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0. Introduction

Forn ≥ 1, letNC(n) denote the lattice of non-crossing partitions of{1, . . . , n}. Paralleling
the considerations of [3, Section 5.2], the notion of multiplicative function on non-crossing
partitions was considered by one of us in [13]. Such a function is an element of the large
incidence algebra,L, on non-crossing partitions, i.e., it is a complex-valued functionf
defined on the disjoint union of the sets of intervals in variousNC(n)’s, n ≥ 1. The set
of multiplicative functions is closed under convolution (the product operation on the large
incidence algebraL); in fact, if we also impose the normalization conditionf ([01, 11]) = 1,
where 01 = 11 = the unique element ofNC(1), then the setM1 of multiplicative functions
satisfying it is a subgroup of the group of invertible elements inL.

In this paper we describe the structure of the groupM1 (Theorem 1.6, Corollary 1.7).
Quite surprisingly, it turns out to be possible to do this via a “transform” which converts the
convolution of multiplicative functions into the multiplication of formal power series (in the
same way as the convolution of functions inL1(R), say, is transformed into multiplication
by the Fourier transform).

Our work was started as an attempt of understanding from a combinatorial point of view
a theorem of Voiculescu ([18], Theorem 2.6) concerning the “distribution of the product of
two free random variables”. The main result of the present paper can in fact be viewed as
a new, combinatorial, proof of this theorem.

The paper is divided into three sections: in the first one we review the basic definitions
which we need, and state our main result; the second section contains the proof of the main
result; finally, in the third section we present the cited result of Voiculescu, and explain how
our work is related to it.
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1. Basic definitions and the statement of the result

1.1. The lattice NC(n)

A partition π of {1, . . . , n} is callednon-crossing(notion introduced in [7]) if for every
1 ≤ i < j < k < l ≤ n such thati andk are in the same block ofπ , and such thatj andl
are in the same block ofπ , it necessarily follows that all ofi, j, k, l are in the same block
of π . The setNC(n) of non-crossing partitions of{1, . . . , n} becomes a lattice when the
refinement order is considered on it (i.e., forπ, σ ∈ NC(n), π ≤ σ means that every block
of σ is a union of blocks ofπ ). The combinatorics ofNC(n) has been studied by several
authors (see [12], and the list of references there); we will only review here the facts which
are needed for stating our result.

1.2. The complementation map of Kreweras

is a remarkable lattice anti-isomorphismK : NC(n) → NC(n), described as follows. Let
π be a non-crossing partition of{1, . . . , n}. We view 1, . . . , n as points on a circle,
equidistributed and clockwisely ordered, and for each blockB = {b1, . . . , bj } of π we
draw the convex polygon (inscribed in the circle) with verticesb1, . . . , bj . The qual-
ity of π of being non-crossing is reflected into the fact that the convex polygons associ-
ated to its blocks do not intersect. Now, consider on the circle the midpoints of the arcs
(1, 2), (2, 3), . . . , (n− 1, n), (n, 1), and denote them bȳ1, 2̄, . . . , n̄, respectively. We look
at the non-crossing partitionsσ of {1̄, 2̄, . . . , n̄} with the property that the convex polygons
associated to the blocks ofσ do not intersect the ones associated to the blocks ofπ (i.e.,π
andσ together give a non-crossing partition of{1 < 1̄ < 2 < 2̄ < · · · < n < n̄}). Among
the partitionsσ with the named property, there is a largest one (in the refinement order),
and this is, by definition,K (π).

As a concrete example, figure 1 illustrates thatK ({{1, 4, 8}, {2, 3}, {5, 6}, {7}}) = {{1, 3},
{2}, {4, 6, 7}, {5}, {8}} ∈ NC(8).

It is immediate thatK 2(π) is (for everyπ ∈ NC(n)) the anti-clockwise rotation ofπ
with 360◦/n; this shows in particular thatK is a bijection, also the important fact thatK (π)

and K −1(π) have always the same block structure (since they differ by a rotation). It is
also easy to see thatπ ≤ ρ ⇒ K (π) ≥ K (ρ) (and the converse must also hold, sinceK 2

is an isomorphism ofNC(n)).

We mention that Simion and Ullman ([12], Section 1) have shown how the definition of the
complementation mapK can be modified to yield an anti-automorphism8 of NC(n) which
has82 = identity. Also, it was shown by Biane in [1] thatK and8 generate together the
group of all skew-automorphisms (i.e., automorphisms or anti-automorphisms) ofNC(n),
which is the dihedral group with 4n elements.

1.3. The canonical product decomposition of the intervals in NC(n)

Modulo a modification of the convention concerning how many one-element lattices are to
be taken in the decomposition, we follow here [13], Proposition 1 in Section 3.

Givenn ≥ 1 andπ ≤ σ in NC(n), we denote by [π, σ ] the interval{ρ | π ≤ ρ ≤ σ } ⊆
NC(n). We denote byIntn the set of intervals ofNC(n), and byInt the disjoint union of the
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Figure 1.

Intn’s, n ≥ 1. Each interval [π, σ ] ∈ Int is carrying a lattice structure, coming from the
NC(n) where the interval has been taken from; of course, if the considered [π, σ ] happens
to be [0n, 1n], with 0n = {{1}, {2}, . . . , {n}} and 1n = {{1, 2, . . . , n}}, the minimal and
maximal elements ofNC(n), then the lattice [π, σ ] is NC(n) itself.

Now, each interval [π, σ ] ∈ Int can be decomposed in a natural way as a product,

[π, σ ] ' [01, 11]k1 × [02, 12]k2 × · · · × [0n, 1n]kn × · · · , (1.1)

where(kn)
∞
n=1 is a sequence of non-negative integers, such thatkn = 0 for sufficiently large

n. (1.1) is a lattice-isomorphism, and can be obtained in two steps:

Step 1. If we write σ = {B1, . . . , Bk} andπ = {A1,1, . . . , A1,m1, . . . , Ak,1, . . . , Ak,mk}
such thatBj = Aj,1 ∪ · · · ∪ Aj,mj for 1 ≤ j ≤ k, then

[π, σ ] '
k∏

j =1

[{
Aj,1, . . . , Aj,mj

}
, 1|Bj |

]; (1.2)

on the right-hand side of (1.2),{Aj,1, . . . , Aj,mj } is viewed as partition of{1, 2, . . . , |Bj |}
rather than one ofBj (via the order preserving bijection betweenBj and{1, 2, . . . , |Bj |}).
The verification of (1.2) is immediate, and left to the reader.

Step 2. Due to (1.2), we are left to consider the decomposition of [π, σ ] in the case when
σ = 1n (for somen ≥ 1). In this case, ifK (π) = {A1, . . . , Ah} ∈ NC(n) denotes the
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complementation map applied toπ , we have

[π, 1n] ' [
0|A1|, 1|A1|

] × · · · × [
0|Ah|, 1|Ah|

]
. (1.3)

Indeed, using the symbol∼↔ for anti-isomorphism, we have

[π, 1n] ∼↔ [0n, K (π)] (via K onNC(n));
[0n, K (π)] ' [

0|A1|, 1|A1|
] × · · · × [

0|Ah|, 1|Ah|
]

(by the Step 1);

and [0|A1|, 1|A1|] × · · · × [0|Ah|, 1|Ah|] is anti-isomorphic to itself (via the product of the
complementation maps onNC(|A1|), . . . , NC(|Ah|)).

For example, ifπ = {{1, 9}, {2, 5}, {3}, {4}, {6}, {7, 8}, {10}, {11}, {12}} and σ =
{{1, 6, 9, 12}, {2, 4, 5}, {3}, {7, 8}, {10, 11}} in NC(12), then Step 1 gives

[π, σ ] ' [{{1, 3}, {2}, {4}}, 14] × [{{1, 3}, {2}, 13] × [{{1}}, 11]

× [{{1, 2}}, 12] × [{{1}, {2}}, 12]; (1.4)

and Step 2 gives

[{{1, 3}, {2}, {4}}, 14] ' [02, 12]2, becauseK ({{1, 3}, {2}, {4}})
= {{1, 2}, {3, 4}}

[{{1, 3}, {2}}, 13] ' [01, 11] × [02, 12], becauseK ({{1, 3}, {2}})
= {{1, 2}, {3}}

[{{1}}, 11] ' [01, 11], becauseK ({{1}}) = {{1}}
[{{1, 2}}, 12] ' [01, 11]2, becauseK ({{1, 2}}) = {{1}, {2}}
[{{1}, {2}}, 12] ' [02, 12], becauseK ({{1}, {2}}) = {{1, 2}}.

(1.5)

Hence the canonical decomposition of [π, σ ] is, by (1.4) and (1.5), [π, σ ] ' [01, 11]4 ×
[02, 12]4. The specifics of working with non-crossing partitions can be seen well in the first
Eq. (1.5), where we get [02, 12]2, rather than [03, 13], as one would expect at first glance;
this is related to the fact that when connecting{{1, 3}, {2}, {4}} with 14 by a chain inNC(4),
we are not allowed to start by putting together the blocks{2} and{4}.

1.4. Multiplicative functions on non-crossing partitions

This notion is obtained by paralleling the considerations of [3], Section 5.2 (see, equiva-
lently, Section 3.5.2 in [11]), in the context of the product decompositions observed in the
previous subsection. We will be again following [13], Sections 2 and 3.

Let us recall that theconvolutionof f, g : Int→ C (withInt the set of intervals considered
in 1.3 above) isf ? g : Int→ C defined by:

( f ? g)([π, σ ])
def=

∑
ρ∈[π,σ ]

f ([π, ρ])g([ρ, σ ]), [π, σ ] ∈ Int. (1.6)
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With this operation (as multiplication) and with addition and scalar multiplication defined
pointwisely, the setLof all complex functions defined onIntbecomes a complex associative
algebra, called thelarge incidence algebra on non-crossing partitions(compare to [3],
Section 5).

Definition 1.4.1 A function f : Int→ C will be calledmultiplicativeif whenever [π, σ ] ∈
Int has canonical product decomposition [01, 11]k1 × [02, 12]k2 × [03, 13]k3 × · · · , then

f ([π, σ ]) = f ([01, 11])k1 f ([02, 12])k2 f ([03, 13])k3 · · · (1.7)

We will denote byM the set of all multiplicative functionsf : Int → C, and byM1 ⊆M
the set of multiplicative functionsf such thatf ([01, 11]) = 1.

Clearly, each sequence(αn)
∞
n=1 of complex numbers determines uniquely a multiplicative

function f ∈M (defined by (1.7) and the condition thatf ([0n, 1n]) = αn, n ≥ 1). Every
f ∈M can be obtained in this way, and it is inM1 if and only if α1 = 1.

It is easy to see that the convolution (1.6) of two multiplicative functionsf, g ∈M is still
multiplicative1 (see Proposition 2 in Section 3 of [13], or compare to Proposition 5.1 in [3]).
If f, g ∈M are corresponding (in the sense of the preceding paragraph) to the sequences
(αn)

∞
n=1 and(βn)

∞
n=1, respectively, thenf ? g corresponds to the sequence(γn)

∞
n=1, where

γn =
∑

π∈NC(n)

π
def= {A1,...,Ah}

K (π)
def= {B1,...,Bk}

α|A1| · · ·α|Ah|β|B1| · · ·β|Bk|. (1.8)

Indeed, (1.8) comes out by writing that

γn = ( f ? g)([0n, 1n]) =
∑

π∈NC(n)

f ([0n, π ])g([π, 1n]),

and by using what we know about the canonical product decomposition of [0n, π ] (see
Step 1 in 1.3) and of [π, 1n] (see Step 2 in 1.3).

It is, moreover, easy to see thatM1 of 1.4.1 is a subgroup of the invertible elements
of the large incidence algebraL. Indeed,M1 is also closed under convolution, since we
have( f ? g)([01, 11]) = f ([01, 11])g([01, 11]) = 1 for every f, g ∈M1. The unitδ of L
is inM1, and corresponds to the sequence(1, 0, 0 · · ·). Each f ∈ M1 has f ([π, π ]) =
f ([01, 11])n = 1 for all n ≥ 1 andπ ∈ NC(n), which implies thatf is invertible inL—see
for instance [15], Proposition 3.6.2. In order to verify that the inverse off ∈M1 is still
inM1, one can proceed as follows: starting with the sequenceαn = f ([0n, 1n]), n ≥ 1,
determine recursively by using (1.8) a sequence(βn)

∞
n=1 such that theγn’s obtained in (1.8)

areγ1 = 1 andγ2 = γ3 = · · · = 0; then the multiplicative functiong determined by
(βn)

∞
n=1 will have f ? g = δ—henceg = f −1.

It is interesting to remark next that

Proposition 1.4.2 The convolution operation is commutative onM1.
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Proof: Let f, g be inM1, and let us make the notationsf ([0n, 1n]) = αn, g([0n, 1n]) =
βn, ( f ? g)([0n, 1n]) = γn, (g ? f )([0n, 1n]) = γ ′

n, n ≥ 1. Thenγn is expressed in terms of
theα’s and theβ ’s by Eq. (1.8). Since the complementation map is bijective we can also
write, by denotingK (π) = ρ in (1.8):

γn =
∑

ρ∈NC(n)

ρ
def= {B1,...,Bk}

K −1(ρ)
def= {A1,...,Ah}

β|B1| · · ·β|Bk|α|A1| · · ·α|Ah|. (1.9)

Moreover, in the sum on the right-hand side of (1.9) we can replace “K −1(ρ)” by “ K (ρ)”
(because, as remarked in 1.2,K (ρ) andK −1(ρ) have the same block structure). But when
this is done, the right-hand side of (1.9) becomes exactly the expression ofγ ′

n. We conclude
thatγn = γ ′

n, i.e., that( f ? g)([0n, 1n]) = (g ? f )([0n, 1n]), for everyn ≥ 1, which implies
f ? g = g ? f . 2

It should be noted that (by exactly the same argument) convolution is in fact commutative
on the larger semigroupM ⊃M1. As the proof of 1.4.2 clearly shows, this phenomenon
depends on the self-duality ofNC(n) (its analogue can’t therefore hold in the framework
of the lattice of all partitions of{1, . . . , n}).

1.5. Remark: Convolution onCc(R) and the Fourier transform

Let us recall now another framework where an operation called “convolution” is studied.
Let Cc(R) denote the space of continuous compactly supported functions on the real line.
For f, g ∈ Cc(R), their convolutionf ? g ∈ Cc(R) is defined by

( f ? g)(t) =
∫ ∞

−∞
f (s)g(t − s) ds, t ∈ R. (1.10)

As it is well-known, one way of studying the convolution onCc(R) is via the Fourier
transform. Forf ∈ Cc(R), its Fourier transformF f is defined by

(F f )(z) =
∫ ∞

−∞
eitz f (t) dt =

∞∑
n=0

(
i n

n!

∫ ∞

−∞
tn f (t) dt

)
zn; (1.11)

F f is an analytic function—but for our purposes it is more convenient to view it as a
formal power series inz. The relevance of the Fourier transform for convolution is that it
transforms it into the simpler operation of pointwise multiplication of power series,

[F( f ? g)](z) = (F f )(z)(Fg)(z), f, g ∈ Cc(R). (1.12)

The relation between the present remark and the considerations preceding it would seem
at first to be reduced to the fact that in both cases an operation called “convolution” and
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denoted by “?” is studied. In particular, one would be inclined to find it unlikely that the
analogue of (1.12) could be somehow reached in the framework of non-crossing partitions.
It is quite surprising that this is in fact the case. While the deeper reasons of this phenomenon
remain to be elucidated (and a more general context for a “combinatorial Fourier transform”
remains to be found), let us state the main result of the paper, which is the following.

Theorem 1.6 For every f in the groupM1 of 1.4.1 we denote byϕ f the formal power
series

ϕ f (z) =
∞∑

n=1

f ([0n, 1n])zn, (1.13)

and we denote byϕ〈−1〉
f the inverse ofϕ f in the group of the formal power series of the form

z + γ2z2 + γ3z3 + · · · , endowed with the operation of composition; in other words, ϕ
〈−1〉
f

is the unique formal power seriesψ, without constant coefficient, in a variable z, such that∑∞
n=1 f ([0n, 1n])(ψ(z))n = z.
If we put, for every f ∈M1:

(F f )(z) = 1

z
ϕ

〈−1〉
f (z) (1.14)

(formal power series in z, with constant coefficient equal to1), then we have:

[F( f ? g)](z) = (F f )(z)(Fg)(z), f, g ∈M1; (1.15)

i.e., the “Fourier transform” defined by(1.14) converts the convolution of multiplicative
functions on non-crossing partitions into the multiplication of formal power series.

Corollary 1.7 The convolution groupM1 considered in Section1.4 is isomorphic to a
countable direct product of copies ofC.

Proof: LetG be the multiplicative group of formal power series with constant coefficient
equal to 1. It is immediate thatF :M1 → G is a bijection, and the Theorem 1.6 ensures
that it is a group isomorphism. ButG is indeed isomorphic to a countable direct product
of copies ofC (since the formal logarithm takes it into the additive group of formal power
series without constant coefficient). 2

2. The proof of the result

Notation 2.1
1◦ For everyn ≥ 1, we will denote byNC′(n) the set of non-crossing partitions of

{1, . . . , n} which have{1} as a one-element block. (ThusNC′(1) = NC(1), while for
n ≥ 2, NC′(n) is in natural bijection withNC(n − 1).)
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2◦ For f, g in the groupM1 considered in Section 1.4, we will denote byf
∨
? g ∈M1 the

multiplicative function uniquely determined by

( f
∨
? g)([0n, 1n]) =

∑
π∈NC′(n)

π
def= {A1,...,Ah}

K (π)
def= {B1,...,Bk}

α|A1| · · ·α|Ah|β|B1| · · ·β|Bk|, (2.1)

where αm
def= f ([0m, 1m]), βm

def= g([0m, 1m]), for m ≥ 1.

We would like to call the operation
∨
? of 2.1.2◦ by the name of “pinched-convolution”;

this comes from the fact that the summation formula defining( f
∨
? g)([0n, 1n]) is obtained

from the one defining( f ? g)([0n, 1n]) (see Eq. (1.8) above) by “pinching out” the terms
in NC(n)\NC′(n). The reason for introducing

∨
? is that considerations involving it will

turn out to simplify quite a lot the proof of Theorem 1.6.
Unlike the convolution operation onM1, one cannot expect that

∨
? is commutative,

however there is a nice “symmetrization lemma” that holds.

Lemma 2.2 For f, g ∈M1 we have

ϕ
f

∨
? g

(z)ϕ
g

∨
? f

(z) = zϕ f ?g(z) (2.2)

(whereϕh for h ∈M1 is defined as in(1.13) of Theorem1.6).

Proof: Fix a positive integern. The coefficients ofzn+1 on the two sides of (2.2) are
n∑

j =1

( f
∨
? g)([0 j , 1 j ])(g

∨
? f )([0n+1− j , 1n+1− j ])

=
n∑

j =1

∑
π∈NC′( j )

ρ∈NC′(n+1− j )

f ([0 j , π ])g([π, 1 j ])g([0n+1− j , ρ]) f ([ρ, 1n+1− j ]), (2.3)

and respectively

( f ? g)([0n, 1n]) =
∑

σ∈NC(n)

f ([0n, σ ])g([σ, 1n]). (2.4)

What we need is hence the equality of the sums appearing in (2.3) and the right-hand side
of (2.4). It turns out that more is true: there exists a natural bijection between the index
sets of the sums in (2.3) and (2.4),⋃

1≤ j ≤n
(disjoint)

NC′( j ) × NC′(n + 1 − j ) → NC(n) (2.5)

such that if(π, ρ) ∈ NC′( j )×NC′(n+1− j ) corresponds by (2.5) toσ ∈ NC(n), then the
term indexed by(π, ρ) in the sum (2.3) equals the term indexed byσ in the sum (2.4)—or
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more precisely:{
f ([0n, σ ]) = f ([0 j , π ]) f ([ρ, 1n+1− j ])
g([σ, 1n]) = g([π, 1 j ])g([0n+1− j , ρ]).

(2.6)

The description of the bijection (2.5) goes as follows: start with 1≤ j ≤ n, π ∈ NC′( j ),
ρ ∈ NC′(n + 1 − j ); denote by∨

π ∈ NC( j − 1) the partition obtained by deleting the one-
element block{1} of π , and consider on the other handK (ρ) ∈ NC(n + 1 − j ) (the
complementation map applied toρ). Thenσ ∈ NC(n) which corresponds by (2.5) to
(π, ρ) is obtained by simply juxtaposing∨π and K (ρ), in this order. (For example: if
n = 6, j = 3, π = {{1}, {2, 3}}, ρ = {{1}, {2, 4}, {3}}, thenσ = {{1, 2}, {3, 6}, {4, 5}}.)

It is easy to verify that the map (2.5), as defined in the preceding paragraph, is indeed a
bijection. Its inverse is described as follows: start withσ ∈ NC(n), and denote byj the
smallest element of the block ofσ containingn. Then each of{1, . . . , j −1}and{ j, . . . , n} is
a union of blocks ofσ , thusσ is obtained as the juxtaposition of two non-crossing partitions
σ1 ∈ NC( j − 1) andσ2 ∈ NC(n + 1 − j ). We letπ ∈ NC′( j ) be the partition obtained by
adding a one-element block to the left ofσ1, and we putρ = K −1(σ2) ∈ NC′(n + 1 − j )
(K −1(σ2) has{1} as a one-element block—this is implied by the fact that 1 andn + 1 − j
are in the same block ofσ2). Then the pair(π, ρ) obtained in this way is the pre-image of
σ by the map (2.5).

From the explicit descriptions made in the preceding two paragraphs, it is clear that (when
σ corresponds to(π, ρ)—i.e., is the juxtaposition of∨π andK (ρ), as above):

f ([0n, σ ]) = f ([0 j −1,
∨
π ]) f ([0n+1− j , K (ρ)])

= f ([0 j , π ]) f ([ρ, 1n+1− j ]), (2.7)

i.e., the first relation (2.6) takes indeed place. (In (2.7), we havef ([0 j , π ]) = f ([0 j −1,
∨
π ])

due to the hypothesis thatf ([01, 11]) = 1, and the equalityf ([0n+1− j , K (ρ)]) = f ([ρ,

1n+1− j ]) follows from the Step 2 of 1.3.)
In order to verify the second relation (2.6), one “applies the complementation map” to

the bijection (2.5). More precisely (as the reader can check without difficulty on a circular
picture), the following happens: ifσ ∈ NC(n) corresponds by (2.5) to(π, ρ) ∈ NC′( j ) ×
NC′(n + 1 − j ), then K −1(σ ) is the juxtaposition ofK (π) and ∨

ρ. (For instance, in the
concrete example given above, withn = 6 and j = 3: K −1(σ ) = {{1, 3}, {2}, {4, 6}, {5}},
while K (π) = ∨

ρ = {{1, 3}, {2}}.) But then

g([σ, 1n]) = g([0n, K (σ )]) (by Step 2 in 1.3)

= g([0n, K −1(σ )]) (becauseK −1(σ ) is a rotation ofK (σ ))
= g([0 j , K (π)])g([0n− j ,

∨
ρ])

(becauseK −1(σ ) is the juxtaposition ofK (π) and ∨
ρ)

= g([π, 1 j ])g([0n+1− j , ρ])

(by the same argument as for (2.7)). 2
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The next Proposition 2.3 is based on the enumeration of non-crossing partitions inNC(n)

according to their block containing 1∈ {1, . . . , n}. We mention that an important particular
case of this proposition (wheng of Eq. (2.8) is theζ function on non-crossing partitions)
was previously done in [13] (Theorem in Section 3), and is the combinatorial equivalent of
a result of Voiculescu ([17], Theorem 2.9).

Proposition 2.3 For every f, g ∈M1 we have

ϕ f ◦ ϕ
f

∨
? g

= ϕ f ?g (2.8)

(whereϕh for h ∈M1 is defined as in(1.13) of Theorem1.6, and“◦” denotes the formal
composition of series).

Proof: We will need the following Lemma, the simple proof of which is left to the reader.

Lemma Let n be a positive integer, and let B be a subset of{1, . . . , n} such that B3 1.
Denote by NCB(n) the set of non-crossing partitions of{1, . . . , n} that are having B as a
block. Then we have a natural bijection

NCB(n) →
m∏

p=1

NC′( j p+1 − j p), (2.9)

where1 = j1 < j2 < · · · < jm is the list of elements of B and jm+1
def= n + 1, and

where the notation NC′ is as introduced in1◦ of 2.1. The bijection(2.9) associates to
π ∈ NCB(n) the m-tuple(πp)1≤p≤m, whereπp is the restriction ofπ to the interval
{ j p, j p + 1, . . . , j p+1 − 1}. (Note that{ j p} is a one-element block ofπp, while the rest
of πp,

∨
π p = πp\{{ j p}}, is a union of blocks ofπ .) Moreover, if π → (πp)1≤p≤m as

above, then K(π) is the juxtaposition of K(π1), . . . , K (πm), in this order(where K= the
complementation map, as above).

Now, let f, g be as in the statement of the proposition. We fix a positive integern, and
we write:

( f ? g)([0n, 1n]) =
∑

π∈NC(n)

f ([0n, π ])g([π, 1n])

=
∑

1∈B⊆{1,...,n}

( ∑
π∈NCB(n)

f ([0n, π ])g([π, 1n])

)
. (2.10)

Let us also fix aB = { j1, . . . , jm}, with 1 = j1 < · · · < jm ≤ n, and let us make, in the
sum indexed byNCB(n) which appears in (2.10) the “change of variable” provided by the
bijection (2.9). Instead of “

∑
π∈NCB(n)” we will thus have “

∑
π1∈NC′( j2− j1),...,πm∈NC′( jm+1− jm)”;
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moreover—by taking into account howπ is related to(πp)1≤p≤m, and howK (π) is related
to (K (πp))1≤p≤m—we will replace:

(a) f ([0n, π ]) = f ([0m, 1m]) ·
m∏

p=1

f
([

0 j p+1− j p, πp
])

( f ([0m, 1m]) comes from the blockB of π ; then the other blocks ofπ are given by
the union of the∨

π p’s, where ∨
π p = πp\{{ j p}}, 1≤ p≤ m, and this brings up the prod-

uct
∏m

p=1 f ([0 j p+1− j p−1,
∨
π p]) =

∏m
p=1 f ([0 j p+1− j p, πp]) ); and

(b) g([π, 1n]) = g([0n, K (π)]) =
m∏

p=1

g
([

0 j p+1− j p, K (πp)
])

=
m∏

p=1

g
([

πp, 1 j p+1− j p

])
.

Therefore, we obtain:

∑
π∈NCB(n)

f ([0n, π ])g([π, 1n])

=
∑

π1∈NC′( j2− j1),...,
πm∈NC′( jm+1− jm)

f ([0m, 1m]) ·
m∏

p=1

f
([

0 j p+1− j p, πp
]) ·

m∏
p=1

g
([

πp, 1 j p+1− j p

])

= f ([0m, 1m]) ·
m∏

p=1

( ∑
πp∈NC′( j p+1− j p)

f
([

0 j p+1− j p, πp
])

g
([

πp, 1 j p+1− j p

]))

= f ([0m, 1m]) ·
m∏

p=1

( f
∨
? g)

([
0 j p+1− j p, 1 j p+1− j p

])
. (2.11)

Next, we letB run in the set of subsets of{1, . . . , n} which contain 1, and replace (2.11) in
(2.10). It is convenient to make in (2.11) the substitutionj2− j1 = i1, . . . , jm+1− jm = im; B
is completely determined by(m; i1, . . . , im), and whenB runs in{B ⊆ {1, . . . , n} | B 3 1},
the corresponding(m; i1, . . . , im) runs in{(m; i1, . . . , im) | 1 ≤ m ≤ n; i1, . . . , im ≥ 1;
i1 + · · · + im = n}. So, what we obtain in the continuation of (2.10) is

( f ? g)([0n, 1n]) =
n∑

m=1

∑
i1,...,im≥1
such that

i1+···+im=n

f ([0m, 1m]) ·
m∏

p=1

( f
∨
? g)

([
0i p, 1i p

])
. (2.12)
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It is clear that the right-hand side of (2.12) is the coefficient ofzn in the series

∞∑
m=1

f ([0m, 1m])

( ∞∑
i =1

( f
∨
? g)([0i , 1i ])z

i

)m

= (ϕ f ◦ ϕ
f

∨
? g

)(z);

since the left-hand side of (2.12) is the coefficient ofzn in ϕ f ?g(z), the proof of (2.8) is
hence completed. 2

2.4. Proof of the Theorem 1.6

Once the Eqs. (2.2) and (2.8) are established, we are only left to perform a short algebraic
manipulation. Letf andg be multiplicative functions in the groupM1 (considered in the
Theorem). We start from the relation (2.2) obtained in the Lemma 2.2, and compose it on
the right withϕ

〈−1〉
f ?g (whereϕh for h ∈M1 has the significance introduced in 1.6). Denoting

the power seriesz (in the variablez) by id, what we get is:(
ϕ

f
∨
? g

◦ ϕ
〈−1〉
f ?g

) · (
ϕ

g
∨
? f

◦ ϕ
〈−1〉
f ?g

) = (
id ◦ ϕ

〈−1〉
f ?g

) · (
ϕ f ?g ◦ ϕ

〈−1〉
f ?g

)
. (2.13)

We haveid ◦ ϕ
〈−1〉
f ?g = ϕ

〈−1〉
f ?g , ϕ f ?g ◦ ϕ

〈−1〉
f ?g = id (becauseid is the unit element for compo-

sition, whileϕ
〈−1〉
f ?g is the inverse ofϕ f ?g under the same operation); hence the right-hand

side of (2.13) isid · ϕ
〈−1〉
f ?g (the serieszϕ〈−1〉

f ?g (z) in the variablez).
On the other hand we have

ϕ
f

∨
? g

◦ ϕ
〈−1〉
f ?g = ϕ

〈−1〉
f ; (2.14)

this follows from the Eq. (2.8) of Proposition 2.3, by composing it on the left withϕ
〈−1〉
f

and on the right withϕ〈−1〉
f ?g . By switching the roles off andg in (2.14), and taking into

account thatf ? g = g ? f , we also get thatϕ
g

∨
? f

◦ ϕ
〈−1〉
f ?g = ϕ

〈−1〉
g ; hence the left-hand

side of (2.13) isϕ〈−1〉
f ϕ

〈−1〉
g .

So we have obtained:

ϕ
〈−1〉
f (z)ϕ〈−1〉

g (z) = zϕ〈−1〉
f ?g (z), (2.15)

and dividing in (2.15) byz2 yields the desired relationF( f ? g) = (F f )(Fg). 2

Remark 2.5 There are also other applications of the Eqs. (2.2) and (2.8) that may be of
interest (besides the above proof, which was the main goal of the section). As an example,
we show here how (2.8) can be used to obtain a formula for the convolution with the Moebius
function on non-crossing partitions.

So, letµ denote the Moebius function on non-crossing partitions, i.e., the inverse in the
large incidence algebra on non-crossing partitions,L, of the functionζ : Int→ C identically
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equal to 1. Sinceζ is, clearly, the multiplicative function on non-crossing partitions deter-
mined by the sequence(1, 1, 1, . . . , 1, . . .), the considerations preceding Proposition 1.4.2
above show thatµ is also a multiplicative function. The sequence of numbers determining
µ is found to be the one of the signed Catalan numbers,

µ([0n, 1n]) = (−1)n−1(2n − 2)!

(n − 1)!n!
, n ≥ 1 (2.16)

(see [7], Section 7). For the general theory of the Moebius function on posets see [10], or
[15] Chapter 3.

As it was realized in [13], the convolution withµ plays an important role in the com-
binatorial approach to the theory of free random variables; this will be confirmed by the
development presented in the next section (see the discussion in 3.2, 3.3). The formula
which we derive in the next paragraph (Eq. (2.18)) is equivalent to the result in the Theorem
in Section 3 of [13].

Leth be a multiplicative function inM1, and let us putg
def= h?µ (the relation definingg

is, of course, equivalent toh = g? ζ ). By comparing the Eqs. (1.8) and (2.1), and by taking
into account thatζ is identically 1, we see that(g

∨
? ζ )([0n, 1n]) = (g ? ζ )([0n−1, 1n−1]) =

h([0n−1, 1n−1]) for everyn ≥ 2; this implies the equality:

ϕ
g

∨
? ζ

(z) = z(1 + ϕh(z)). (2.17)

Now, from (2.8) we get thatϕ
g

∨
? ζ

= ϕ
〈−1〉
g ◦ ϕg?ζ = ϕ

〈−1〉
g ◦ ϕh; hence, if we compose

with ϕ
〈−1〉
h on the right, the left-hand side of (2.17) becomes justϕ

〈−1〉
g (or, in other words:

ϕ
〈−1〉
h?µ ). On the other hand, composing the right-hand side of (2.17) withϕ

〈−1〉
h brings us to

ϕ
〈−1〉
h (z) · (1+ z) (argument similar to the one used in (2.13)), therefore the equality which

is obtained reads:

ϕ
〈−1〉
h?µ (z) = (1 + z)ϕ〈−1〉

h (z), for everyh ∈M1. (2.18)

The above mentioned Theorem in Section 3 of [13] states that if (for someh ∈ M1)
we set A(z)

def= 1 + ϕh?µ(z), B(z)
def= 1 + ϕh(z), then A and B satisfy the equation

A(zB(z)) = B(z). This is equivalent to (2.18), in a formulation which avoids considering
inverses under composition (in order to check the equivalence, one only needs to compose
with ϕh on the right in (2.18)).

3. The connection with theS-transform of Voiculescu

The present work was started as an attempt of understanding, from a combinatorial point
of view, a theorem of Voiculescu [18] concerning themoments of the product of two free
random variables. In this section we will review the mentioned result of Voiculescu, and
present its connection with the Theorem 1.6 above.
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We have to start with a few basic definitions related to free random variables; our pre-
sentation here will deal only with combinatorial aspects of this notion (for more details, see
for instance the monograph [19]).

3.1. Review of freeness and of the S-transform

Definition 3.1.1 LetA be a complex algebra with unitI , and letτ :A→ C be a linear
functional, normalized byτ(I ) = 1. Fora ∈ A, the numbers in the sequence(τ (an))∞n=0
will be called themomentsof a with respect toτ . Fora, b ∈ A, the value ofτ at monomials
in a andb (e.g.,τ(a2bab3a5)) will be calledmixed momentsof a andb (with respect toτ ).
Note thatA is not assumed to be commutative—thus for instance the mixed moment
τ(abab) is in general not the same thing asτ(a2b2).

The terminology in 3.1.1 is inspired from the situation whenA is an algebra of random
variables on a probability space(Ä,F , P) (e.g.,A = L∞(Ä,F , P)), and the functional
τ is the integral,τ(a) = ∫

Ä
a(ω) d P(ω), for a ∈ A. Of course, the framework in 3.1.1

is leaving aside the measure-theoretic facet of the situation, while on the other hand it
is gaining a more complicated algebraic structure from the fact thatA isn’t necessarily
commutative. Even with these differences, it is useful to think ofA in 3.1.1 as of “an
algebra of random variables” (and this is why the elements ofA are sometimes referred to
as “non-commutative random variables”). Following this line of thought, the concept of
freeness in the next definition comes as a non-commutative analogue of the classical notion
of independence for random variables.

Definition 3.1.2 LetA be a complex algebra with unitI , and letτ :A→ C be a linear
functional, normalized byτ(I ) = 1. Consider two elementsa, b ∈ A, and denote their
moments byτ(an) = αn, τ(bn) = βn, n ≥ 1. Let us callalternating productbased on
a andb a (non-void) product of factors from(an − αn I )∞n=1 ∪ (bn − βn I )∞n=1, such that:
for every factor coming from(an − αn I )∞n=1, its immediate neighbors in the product are
from (bn −βn I )∞n=1, and vice-versa—the immediate neighbors of every factor coming from
(bn − βn I )∞n=1 are from(an − αn I )∞n=1. (For instance,(a3 − α3I )(b − β1I )(a4 − α4I )
and(b2 − β2I )(a5 − α5I )(b − β1I )(a2 − α2I ) are examples of alternating products.) The
elementsa, b ∈ A are calledfreewith respect toτ if τ(p) = 0 for every alternating product
p based ona andb.

Remark 3.1.3 It is important to note that (in the above notations): ifa, b ∈ A are free
with respect toτ , then the mixed moments ofa andb (in the sense of 3.1.1) can be calculated
in terms of the individual momentsτ(an) = αn andτ(bn) = βn, n ≥ 1. For the sake of
keeping the notations simple, we will only show how the calculation goes in a particular
case; it will be clear, however, that the same method would work for an arbitrary mixed
moment.

Let us assume, for instance, that our goal is to calculateτ(abab) (knowing thata andb
are free). We start from the equality

τ((a − α1I )(b − β1I )(a − α1I )(b − β1I )) = 0 (3.1)
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(given by 3.1.2), and we expand the product(a − α1I )(b − β1I )(a − α1I )(b − β1I ) as a
sum of 16 terms, arriving to

τ(abab) = α1τ(bab) + β1τ(a2b) + α1τ(ab2) + β1τ(aba)

− α1β1τ(ab) − α2
1τ(b2) − α1β1τ(ba)

− β1α1τ(ab) − β2
1τ(a2) − α1β1τ(ab)

+ α1β1α1τ(b) + α1β
2
1τ(a) + α2

1β1τ(b) + β1α1β1τ(a)

− α1β1α1β1τ(I ) (3.2)

= α1τ(bab) + β1τ(a2b) + α1τ(ab2) + β1τ(aba)

− α1β1[3τ(ab) + τ(ba)]

+ 3α2
1β

2
1 − α2

1β2 − α2β
2
1 (3.3)

((3.3) is obtained from (3.2) by replacingτ(I ) = 1, τ(a) = α1, τ (a2) = α2, τ (b) = β1,

τ (b2) = β2, and by collecting terms). Thus, the expansion of (3.1) has reduced the calcu-
lation of τ(abab) to the one of some other mixed moments, of strictly smaller degree. By
continuing the same procedure (i.e., replacingτ(bab) from the expansion ofτ((b−β1I )(a−
α1I )(b− β1I )) = 0, replacingτ(a2b) from the expansion ofτ((a2 − α2I )(b− β1I )) = 0,

etc) it is clear that we must come in the end to an expression ofτ(abab) only in terms of
theα’s and theβ ’s. If one effectively does all the calculations, it will turn out that (after
most of the terms finish by canceling out) the final expression forτ(abab) is

τ(abab) = α2β
2
1 + α2

1β2 − α2
1β

2
1. (3.4)

The result of Voiculescu [18] that we want to discuss is addressing the following

Problem 3.1.4 GivenA, τ as in 3.1.1, 3.1.2, and given two elementsa, b ∈ A that are free
with respect toτ . Describe the sequence of moments(τ (cn))∞n=0 of the productc = ab ∈ A
in terms of the sequences of moments(τ (an))∞n=0 and(τ (bn))∞n=0 of a andb.

Of course,τ(cn) = τ(abab· · · ab︸ ︷︷ ︸
2n factors

) is really a mixed moment ofa andb with respect

to τ , hence (as remarked in 3.1.3), we know for sure that it can be expressed in terms of the
individual momentsτ(an) andτ(bn), n ≥ 1. For instance, forn = 1 it is immediate that

τ(c) = τ(ab) = τ(a)τ (b), (3.5)

while for n = 2 the example calculated in 3.1.3 shows that

τ(c2) = τ(a2)τ (b)2 + τ(a)2τ(b2) − τ(a)2τ(b)2; (3.6)

but unfortunately, whenn increases the method presented in 3.1.3 soon becomes difficult
to use (even for mere theoretical purposes), because of the very large number of mixed
moments involved in the calculation. What the problem in 3.1.4 really asks for is a more
direct way of obtaining the moments ofc.
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In [18, Theorem 2.6], a solution for the problem in 3.1.4 is given in the case whenτ(a) 6=
0 6= τ(b). Without much loss of generality, we will assume here thatτ(a) = τ(b) = 1 (the
case “τ(a) 6= 0 6= τ(b)” is reduced to this by replacinga with 1

τ(a)
a andb with 1

τ(b)
b).

Theorem 3.1.5 ([18], Theorem 2.6) LetA be a complex algebra with unit I, and let
τ :A→ C be a linear functional, normalized byτ(I ) = 1. To an element a∈ A having
τ(a) = 1we attach a formal power series Sa (“ the S-transform of a with respect toτ ”) in the
following way: if χ denotes the inverse under composition of the series

∑∞
n=1 τ(an)zn, then

Sa(z) = χ(z)z−1(1 + z). (3.7)

Now, consider two elements a, b ∈ A that are free with respect toτ, and such that
τ(a) = τ(b) = 1, and denote ab= c (note that we also haveτ(c) = 1, by (3.5)). Then

Sc(z) = Sa(z)Sb(z). (3.8)

In other words, the moments of the productc = abare calculated as follows: we take the
S-transformsSa andSb after the recipe in (3.7), we multiply them together to obtainSc, and
then the series

∑∞
n=1 τ(cn)zn is found as the inverse under composition forzSc(z)(1+z)−1.

It should be mentioned that the proof given to Theorem 3.1.5 in [18] is not easy, and goes
by studying the exponential map of a certain infinite dimensional Abelian Lie group(6, x ),
which is in some sense the universal object containing the information about multiplication
of free random variables. Our goal in what follows is to present an alternative proof which
is entirely combinatorial, based on Theorem 1.6 above.

3.2. The line of the combinatorial proof of Theorem 3.1.5

that we will present is described as follows. Consider—and fix for the rest of the section—a
complex algebraAwith unit I , and a linear functionalτ :A→ C, normalized byτ(I ) = 1.
For everya ∈ A we denote byha the unique multiplicative function on non-crossing
partitions (in the sense of Section 1.4) which has:

ha([0n, 1n]) = τ(an), n ≥ 1; (3.9)

moreover, we will use the notation

fa
def= ha ? µ, a ∈ A, (3.10)

whereha is as in (3.9) andµ is the Moebius function on non-crossing partitions, as in
Remark 2.5. We will show that:

1◦ if a, b ∈ A are free with respect toτ , then

fab = fa ? fb; (3.11)

2◦ for everya ∈ A such thatτ(a) = 1, we have

Sa = F( fa) (3.12)
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(whereSa is as in (3.7) of 3.1.5, andF(·) is the Fourier transform considered in the Theorem
1.6; note that, due to the conditionτ(a) = 1, we haveha ∈ M1, hence fa = ha ? µ is
indeed in the domain ofF ).

The proof of Theorem 3.1.5 is immediately obtained from the assertions in (3.11) and
(3.12), since for everya, b ∈ A that are free with respect toτ and withτ(a) = τ(b) = 1,
we will have:

Sab
(3.12)= F( fab)

(3.11)= F( fa ? fb)
(1.15)= F( fa)F( fb)

(3.12)= SaSb.

The proofs of the assertions in (3.11) and (3.12) will be made in the Sections 3.5 and 3.6,
respectively.

Remark 3.3 We take the occasion to point out here that the multiplicative functionfa

considered in 3.2 is an important object in the theory of “free probability”. The generating
function

Ra(z)
def= 1

z
ϕ fa(z) =

∞∑
n=1

fa([0n, 1n])zn−1 (3.13)

was first considered, via an approach involving Toeplitz operators, in the work [16, 17]
of Voiculescu, and is called “theR-transform of the distribution ofa”. The combinatorial
facet of fa (which appears in 3.2) was discovered by Speicher in [13], where the numbers
( fa([0n, 1n]))∞n=1 are studied as “the free cumulants ofa with respect to the functionalτ ”.
The important property of theR-transform which is proved in [16, 17, 13] is that

Ra+b(z) = Ra(z) + Rb(z) (3.14)

whenevera andb are free with respect toτ . In other words, theR-transform can be used
for the problem of addition of free elements in the same way in which theS-transform is
used to handle the problem of multiplication. The “analytical” formula for theR-transform
proved in [17, 13] can be written as:A(zB(z)) = B(z), whereA(z)

def= 1 + zRa(z) and
B(z) = ∑∞

n=0 τ(an)zn (see the Theorem in Section 3 of [13], or the equivalent derivation
in the Remark 2.5 of the present paper); of course, Eq. (3.10) is itself providing a “lattice-
theoretic” approach to theR-transform.

We now go to the proofs of the assertions made in (3.11) and (3.12). For (3.11) we will
need a particular case of a result in [13], which shows how to express mixed moments of
a pair of free elementsa, b as summations over non-crossing partitions. This is stated as
follows:

Lemma 3.4 For every n≥ 1, let us denote by NCsep(2n) the set of non-crossing partitions
π ∈ NC(2n) that separate the even numbers from the odd ones, i.e., which have the property
that each block ofπ is contained either in{1, 3, 5, . . . , 2n − 1} or in {2, 4, 6, . . . , 2n}.
For π ∈ NCsep(2n), writing π = {A1, . . . , Ah︸ ︷︷ ︸

odd

, B1, . . . , Bk︸ ︷︷ ︸
even

} will mean that the blocks
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A1, . . . , Ah of π have union{1, 3, 5, . . . , 2n − 1}, while the blocks B1, . . . , Bk have union
{2, 4, 6, . . . , 2n}.

Now, in the notations of3.2, consider two elements a, b ∈ A, free with respect toτ . Let
fa, fb be the multiplicative functions defined as in(3.10). Then for every n≥ 1 we have

τ(abab· · · ab︸ ︷︷ ︸
2n factors

) =
∑

π∈NCsep(2n)

π={A1,...,Ah︸ ︷︷ ︸
odd

,B1,...,Bk︸ ︷︷ ︸
even

}

h∏
i =1

fa
([

0|Ai |, 1|Ai |
]) k∏

j =1

fb
([

0|Bj |, 1|Bj |
])

.

(3.15)

For the proof of the Lemma 3.4 we refer the reader to [13] (see Proposition 2 in Section 4,
and the three un-numbered equations preceding it, in the cited paper).

3.5. The proof of the Assertion (3.11)

We will show thathab = fa ? hb (where the notations are as in 3.2); this will imply (3.11)
by taking convolution withµ on the right:

fab = hab ? µ = fa ? hb ? µ = fa ? fb.

Now, for everyn ≥ 1, hab([0n, 1n])
(3.9)= τ((ab)n) is exactly the quantity appearing

in (3.15). We will transform the right-hand side of (3.15) by using the following re-
mark (borrowed from [14], Section 3.4). Letπ = { A1, . . . , Ah︸ ︷︷ ︸

odd

, B1, . . . , Bk︸ ︷︷ ︸
even

} be a par-

tition in NCsep(2n), and let us denote byπ ′ and π ′′ respectively the two partitions in
NC(n) that are identified with{A1, . . . , Ah} and {B1, . . . , Bk} via the order-preserving
bijections{1, 3, . . . , 2n − 1} → {1, . . . , n} and{2, 4, . . . , 2n} → {1, . . . , n}; then, by the
very definition of the complementation mapK (reviewed in Section 1.2), we have that
π ′′ ≤ K (π ′). Conversely, it is clear that every pairπ ′, π ′′ ∈ NC(n), satisfyingπ ′′ ≤ K (π ′),
comes from aπ ∈ NCsep(2n) in this way. Note moreover that ifπ ′, π ′′ ∈ NC(n) with
π ′′ ≤ K (π ′) are corresponding toπ ∈ NCsep(2n), then the products

∏h
i =1 fa([0|Ai |, 1|Ai |])

and
∏k

j =1 fb([0|Bj |, 1|Bj |]) appearing in (3.15) are nothing butfa([0n, π
′]) and fb([0n, π

′′]),
respectively. This argument shows that we have:

hab([0n, 1n]) = τ(abab· · · ab︸ ︷︷ ︸
2n factors

) =
∑

π ′,π ′′∈NC(n)

such thatπ ′≤K (π ′′)

fa([0n, π
′]) fb([0n, π

′′]), (3.16)

and we can continue (3.16) with:

=
∑

π ′∈NC(n)

fa([0n, π
′])

( ∑
0≤π ′′≤K (π ′)

fb([0n, π
′′])

)
=

∑
π ′∈NC(n)

fa([0n, π
′])( fb ? ζ )([0n, K (π ′)])
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=
∑

π ′∈NC(n)

fa([0n, π
′])hb([0n, K (π ′)]) (becausefb ? ζ = hb)

=
∑

π ′∈NC(n)

fa([0n, π
′])hb([π

′, 1n)]) (by Step 2 in Section 1.3)

= ( fa ? hb)([0n, 1n]).

We have thus obtained thathab and fa ? hb agree on an arbitrary interval [0n, 1n], n ≥ 1,
and this concludes the proof. 2

3.6. The proof of the Assertion (3.12)

We use the notations introduced in 3.1.5 and 3.2. Since the multiplicative functionha

has ha([0n, 1n]) = τ(an), n ≥ 1, the series
∑∞

n=1 τ(an)zn appearing in 3.1.5 is just
ϕha(z) (whereϕh, h ∈ M1, is as in Theorem 1.6). Thus theS-transform ofa is Sa(z) =
ϕ

〈−1〉
ha

(z) · z−1(1+ z); on the other hand [F( fa)](z)
def= z−1ϕ

〈−1〉
fa

(z) (Theorem 1.6), so what
we need to show is

(1 + z)ϕ〈−1〉
ha

(z) = ϕ
〈−1〉
fa

(z). (3.17)

But (3.17) follows from (2.18), becausefa = ha ? µ. 2

The argument in 3.6 completes the combinatorial proof of the Theorem 3.1.5 of
Voiculescu.

We would like to conclude by signaling some developments related to our work here,
which have occurred recently, or/and were brought to our attention by the referees.

(a) An elegant analytical proof for the multiplicativity of theS-transform (Theorem 3.1.5)
was given by Haagerup [5], via calculations involving the resolvent functions of certain
Toeplitz operators.

(b) In [2], Biane has given another proof for the (main) Theorem 1.6 of the paper, in an
equivalent form where it appears as a result in the harmonic analysis of the group
S∞ (of finitely supported permutations ofN). The counterpart for the convolution of
multiplicative functions on non-crossing partitions is provided, in Biane’s approach,
by the restricted convolution of “multiplicative central functions onS∞”, and the
combinatorial Fourier transform is viewed as acting on the latter set of functions.

(c) The considerations involving the block-structure of a non-crossing partition, considered
at the same time with its Kreweras complement—as in Eqs. (1.8), (1.9), and (2.1), for
instance—are related to the study of the minimal factorizations of a full cycle in a (finite)
symmetric group (see e.g., [1], Theorem 1). As it was pointed out to us by one of the
referees, this yields a natural connection between the topics of the present paper and
earlier work of Jackson [6], Goulden and Jackson [4], where factorization problems in
the symmetric group were studied, by using methods from the theory of the symmetric
functions. The study of this connection might open an interesting line of research, but
its possible implications are not so clear at present, and await further investigation.

(d) The statement made in (3.11), together with the interpretation (see Remark 3.3) of the
multiplicative functionfa appearing in (3.11) as a relative of theR-transformRa, lead to
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the possibility of studying the multiplication of free elements by using theR-transform
(instead of theS-transform). In a subsequent paper [9] we have shown how this pos-
sibility can be exploited in a “multivariable” setting, in order to obtain interesting free
probabilistic applications (to compressions with free projections, and to a realization of
the free analogue for the Poisson process). Oddly enough, the problem of extending to
several variables theS-transform itself (or the combinatorial Fourier transformF con-
sidered in this paper) appears to be sensibly harder than the multivariableR-transform
approach, and we weren’t able to solve it up to present.

Note

1. M is not closed under addition or multiplication by scalars, it is merely a multiplicative subsemigroup of the
large incidence algebraL.
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