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Abstract. This note derives the characteristic polynomial of a graph that represents nonjump moves in a gener-
alized game of checkers. The number of spanning trees is also determined.
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Consider the graph omnvertices{(x, y) |1 < x <m, 1 <y < n}, with (X, y) adjacent
to (X', y) ifand only if [x — X’| = |y — y’| = 1. This graph consists of disjoint subgraphs

ECnn = {(X,y) | X +Yyis even,
OCmn = {(X,y) | x+yis odd,

having respectivelymn/2] and|mn/2] vertices. Whemnis evenEC, , andOC,, are
isomorphic. The special ca§¥Cyn+1.2n+1 has been called afztec diamond of order hy

Elkies et al. [6], who gave several interesting proofs that it contains exad¢ty*22 perfect
matchings. Richard Stanley recently conjectured [11] @&$,.1 2n+1 CONtains exactly

4 times as many spanning trees=%,1 2n+1, and it was his conjecture that motivated the
presentnote. We will see that Stanley’s conjecture follows from some even more remarkable
properties of these graphs.

In general, ifG andH are arbitrary bipartite graphs having parts of respective sjze$)
and(r, s), theirweak direct product G« H has(p + q)(r + s) vertices(u, v), with (u, v)
adjacent tqu’, v’) if and only if u is adjacent ta’ andv to v’. This graphG x H divides
naturally into even and odd subgraphs

E(G, H) = {(u,v) | ue G andv € H are in corresponding patts
O(G, H) = {(u,v) | u € G andv € H are in opposite parls

which are disjoint. Notice thd (G, H) andO(G, H) havepr + gsand ps+ gr vertices,
respectively. Our graphEC, , andOCy,, are justE(Pn, Py) andO(Py, P,), whereP,
denotes a simple path emnpoints.

Let P(G; x) be the characteristic polynomial of the adjacency matrix of a g@&phhe
eigenvalues oE(G, H) andO(G, H) turn out have a simple relation to the eigenvalues
of G andH:
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Theorem 1 The characteristic polynomials (B(G, H); x) and P(O(G, H); x) satisfy

p+ar+s

P(E(G, H); )P(O(G, H); %) = [ [ [ x — wj0; (1)
j=1k=1

P(E(G, H); x) = xP~9T=9P(O(G, H); x). 2

Proof: This theorem is a consequence of more general results proved in [7], as remarkec
at the top of page 67 in that paper, but for our purposes a direct proof is preferable.

Let A and B be the adjacency matrices GfandH. It is well known [2; 12] that the
adjacency matrix of5 x H is the Kronecker produch ® B, and that the eigenvalues
of A® B areujix when A and B are square matrices having eigenvalugsand Ay,
respectively [10, page 24]. Since the left side of (1) is jB$G, H; x), equation (1) is
therefore clear.

Equation (2) is more surprising, because the grdpts, H) andO(G, H) often look
completely different from each other. But we can expréssdB in the form

0, C O D
A= = 3
& o) =-(a) ®

whereC andD have respective sizgsx q andr x s, and whereDy denotes & x k matrix
of zeroes. It follows that the adjacency matriceE0B, H) andO(G, H) are respectively

@] C®D o] CeDT
T g - and T b . (4)
C'®D Oqs C'®D Oqr
We want to show that these matrices have the same eigenvalues, except for the multiplicity
of 0.
One way to complete the proof is to observe thatktrepowers of both matrices have

the same trace, for atl. Whenk = 2 is even, both matrix powers have tratgCC")' +
tr(CTC))(tr(DDT)' +tr(D'D)") by [10, pages 8, 18]; and whéis odd the traces are zero.

The coefficientsay, a, ... of P(G; x) = x/®/(1 — ayx~* + a,x2 — .. .) are completely
determined by the traces of powers of the adjacency matrix of any gapta Newton’s
identities; therefore (2) holds. a

Corollary 1  The characteristic polynomials (BECy n; X) and P(OCy, n; X) satisfy

kmr
P(ECnn; X)P(OChn; X) = Jl_ll l_[l (x - 40051 cosm>, (5)
P(ECmn; X) = X™"M92P(OCyn; X). (6)

Proof: Itis well known [9, problem 1.29; or 3, page 73], that the eigenvalues of the path
graphP,, are

2 m
2cos i , 2C0S ,...,2cos—n . (7
m+1 m+1 m+1

Therefore (1) and (2) reduce to (5) and (6). O
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Theorem?2 Ifm>2andn> 2, the number of spanningtrees of E&is P(OCy_2.n—2; 4),
and the number of spanning trees of QCis P(ECn_2n-2; 4).

Proof: BothECy, ,andOC,, , are connected planar graphs, so they have exactly as many
spanning trees as their duals [9, problem 5.23]. The dual gefh, has verticegx, y)
where 1< x < mand 1< y < nandx + y is odd, corresponding to the face centered
at (x, y); it also has an additional vertex corresponding to the exterior face. All its
non-infinite vertices have degree 4, and wiT}, , is restricted to those vertices it is just
OC_2n—2. Therefore the submatrix of the LaplacianEg;, , that we obtain by omitting
row oo and colummo is just 4 — M, whereM is the adjacency matrix @Cy,_» n—2. And
the number of spanning treesBC;, |, is just the determinant of this matrix, according to
the Matrix Tree Theorem [1; 9, problem 4.9; 3, page 38].

A similar argument enumerates the spanning tre€¥@f ,. The basic idea of this proof
is due to Cvetkowi'and Gutman [4]; see also [5, pages 85-88]. O

Combining Theorem 2 with Eq. (6) now yields a generalization of Stanley’s conjecture
[11].

Corollary2 Whenm and n are both od®C,, , contains exactlytimes as many spanning
trees as EGn.

Another corollary that does not appear to be obvious a priori follows from Theorem 2
and Eq. (5):

Corollary 3 When m and n are both eveBC,,, contains an odd number of spanning
trees.

Proof: The adjacency matrix d?y, is nonsingular mod 2 whem is even. Hence the ad-
jacency matrix ofECy,, , U OCr, y is nonsingular mod 2. Hend®(ECy,, n; 4) = 1 (mod 2.
O

Stanley [11]tabulated the number of spanning tre€, 1 on11 forn < 6 and observed
that the numbers consisted entirely of small prime factors. For example, the Aztec diamond
graphOCi313 has exactly 2. 37 . 5°. 73. 113 . 13% . 73? - 193 spanning trees. One way
to account for this is to note that the number of spanning tre€0m 1 2n+1 IS

n-1n-1

i kr i km
42n-1 4—4cos’” cos- ) (4+ 4cos” cos—=
,-Ul g( on % J\*T 2n2n
n—1n-1 ) ) . .
_ g1 l_[ l—[(4 — (@ + o N+ o ™)E+ (@ + o )+ o), (8)
j=lk=1
where o = €7/2" is a primitive 4th root of unity. Thus each factor such as

4— (0! + 07 (@ +»7*) is an algebraic integer in a cyclotomic number field, and all
of its conjugates 4- (vl + w1t ("' + ') appear. Each product of conjugate factors
is therefore an integer factor of (8).
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Let us say that the edge froix, y) to (X', y') in the graph is positive or negative,
according agx — X')(y — Yy is +1 or —1. The authors of [6] showed that the generating
function for perfect matchings i®Cpy1.2n41 is (U2 + v?)"™D/2 in the sense that the
coefficient ofukv' in this function is the number of perfect matchings withositive edges
andl negative ones. It is natural to consider the analogous question for spanning trees:
What is the generating function for spanning tree€6f, , andOCy,, that use a given
number of positive and negative edges? A careful analysis of the proof of Theorem 2
shows that the generating function for cotrees (the complements of spanning trees) in
OCnmn is P(ECy-2.n-2; 2u + 2v), whereP now represents the characteristic polynomial
of the weighted adjacency matrix with positive and negative edges represented respectivel
by u andv. There arg(m—1)(n — 1)/2] positive edges anfm — 1)(n — 1)/2] negative
edges altogether, so we get the generating function for trees instead of cotrees by replacing
andv by u~tandv—1, then multiplying byu(M-D(O-1/21, Lm-L(-1/2] A similar approach
works forECn .

Unfortunately, however, the polynomiBldoes not seem to simplify nicely for geneual
andv, as it does whem = v = 1. In the casen = n = 3, the results look reasonably
encouraging because we have

P(ECs3; X) = X3(X* — 2(U® + v?)),
POGCs3: X)) =(X+U+v)(X—U—v)(X+U—v)(X—U+ ).

But whenn increases to 5 we get

P(ECss; X) = x*(x2 — 2(U? + uv + 1)) (x? — 2(U? — uv — v?)),
P(OCs5; X) = X(x* — (U + v9)(x* = 3(U® + v*)X* + 2(U” — v?).
The quartic factor oP (OCs 5; X) cannot be decomposed into quadratics having the general
form (x? — (aU? + Buv + yv?)(X? — (@’'U? + p'uv + y"v?)), so it is unclear how to
proceed. Some simplification may be possible, because additional factors do appear whel
we setx = 2u + 2v:
P(ECss; 2u + 2v) = 64U + v)*(U? + 3uv + v?)(U? + 5uv + 1)
P(OCs5; 2u + 2v) = 4(U + v)*(3u? 4 8uv + 3v?)(3u? 4 14uv + 3v?)
P(ECss; 2u + 2v) = 32(u + v)°(3u? + 8uv 4 2v?)(2u? + 8uv + 3v?)
x (2u* 4 24uBv + 530%v?% + 24uv® + 2v%)
P(OGCss; 2u + 2v) = 5(u + v)*(u? + 4uv + v?)(3u? + 8uv + 3v?)
x (1502 + 10uv + v?)(u? + 10uv + 150?).

However, these factors are explained by the symmetri&Cpf, andOCy, .
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