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Abstract. A pleasant family of graphs defined by Godsil and McKay is shown to have easily computed eigen-
values in many cases.
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Let G andH be directed graphs on the respective vertideandV, and suppose that the
vertex sets have each been partitioned into disjoint suhketdJo U U; andV = VU V.
Thepartitioned tensor product & H of G andH with respect to this partitioning is defined
as follows:

a) Each vertex o)y is replaced by a copy dfl | Vj, the subgraph of induced byp;

b) Each vertex oU; is replaced by a copy dfl | Vy;

¢) Each arc ofG that runs fromUg to U1 is replaced by a copy of the arcs df that run
from Vg to Vq;

d) Each arc ofG that runs fromU; to U is replaced by a copy of the arcs Hf that run
from V; to Vo.

For example, Figure 1 shows two partitioned tensor products. The example in Figure 1(b)
is undirected; this is the special case of a directed graph where each undirected edg
corresponds to a pair of arcs in opposite directions. ArcS diat stay withinUg or U,
do not contribute t&G x H, so we may assume that no such arcs exist (i.e.,@hiatbi-
partite).

Figure 2 shows what happens if we interchange the roléfafhdU; in G but leave
everything else intact. (Equivalently, we could interchange the rol&g ahdV;.) These
graphs, which may be denoté&R x H to distinguish them from the grapl@ x H in
Figure 1, might look quite different from their mates, yet it turns out that the characteristic
polynomials ofG x H andGR x H are strongly related.

Let Ej; be the arcs from; toU; in G, andF;; the arcs fronV,; to V; in H; multiple arcs
are allowed, sd5;; andF; are multisets. It follows tha® x H has|Ug| [Vo| + U4 [V4]
vertices andUo| | Foo| + [U1| |F11] + |Eo1| |Fo1l + |E1ol |F1ol arcs. Similarly,GR x H
has|Uy| [Vo| + |Uo| | V1| vertices andU1| |Fool + |Uol |F11| + [E1ol |Fo1l + |Eo1l|F1ol
arcs.
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(a) (b)

Figure L Partitioned tensor products, directed and undirected.

(a) (b)

Figure 2 Dual products after right-left reflection &.
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The definition of partitioned tensor product is due to Godsil and McKay [3], who proved
the remarkable fact that

P(G x H) p(H | VO)\Ull—\Uol — p(GT x H) p(H | Vl)IUl\—\UoI,

where p denotes the characteristic polynomial of a graph. They also observed [4] that
Figures 1(b) and 2(b) represent the smallest pair of connected undirected graphs having th
same spectrum (the sanp@. The purpose of the present note is to refine their results by
showing how to calculate(G x H) explicitly in terms ofG andH.

We can use the symbo@ andH to stand for the adjacency matrices as well as for the
graphs themselves. Thus we have

Goo Go1 Hoo Hoz
G= and H =
(Glo Gll) < Hio Hll)

in partitioned form, wheré;; and H;; denote the respective adjacency matrices corre-
sponding to the arcE;; andF;;. (These submatrices are not necessarily squasehas
size|U;j| x |U;| andH;; has sizgVi| x |V;j].) It follows by definition that

luo) ® Hoo  Go1 ® Hoz
GxH= |Uol
x <G10® Hio lu® H11>

where® denotes the Kronecker product or tensor product [7, page 8],addnotes an
identity matrix of sizek x k.

Let H 1 o denote the graph obtained frobh by o-fold repetition of each arc that
joins Vg to Vi. In matrix form

Hoo o Hox
H = .
to (O' Hio Hn
This definition applies to the adjacency matrix whens any complex number, but of
courseH 1 o is difficult to “draw” unlesso is a nonnegative integer. We will show that
the characteristic polynomial @& x H factors into characteristic polynomials of graphs

H 4 o, times a power of the characteristic polynomial$igf or Hi;. The proofis simplest
whenG is undirected.

Theorem 1 Let G be an undirected grapland let(oy, ..., o) be the singular values of
Go1 = G, Where |= min(|Uol, |U1]). Then

(ITj—y P(H 1 o)) p(Hoo)Yel=1Y4l, if [Ug| > |Uy;

G H =
P& {(1‘['1_1 P(H 1 o)) p(Hyp)V2=1%l - if U4 > [Ugl.

Proof: Any realm x n matrix A has a singular value decomposition

A= QSR
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whereQ is anm x m orthogonal matrixR is ann x n orthogonal matrix, an&is anm x n
matrix with §;j = o; > Ofor 1 < j < min(m, n) andS; = 0 fori # j [6, page 16]. The
numbers, ..., ominm,n are called the singular values Af

Letm = |Up| andn = |U;|, and suppose th&@ SR is the singular value decomposition
of Go;. Then(oy, ..., o)) are the nonnegative eigenvalues of the bipartite g@phand
we have

<QT®||V0 O )GXH(Q(X)IVO' O )=<||U0®HOO S® Hoz )
(@] RT ® |‘V1| - (@] R® I\Vll st ® Hio I\Ull ® Hip

becaus&p = RS Q. Row and column permutations of this matrix transform it into the
block diagonal form

H T o1
H T a|
D
whereD consists ofn — n copies ofHgg if m > n, orn — m copies ofH;;ifn>m. O

A similar result holds whel® is directed, but we cannot use the singular value decom-
position because the eigenvalues®fmight not be real and the elementary divisors of
Al — G might not be linear. The following lemma can be used in place of the singular value
decomposition in such cases.

Lemma Let A and B be arbitrary matrices of complex numbevhere A is mx n and
B is nx m. Then we can write

A= QSR1, B=RTQY,

where Q is a nonsingular mt m matrix R is a honsingular nx n matrix S is an mx n
matrix, T is an hx m matrix and the matricegS, T) are triangular with consistent
diagonals

S;=Tj=0 fori > j;
Sj=T; or §Tjj=0 for 1 < j < min(m, n).

Proof: We may assume thah < n. If AB has a nonzero eigenvalue let o be any
square root ok and letx be a nonzerm-vector such thaABx = o?x. Then then-vector
y = BX/o is nonzero, and we have

Ay=oX, Bx =oy.

On the other hand, if all eigenvalues AB are zero, lek be a nonzero vector such that
ABx=0. ThenifBx # 0, lety = Bx. If Bx = 0, lety be any nonzero vector such that
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Ay = 0; this is possible unless aillcolumns ofA are linearly independent, in which case
we must haven = n and we can find/ such thatAy = x. In all cases we have therefore
demonstrated the existence of nonzero vectaady such that

Ay=o0oX, Bx =1y, o=t or ot=0.

Let X be a nonsingulam x m matrix whose first column ig, and letY be a nonsingular
n x n matrix whose first column ig. Then

1Ay [0 A _1 _(t b
X AY_<0 Al)’ Y BX_<0 Bl)

whereA;is(m—1) x (n—1 andB;is(n—1) x(mM—-21.Ifm=1,letQ=X,R=Y,
S = (ca), andT = (). Otherwise we havé\; = Q:SR;* andB; = RiT:Q;* by
induction, and we can let

_ 1 0 _ 1 0 (o aR [t BQ
0=x( g) R=¥(o =) s=(5 ) T=( %)
All conditions are now fulfilled. O

Theorem2 Let G be an arbitrary graphand let(o, . . ., o) be suchthat; = §5 = Tj;
oroj = 0= S;Tj; when G; = QSR and G, = RT Q! as in the lemmawhere
| = min(|Upl, |U1]). Then gG x H) satisfies the identities of Theorem

Proof: Proceeding as in the proof of Theorem 1, we have

Q' ® Iy O oxH (Q®Mv O ) _ (lu ®Hoo S® Hoy
o) RI® Iy = o) R® Iy, T®Ho lu, ®Hu/

This time arow and column permutation converts the right-hand matrix to atslangular
form, with zeroes below the diagonal blocks. Each block on the diagonal is &lthes;
or Hogg or Hy4, or of the form

Hoo o Ho1 _
<TH10 Hll)’ ot =0.

In the latter case the characteristic polynomial is cle@ilidoo) p(H11) = p(H 1 0), so
the remainder of the proof of Theorem 1 carries over in general. O

The proof of the lemma shows that the numhefs. . ., o are the characteristic roots
of Go1G10, When|Ug| < |Uy|, otherwise they are the characteristic root&e§Go;. Either
square root of2 can be chosen, since the matrik 1 o is similar toH 4 (—o).

We have now reduced the problem of computpi& x H) to the problem of computing
the characteristic polynomial of the grapHst o. The latter is easy whes = 0, and
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some graph& have only a few nonzero singular values. For exampl,ig the complete
bipartite graph having partdy andU; of sizesm andn, all singular values vanish except
for o = /mn.

If H is small, and if only a few nonzere need to be considered, the computation of
p(H 4 o) can be carried out directly. For example, it turns out that

A -1 - O 0
-1 A 0 0 -o
—0 0 A -1 0 [|=RP+r-0)(A*-2*-Q2+0Hr+2);
0 0 -1 1 -1
0 —¢ 0 -1 &

so we can compute the spectrum@®k H by solving a few quadratic and cubic equations,
whenH is this particular 5-vertex graph (a partitioned 5-cycle). But it is interesting to look
for large families of graphs for which simple formulas yigddH 1 o) as a function ob .

One such family consists of graphs that have only one edge crossing the partition. Let
Hoo and Hi; be graphs oy and Vi, and form the grapiH = Hgp e~ Hj; by adding
a single edge between designated vertiges Vo andx; € Vi. Then a glance at the
adjacency matrix oH shows that

P(H 1 o) = p(Hoo) p(H11) — o2p(Hoo | Vo\Xo) P(H11 | Vi\X1) .

(The special case = 1 of this formula is Theorem 4.2(ii) of [5].)
Another case wherp(H 1 o) has a simple form arises when the matrices

_(Hoo O ({0 Ho
Ho = < 0 Hll) and Hy = <H10 0 )

commute with each other. Then it is well known [2] that the eigenvaluécf o H, are
Aj + opj, for some ordering of the eigenvalugs of Hp and; of Hy. Let us say that
(Mo, V1) is acompatible partitiorof H if HyH; = HiHo, i.e., if

HooHor = HotHi1  and  HiiHip = HigHoo.

WhenH is undirected, so thatlgo = Hgy andHi, = HJ, andHio = Hg,, the compatibility
condition boils down to the single relation

HooHo1 = Ho1H11. (%)

Letm = |Vo| andn = |V4], so thatHgg is m x m, Hpy ism x n, andHy; isn x n. One
obvious way to satisfyx) is to let Hop and Hy1 both be zero, so thad is bipartite as well
asG. ThenH 4 o is simplyoH, theo -fold repetition of the arcs dfl, and its eigenvalues
are just those oH multiplied by o. For example, ifG is the M-cube PM and H is a
pathPy on N points, and ifUg consists of the vertices of even parity@while Vg is one
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—

Figure 3 P$ x Ps.

of H’s bipartite parts, the characteristic polynomial®# H is

. km (M2
H (k—(ZN—4J)cosN+1> ,

1<j<M
1<k<N

because of the well-known eigenvalue€odndH [1]. Figure 3illustrates this construction
in the special cas®l = N = 3. The smallest pair of cospectral grapt)< and [], is
obtained in a similar way by considering the eigenvalueBsof P; andP; x P [4].

Another simple way to satisfy the compatibility conditigr) with symmetric matri-
cesHgo andHy; is to let Ho; consist entirely of 1s, and to Iétog and H1; both be regular
graphs of the same degrde Then the eigenvalues ¢y are (A1, ..., Am, A3, ..., Ap),
where (A4, ..., Am) belong toHgo and (15, ..., A,) belong toH;; andi; = A} = d.
The eigenvalues oH; are (/mn, —/mn,0,...,0). We can match the eigenvalues
of Ho properly with those oH; by looking at the common eigenvectars ..., 1)T and
(1,...,1,-1,..., =17 that correspond td in Hy and+./mnin Hy; the eigenvalues of
H 4 o are therefore

d+ov/mn o, ..., Am, d —o/Mn, k'z, ...,k;).

Yet another easy way to satisfy) is to assume thah = nand to letHpo = Hi; commute
with Hp1. One general construction of this kind arises when the vertic®s ahdV; are
the elements of a group, and whelgo = Hj; is a Cayley graph on that group. In other
words, two elements andg are adjacent iHgo iff 8~ € X, whereX is an arbitrary set
of group elements closed under inverses. And we cam etV be adjacent t@ € Vi iff
af~t € Y, whereY is any normal subgroup. Thefg, commutes withHo;. The effect
is to make the cosets of fully interconnected betweev, andV;, while retaining a more
interesting Cayley graph structure insitlg andV;. If Y is the trivial subgroup, so that
Hoz is simply the identity matrix, our partitioned tensor prodGct H becomes simply the
ordinary Cartesian produ@G @& H = Ijy; ® H 4+ G ® l,y|. Butin many other cases this
construction gives something more general.
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A fourth family of compatible partitions is illustrated by the following graghin which
m = 6 andn = 12:

001110 1 00 0O0O0OO0OT1IO0O0O0N\
000111 01 00O0OO0OOO0OI1IO0O0Pp
1 00011 0010O0O0O0OO0OT11IO0P
110001 0 0010O0O0OO0OCOOTZIL1IPD
111000 0 00OO0O10O0OO0ODO0OO0OO0ORTDL
011100 0 00O0OO0O11O0O0O0O0D
1 00 0 0O 0010100O0O0O0O0TI11IPD
010000 0 001010O0O0O0O0TLI
0010 O00O0 1 000101 0O0O0O0Pp
00 0100 01 00O010100O00P
00 0O0OT10O0 1 0100O0O0O0OT1O0O0P
0 00O0O01 01 0100O0O0O0OT11IO0D
0 00O0O01 00100O0OOCI1ITO0T1PD
100 0 0O 0 00100O0OO0OO0C1TLORTL
01 00O0O0 00 0O0O1O010O0O01P
0 010O00O0 00 0OO0OO1O01O0O0O0RQR
0 00100 1 0000O01O01O0O0PpP
0 00010 0100O0O0O0OT1IO0T1IO0)0

In general, leCy be the matrix of a cyclic permutation otk 2lements, and leh = 2k,
n = 4k. Then we obtain a compatible partition if
. N Cj + C—j Ck+l
Hoo= (Cy +Ch +Cx). Hoi=(lx Ca), Hu=[ * * R
( 2k 2k 2k) Clﬁ[l Cék + Czkj

The 18x 18 example matrix is the special case- 2, k = 3. The eigenvalues dfl 1 o
in general are

ol + ol +1, ol + o — 1+«/§0, o'+ —1-V20

for0 < | < 2k, wherew = e"i/k,

Compatible partitionings of digraphs are not difficult to construct. But it would be
interesting to find further examples of undirected graphs, without multiple edges, that have
a compatible partition.
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