gY (H) = fQ({i} ∪H).

Note thatH is the maximal hyperplane occurring in the relationgY (H) with nonzero
coefficient; callH the last hyperplanein gY (H). Also the setX = {i} ∪H is an element
of C(Y, k + 2), sogY (H) = gX(H) ∈ F (BX). Thus eachgY (H) is a relation associated
to a rank 2 element inL(B).

Theorem 5.7 LetB = B(A0) whereA0 is generic. For eachY ∈ C(n, j) with k + 2 ≤
j ≤ n, the arrangementBY is formal. In particular,B is formal.

Proof: We know thatdimF (BY ) =
(
j

k+1

)
− j + k = |BY − BY [k]|. Since each

gY (H) ∈ Im(gY ) has distinct last hyperplane, it follows that Im(gY ) is a basis forF (BY ).
We have already seen that eachgY (H) ∈ F (BX)(= F ((BY )X)) for someX ∈ C(Y, k+2).

Next we show that ifA0 is very generic, thenB = B(A0) is actually 3-formal. In fact we
do not use the entire strength of the definition of “very generic,” but only the condition on
rank two elements ofL(B). This is equivalent to the condition that every rank two element
not inC(n, k + 2) is contained in exactly two hyperplanes.

Thus forA0 very generic and a rank two elementX ∈ L(B) not inC(n, k+ 2), we have
F (BX) = 0. Recall thatdimF (B) =

(
n
k+1

)
− n + k, and for eachX ∈ C(n, k + 2),

dimF (BX) = k. By Theorem 5.7 there is an exact sequence

0 −→ R(B) −→
⊕

X∈C(n,k+2)

F (BX) −→ F (B) −→ 0,

and thus

dimR(B) = k

(
n

k + 2

)
−

(
n

k + 1

)
+ n− k.

Next we define an important subset ofF (B).
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Definition 5.8 LetG =
⋃

X∈C(n,k+2)

Im(gX).

Recall that for anyY ∈ C(n, j) with k + 2 ≤ j ≤ n and anyH ∈ BY − BY [k], the
relationgY (H) is an element ofF (BX) for someX ∈ C(n, k + 2). Thus for eachY , we
have Im(gY ) ⊂ G. SinceG hask

(
n
k+2

)
elements and each Im(gX) is a basis forF (BX),

there is an isomorphism⊕
X∈C(n,k+2)

F (BX) '
⊕
f∈G

Rf.

HenceR(B) can be viewed as the kernel of the map
⊕
f∈G

Rf −→ F (B).

OrderGby last hyperplanes in the relations as follows. Forg = gX(H) andg′ = gX′(H),
sayg < g′ if H < H ′ or if H = H ′ andX < X ′. Then for anyY ∈ C(n, j) with
k + 2 ≤ j ≤ n and for anyH ∈ BY − BY [k], the relationgY (H) ∈ G is minimal among
the relations inG∩F (BY ) having last hyperplaneH. In particular whenY = [n], g[n](H)
is minimal among all relations inG having last hyperplaneH.

The proof of the next theorem is much like the proof of Theorem 5.7. To show thatB is
3-formal, we demonstrate sufficiently many linearly independent elements ofR(B), where
each one is actually an element ofR(BY ) for some rank 3 subspaceY ∈ L(B).

Theorem 5.9 If A0 is very generic, thenB = B(A0) is 3-formal.

Proof: First note that

|G− Im(g[n])| = k

(
n

k + 2

)
−

(
n

k + 1

)
+ n− k.

Choose somef ∈ G − Im(g[n]). LetH be the last hyperplane inf , and letg = g[n](H).
Then there are setsX andX ′ in C(n, k+2), with g = gX(H), f = gX′(H),X < X ′ and
X∩X ′ = H. Thus bothf andg are elements ofF (BY ), whereY = X∪X ′ ∈ C(n, k+3).

We know thatg ∈ Im(gY ). Sincef andg have the same last hyperplane,f 6∈ Im(gY ).
The set Im(gY ) is a basis forF (BY ), so there is a relationw(f) ∈ R(BY ) having nonzero
coefficient onf and zero coefficients outside the set Im(gY ) ∪ {f}. By the ordering on
G, the coefficient onf is the last nonzero coefficient ofw(f). Hence the set{w(f) | f ∈
G− Im(g[n])} is a basis forR(B), andB is 3-formal.

We remark that our techniques might be used to show thatB is i-formal (i ≥ 4) in
the very generic case, but we do not have enough information about the latticeL(B) (see
Conjecture 4.3). We know of no example of an arrangementA0, generic or otherwise, for
whichB(A0) fails to bei-formal. In the following example,A0 is generic, but not very
generic, yetB is 3-formal.

Example 5.10 Let A0 have normalsα1 = (2, 2, 1), α2 = (2, 3, 2), α3 = (1, 2, 2),
α4 = (0, 0, 1), α5 = (0, 1, 0), α6 = (1, 0, 0), α7 = (3,−1, 1). ThenB = B(A0) is an
arrangement of 35 planes inR7 with rank 4, sodimF (B) =

(
7
4

)
− 7 + 3 = 31. In ([6,
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Example 3.2]) it was shown that the arrangementA0 − α7 is not very generic. ThusA0

is not very generic. In particular, there are four rank 2 elementsX of L(B)− C(7, 5) that
are the intersection of three or more hyperplanes ofB. They are:

X1 = 1234 ∩ 1456 ∩ 2356
X2 = 1236 ∩ 1245 ∩ 3456
X3 = 1245 ∩ 1346 ∩ 2356
X4 = 1256 ∩ 1346 ∩ 2345.

EachF (BXi) has dimension 1, so by the earlier exact sequence,dimR(B) = 3
(
7
5

)
+ 4−

31 = 36. For i = 1, . . . , 4 let fi be a nonzero relation inF (BXi). Let

G =

 ⋃
X∈C(7,5)

Im(gX)

 ∪ {f1, f2, f3, f4},
ordered as before, with the additional relations as the largest four elements. As in the proof
of Theorem 5.9,R(B) contains 32 linearly independent elements from theR(BY ), for rank
3 elementsY of L(B).

We know that the set Im(g[n]) is a basis forF (B) so it is clear that for eachi, there
is a relationw(fi) ∈ R(B) having nonzero coefficient onfi. What is needed is such a
relation inR(BY ) for some rank 3 element ofL(B). It turns out that eachXi contains the
rank 3 elementY that is the intersection of the following hyperplanes: 1234, 1235, 1236,
1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456. Observe that
|BY | = 15, sodimF (BY ) = 12. It is not difficult to check that for each of the twelve
H ∈ BY − {1234, 1235, 1236}, the relationg[n](H) is in F (BY ), so Im(g[n]) contains a
basis forF (BY ). Since eachfi ∈ F (BY ), we can choose eachw(fi) ∈ R(BY ). ThusB
is 3-formal. 2

Discriminantal arrangements can be defined over the complex numbersC. In this case
Theorem 5.7 and Theorem 5.9 still hold. An arrangementA in Cn is called aK(π, 1) ar-
rangement if the complementCn−

⋃
H∈AH is aK(π, 1) space. AllK(π, 1) arrangements

are formal [7]. It would be interesting to know which (if any) discriminantal arrangements
areK(π, 1). Edelman and Reiner ([5, Section 4]) give an example of a free discriminantal
arrangement (based on a nongeneric arrangement) which is notK(π, 1).
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