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Abstract. The parameters of metric, cometric, symmetric association schemeg with-1 (the same as the
parameters of the underlying orthogonal polynomials) can be given in general by evaluating a single rational
function of degree4, 4) in the complex variable!. But in all known examples, save the simpigons, these
reduce to polynomials of degree at most Zjihwith g an integer. One reason this occurs is that the rational
function can have singularities at points which would determine some of the parameters. This paper deals with th
case in which not all of the singularities are removable, thus giving some reason wirgtms might naturally

be the only exceptions to schemes with parameters being polynomials of degree at mypistéxirept possibly

for schemes of very small diameter.
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0. Introduction

Association schemes with (non-trivial) relationsR; in general haved + 1)3 connection
parameters

Piik =Hz (X 2 eR,(@zy eRj}l for(x,y) e R«

While these are not all independent, there are 6i#i®) independent parameters. Even
symmetric, metric P-polynomial) schemes, for which there is a distance function deter-
mining these would seem to havd garameters

bj = P1j+1j and Cj ‘= P1j-1j-

In the early 80's it was proposed that a classification of all metric, cometric, (tHat and
Q-polynomial) symmetric association schemes should be possible. [For a reasonable back
ground to this material, the reader is referred to either Bannai and Ito [1] (Chapter IIlI) or
Brouwer et al. [2] (Chapter 8).] Part of this classification scheme, namely the determination
of the parameters, was settled in some sense in Leonard [3], in that the pardmeteas

c; of the underlying discrete orthogonal polynomials (and hence, the same parameters o
the schemes) were given as rational functions of degte$) in the complex variable/’.
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This, in turn, means that said parameters are described by a fixed number of variables
independent of the diametdr

However, in all known examplesxcepthe commom-gons, this rational function actu-
ally degenerates to a polynomial of degree @linwith q an integer. Infact, itis conjectured
that this must be the case. Proving this conjecture may depend only the condition that the
parameters of the scheme must be non-negative integers (rather than just complex number
andnoton any other properties of the scheme. [It should be noted that, in this paper, very
little about the scheme itself is used. In fact, so little about such a scheme is used, tha
we choose not to even define it here. The proof is entirely in terms of a rational function
having certain integer values at ceratin prescribed points. So even though the assumptic
in the theorems is that a metric, cometric, symmetric association scheme exists, the onl
use made of that assumption is that there are two sequences of parametrds;,; , which
are non-negative integers, that they have a known form (given in the literature but revisec
immediately below), thato =0 < ¢ =1 < --- < ¢y <bg > by > --- > by =0,
and that the dual eigenvalugs are real and distinct. Given these as ground rules, it is
possible to read this paper as a paper about rational functions with such integer values «
ceratin prescribed points, though the results will be of little import unless applied to metric,
cometric, symmetric association schemes, studied in either reference [1] or [2] mentionec
above.]

We shall assume that the parameters in question satisfy the equations (in complex var
ables):

(05 — 050" (og — 039" " Hbj 1 = (05 —oza)) |
x (0§00 — 819" + 8,97 — Uefffsqu)
(05 —039?)(o5 — 0397 = q(L—q))
X (05‘203 — 03829 + (73*81q2J — O’;zdoqa])

07 —0; = a '@ —a)(og —oiqth),

(with the 6;”s, real and distinct) as do the same parameters of the underlying orthogonal
polynomials. [The form in Bannai and Ito (Case(l), page 264) can be gotten by the change
of variablesog := h, 81 := hh*(ry +r5 4+ r3), 8> := hh*(riro +rir3 +ror3), o3 := hs,
o§ = h*, oF := h*s*; or these can be derived directly from Leonard (Eq. (2.11)), given
the form of6; (and duallyo;). It is advisable not to divide yet to solve fby_; andc;.
This is done in Bannai and Ito (Theorem 5.1), wherein some attention is paid to separating
the casesy = 0, by, by = 0, ¢g. But the special form fobg given there is unnecessary for
theirs* # g~1, and doesn’t follow from what is given whesi = gq~*. Also in this form
it is more natural to replace Bannai and Ito (Case(i)~ 0) with the above witho # 0,
(Case(l)s* = 0) with the above witlr = 0, and treat (I1A) and (IB) as unnecessary special
cases of the latter.]

For metric, cometric, symmetric association schemes, the parantgtarsic; have
one obviousextra condition that, since they count something, they must be non-negative
integers rather than just complex numbers.
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In most known examples of such scheme$, = 0 (that is,s* = 0 in Bannai and
Ito notation), in which case (with1 := 81/0§ ando, = §/0¢) the equations for the
parameters reduce by_; = oo — 019’ + 02g% andc; = q(1—q')(o3 — 02q’). The only
known examples for which # £1 ando} # 0are the simpla-gons. In fact, the conjecture
of Bannai and Ito (page 366) alluded to above is 8fat 0 in Case (1), except for these
n-gons.

Forq # 41, there is, given in Theone 3 a common function

2 2_ 2 2
ql—-2 (Ug‘ 00 — 030301Z+ 03°022° — 0§y 0323)

h(z) .=
@ (059 — 0§ Z?)(0] — 0§7?)

)

which generates (most of) both parameter sequences in a natural way, rgmely
h(q'*lo} /o) andc; = h(gq™!) for 0 < j < d. The cases in whiclp = 0 cannot

be solved for in this function (or equivalently in the equations above) are special, and will
be treated in this paper (by using rational functions and monic Tchebyshev polynomials).
The results, summarized in Theorems 5 and 6, are that in these cases the only possib
sequences of parameters are those fontgens, except possibly for some schemes of very
small diameter.

1. Monic Tchebyshev polynomials

Letw := q+q71,q # +1. [Whenofo; # 0, w is a much better parameter thgrin
the sense that the dual eigenvalues (or the eigenvalues) being real,da@ee real, as
opposed to forcing to be real or to lie on the complex unit circle. [Itis also like preferring
cost or coshy instead of?.] Also the parameters can be given in terms of eitherq 7,
but both reduce to the same equations in terms.pf

Consider the polynomials i defined by

Pami1 = Pomii(@) =g M@ - 1)/(g—-1) and
Pamiz = Pomi2(®) =g ™@*™ - 1)/(q? - 1),

normally used for writing si(]%(Zm + 1)9)/sin(%9) and si(m + 1)0)/ sin@ in terms of
w ;= 2 cos. Both are monic of degrem for m > 0. The following simply deduced facts
about these polynomials are useful.

Lemmal

1. wpk(@) = Prr2(®) + Pr—2(@),

2. pxt1(w) = Pxt2(w) + px(w),
3. gcct pa(a)), pb(w)) = Pgcda,b) (w).

Proof: Straightforward from the definition. m|

If w is rational, write it asx/B with «, 8 € Z and gcde, 8) = 1. Then defindPym 1
(a, B) = ﬁmp2m+l(w) and Pomi2(a, B) = ﬁm Pomy2(w).
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2. Rational functions for association scheme parameters

The dual eigenvalue@*, 0 < j =< d, are assumed to be distinct and real. Assume as well
thatq # +1 andojoj # 0.

Lemma2 qm#1forl<m<dandd"# o;/o; for2<m<2d.
Proof: ForO<j <k<d, 6 —67 =q 1 -0 )05 —ozq" i+ #£0. O
Theorem 3 Let

ql-2 (a:;‘zao — 0305012+ 0520222 — 05‘20323)
(039 — 0§ 2?)(0] — 02?)

h(z) .=

Thenl = h(q'*%o}/0g)andg = h(gq~)for0 < j < d, unlessltz) is undefined because
the denominator is zeravhich happens fordif 6§ /05 = q, forco = 0if 6§ /05 =q, 1,
for by = 0if 0p/0f = g%+, q24+2, and for  if og /of = g24+L,

Proof: Immediate. O

[The importance of noting the exceptions here is that the simygens occur foig =
0§ /o3 = g+, g%*2 andh(z) = 1 for thosez for which the denominator is not zero.]

Lemma4 Ifq" =1landw :=q+ q~!isrational, then n< 6.

Proof: [This is undoubtedly folklore attributable to many, but the proof is short enough
to give here.] Ifg" = 1, thenp,(w) is an algebraic integer. Sinegis rational,w must be

an integer. Sincéq| = 1, it follows that|w| < 2. If w = =2, theng® = 1. If v = —1,
theng®=1. fw=0,theng*=1. fw=1,theng®=1. Andifw=2,theng=1. O

The remainder of this paper treats the exceptional cases in wielD is not given by
h(q~°) because the latter is undefined becasfsér; = 1, . Sinceoj may be assumed
to be nonzero, lei, ;= §1/0g andoy := 82/0¢.

3. Thecaserj/o; =1
In this case, the formula fdr(z) (for z # 1) reduces to

q(oo —01Z+ 0222 — 0'323)
a-221+72

h(z) =

Sincecy = 0 is not given byh(q~0), considerc; = 1 = h(g™!) andd > 2. Thenf(2):
h(z) — 1 is given by

Qz— D(—1+0)P + 1+ 020)q(qz+ 1) — (L + 030)(9?Z% + qz+ 1))

@)= Q- (1+2)
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If f; := f(q’), then ford > 3, use Lagrange interpolation dr(z)(q=*z% — 1)(z+ 1)/
(gz— 1) to get

(z+ D@2 -1 (z-9%(z—-qd 2 Z—qz—-0d
f = f fo(1
@ 42— a—a- e e =g
sy A+ @ -Hz-9z—3g?

@* = D@ - -9g?

In terms ofw and the monic Tchebyshev polynomials of Section 1, this becomes

fjwPaj P2j—1 = Pj+1P;j (fropj_2pj_3 — faw’epj_1pj_3 + fa(w — 1) PsPj_1Pj_2),
with € being 1 ifj is even andv + 2 if j is odd.

Theorem 5 Suppose that g# +1 andw = q + gq~1. LetX be a metric cometrig
symmetric association scheme with parameters given as in Th@&uppose further that
oy/o3 =1

1. If wis rational, thend< 2.

2. If wis not rational butog + o1 + 02 + 03 = 0, thend < 4.

3. If wis not rational andog + 01 + 02 + 03 # 0, thend < 4.

Proof: [This is proven as three separate cases.]

Case 1. Suppose thatl > 3 andw is rational. Then from Lemma 42! = 1 and
q¥*+2 £ 1. Sofgy1 = by — 1 = —1. From Lemma 2.1, gaahy;, pj+1) = 1,
gcd(P2j-1, Pj+1) = Pgcas.j+1), and gcdw, Pj+1) = Pgeaa,j+1)- With e = ged(12 d +
2), we havePg| Py,2 | Pyca3,d+2) Pycaa,d+2)| Pe. But thenP; = £Py4,», which forces
Pe = Pd+2, SO that eitheq®?t® = 1 orq?t?¢ = 1. Butd+ 1 < e|d + 2, so
5<e=d+2|12. Hence eithee = 6 ore = 12. Ife = 6, thenPs(«, B) = =Ps(«, B),
Soa—B=%+B,0=0,0rw=2,0*=10rq =1. Andife = 12, thenPy,(a, B) =
+Ps(a, B) Pa(e, B), so(a? — 3% (a — B) = £8%, and hencew = 2, q = 1.

Case 2.If w is not rational, butg + o1 + 02 + o3 = 0, then forz £ +1,

d(—o1+02(z— 1) —03(2> — 2+ 1))

h =
@ q-2%

Sincec; = 1= h(q™?),

(az— 1) ((qz+ (1 — 03q) + g*(02 + 03))

f2:=h(»m-1= G-

Use Lagrange interpolation on the functiéiz)(q—'z> — 1)/(qz— 1) to get

q -1\ qlz-1 q2%z-1
f(z)< qz—1 >_f2< q-1 )_f1q< @-1)
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and hence

2j71_1 j+1_1 jfl_l j72_1
() - () (e () (7))
q-1 q-1 q-1 g —1

Again usingw and the monic Tchebyshev polynomials above,

fip2j—1 = Pj+1(f2pj_1e — f1pj_2)
withe = 1if j isevenand = w + 2 if j is odd. Ifd > 4, then

(fo — f)o® + (= fr+2f, — fw + f3=0,
and

(f2 — fa® + (=1 +2f, — )’ + 2f4 — fhw+ f4— f+ 1 =0.
From these,

a)((fz— f4)(f12—3f1f2+ f1f3+2f2f3— f32)
+(fo— fa)(—fafa — f2+2f1F)) + (—(f2— fa)((fy — f2) f3
+(fa — f2)%) + (f2 — fa) fo(fy — f3)) = 0.

Clearlyw is rational unless both

(fo— fo)(f2—3f1fa+ fifs+2f,f3— f2)
+(fo— fa)(—f2fs— f2+2f1f) =0

and
—(fa — fa)((f1 — f2) f3 + (f2 — f2)%) + (fo — f3) f2(f1 — f3) = 0.

If f,— f3=0,thenb; =b,. Sof,— f3 #0, and(f, — f3)((f1— f2)2+3f2( fi— )+
f2) = (f1 — f2)3. From the equation above involviny — f3, ((f1 — f2)%w + f2 —
Af o+ 2fH((f1 — f2)w — f1) = 0. Sow is rational unless; — f, = 0 andf, = 0,
which would mean thalg = b; = 1.

Case 3.Suppose thab is not rational and thatg + o1 + 02 + 03 £ 0. Let

gZz(og + 01 + 02 + 03)
1+2((1+q2

e(2) :=h(q2 +h(z ™) = (o0 + 030) —

’

and

gz(og+ 01+ 02+ 03)(1—)(1—-q2
A+2(1+921+ 922

€(2)'=eq2 —e2) =

’
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with

ej=e(@),1<j=<d-1
Then in this casesj # 0. If d > 4, theney(w? — 2) — €1(w + 1) = 0 andes(w® — 2w —
1) — e202 = 0. From these(w + 1)e1(exe3 — E% + €1€3) = €x(€pe3 + 26% — €1€3), SOW
would be rational unless botlgeg—e§+eleg =0 andezeg+2€§—ele3 = 0. This forces
€1 = Be3, €0 = —2¢3, andw? 4+ 3w+ 1= 0. But fow = fiw — fowps + f3(w — 1) p3,

which means that (—2f, +3f3+ f_o — f;) — f+2f3 =0. Sof, =2fzandf_, =
fi+ fz, by =2b, —1,andc, =bg+ by — 1> by > c,. O

4. Thecaser}/o; =
In this case, foe # 1, h(z) is given by

(00 — 0102+ 020°2? — 039%2%)
1-91+2

h(z) =

Again ¢y = 0 is not given byh(q0), butc; = 1 = h(q™%) whend > 2. So forz # 1,
f(2) := h(z) — 1is given by

(Az—1)(9%(z — 01) + 020%(qz+ 1) + (1 — 039)(9°Z2 + qz+ 1))

1= 1-q®1+2

If fj = f (g)), then Lagrange interpolation on the functibtz)(z+1)(qZ —1)/(qz—1),
gives

2+H@zZ-1 _ . @ -HE-9)z-0g)
9z-1  '@-DH@-9)@-®
A4+)@P -DEz-iz—agd
(@ - D@ - D@ -g3
A+adH@" - DHEz-piEz-9d)
@* = D@ -n@*-g?)

In terms ofw and the monic Tchebyshev polynomials, this becomes

f(2)

+f;

+f3

fjwpsP2j P2j+1 = Pj+1Pj (f1op3Pj—2Pj—3 — faw’ePspj_1Pj_3 + f3PsP7Pj_1Pj—2).

Theorem 6 Suppose that ¢ +1 andw := q + q~1. Let X be a metri¢c cometrig

symmetric association scheme with parameters as in The8reBuppose further that

oj/o3 =(.

1. If wisrational, thend< 3.

2. If w is not rational butog + oy + %02 + g%03 = 0, then d< 3, unless b = 1 = ¢;
forl<j<d-1land ! =1org¥+? =1

3. If w is not rational andsg + qo1 + %02 + g%03 # 0, then d < 4.



276 LEONARD

Proof: [This, too, is proven in cases.]

Case 1.Suppose is rational andd > 4. Theng®*+! £ 1 andq®® # 1. Sofy +1 =
by — 1= —1. Since gcdpy;, pj+1) = 1, gcd(pzj+1, Pj+1) = 1, and gcdw, pj+1) =
Pged4,j+1), then withe := ged(12, d + 1), Pe| Pay1 | Pgeas d+1) Pocda.d+1) | Pe- BUt Pe =
+Py,1 meanspe = % pgr1, soqitHe = 1orqitl® = 1. Butd+1 < e|d+1, so
5<d+1=e|12. This leads to the same contradictions as before.

Case 2.If w is not rational andr + qo1 + q%02 + g0z = 0, then forz # +1, h(2) is
given by

q(—o1+02q(z— 1) — 03q(z> — 2+ 1))
1-q2 '

h(z) =

Sincec; = 1 = h(q™), for z # +1,

(z—1)((qz+ (1 — qos) + (02 + 03))

f(zy:=h(2-1= )

Use Lagrange interpolation on the functiéxiz)(qz2 — 1)/(qz — 1) to get

qZ -1\ qlz-1 g’z—1
f(z)<qz—1>_f2<q—1—1>+f1<q2—1 ’

and hence

2j+1 _ 1 +1_1 i-1_1 i+t2 _1
fj g = g fo 7(:]7 + f1 a--- .
g-1 g-1 gl-1 g2-1

In terms ofw and the monic Tchebyshev polynomials above,

fip2j11 = Pj1a(fipji2 — f2pj_1€)
again withe = 1 for j even and = w + 2 for j odd. But then

fo+w—1) —(w+ 1D (fiw— f ) =0
f3+ 0’ —20—1) —w(fi(@®+w—1) — f_s(w+2) = 0.

From these,

o((fa— f2)(f2, = 2f2 4 3f1f, — £2) + (f1 — £22(f1 — fo+ )
+(fg— f2)(f% — f2f o — (f1 - f2)2) =0.

Sow is rational unless bothfs — fp)(f2, — 2f2 4+ 3f,f, — f2) + (f1 — f2)%(f1 — f2
+ fo) =0and(f; — f2)(f2, — fof 2 — (f1 — f2)?) = 0. Then(f2 + fif_, — f2)
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fo = (f1+ f_2)2(f1 — f_2), s0 f3,02 + fo(f o — f)Q2F 2+ f)o + f1(f2 —
2f2,) = (f%,0 + 2%, — f2)(f_o0 — f1) = 0. Sow is rational unless_, = 0. Then
f, = f; = 0, meaning thaf (z) = 0 where it is defined. This gives timegon case since
it means thab; = 1 = c; except forco, by.

Case 3.Suppose thab is not rational and thato + qoy + %02 + g%03 # 0. Let

(00 + o1 + 902 + g%03)
1+20@+2

92 :=h(@ 2 +h@z ") =00+ qos —

and

Z(0o + qo1 + g%02 + go3) (L — Q) (1 — 2)
y(@ =g(q) —gg) = TR AT A R T AT 3 .
1+20@+2((1+q2
Lety; := y(@'). Theny; # 0. If d > 5, thenyz(w? — 2) — y2(w + 1) = 0 and
ya(@® — 20— 1) — ys0? = 0. SO(w+1)y2(ysya— vZ + vaya) = ya(yava+2yZ — vava).
Sincew is not rational, this forcegsys — y2 + y2y4 = 0 andysys + 2y2 — y2ys = 0.
This in turn forces/, = 6y4, y3 = —2y4, andw? + 3w + 1 = 0. But then

—f w4+ 1) + fiww+ D@+ —1) — fw(w +o—1)?
+ f3(w? — D)@ + 0? — 20 — 1) = 0.

So2w(f_o—3f—6f,+9f3)+(f_,—2f  —4f,+7f3) = 0. Because is not rational,
thismeansthaf_, = 3(f;+2f,—3f3) = 2f; +4f,—7f3. S00< f;+2(f,— f3) =0.
Hencefl = f2 = f3 = f_g =0. O
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