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0. Introduction

Forn=> 1, letNC(n) denote the lattice of non-crossing partitionddf. . ., n}. Paralleling

the considerations of [3, Section 5.2], the notion of multiplicative function on non-crossing
partitions was considered by one of us in [13]. Such a function is an element of the large
incidence algebral, on non-crossing partitions, i.e., it is a complex-valued function
defined on the disjoint union of the sets of intervals in varibi@®n)’'s, n>1. The set

of multiplicative functions is closed under convolution (the product operation on the large
incidence algebr4); in fact, if we also impose the normalization conditib([01, 1;]) = 1,

where Q = 1; =the unique element diC(1), then the setM; of multiplicative functions
satisfying it is a subgroup of the group of invertible elements.in

In this paper we describe the structure of the grdup (Theorem 1.6, Corollary 1.7).
Quite surprisingly, it turns out to be possible to do this via a “transform” which converts the
convolution of multiplicative functions into the multiplication of formal power series (in the
same way as the convolution of functionslik(R), say, is transformed into multiplication
by the Fourier transform).

Our work was started as an attempt of understanding from a combinatorial point of view
a theorem of Voiculescu ([18], Theorem 2.6) concerning the “distribution of the product of
two free random variables”. The main result of the present paper can in fact be viewed as
a new, combinatorial, proof of this theorem.

The paper is divided into three sections: in the first one we review the basic definitions
which we need, and state our main result; the second section contains the proof of the main
result; finally, in the third section we present the cited result of Voiculescu, and explain how
our work is related to it.
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1. Basic definitions and the statement of the result
1.1. The lattice NC(n)

A partition 7 of {1, ..., n} is callednon-crossingnotion introduced in [7]) if for every
1<i < j <k<I <nsuchthai andk are in the same block of, and such thaj andl

are in the same block of, it necessarily follows that all df j, k, | are in the same block

of #. The setNC(n) of non-crossing partitions dfl, ..., n} becomes a lattice when the
refinement order is considered on it (i.e., farc € NC(n), 7 < o means that every block

of o is a union of blocks ofr). The combinatorics dNC(n) has been studied by several
authors (see [12], and the list of references there); we will only review here the facts which
are needed for stating our result.

1.2. The complementation map of Kreweras

is a remarkable lattice anti-isomorphigt: NC(n) — NC(n), described as follows. Let

s be a non-crossing partition dfl, ..., n}. We view 1...,n as points on a circle,
equidistributed and clockwisely ordered, and for each biBck= {bs, ..., b;} of = we

draw the convex polygon (inscribed in the circle) with vertidgs. .., b;. The qual-

ity of = of being non-crossing is reflected into the fact that the convex polygons associ-
ated to its blocks do not intersect. Now, consider on the circle the midpoints of the arcs
(1,2),(2,3),...,(n—1,n), (n, 1), and denote them ki, 2, . . ., A, respectively. We look

at the non-crossing partitionsof {1, 2, .. ., i} with the property that the convex polygons
associated to the blocks efdo not intersect the ones associated to the blocks(ak., ~

ando together give a non-crossing partition{df< 1 < 2 < 2 < --- < n < Ai}). Among

the partitionss with the named property, there is a largest one (in the refinement order),
and this is, by definitionk ().

Asaconcrete example, figure lillustrates th&f{1, 4, 8}, {2, 3}, {5, 6}, {7}}) = {{1, 3},
{2},{4.6, 7}, {5}, {8}} € NC(8).

It is immediate thaK ?(rr) is (for everymr e NC(n)) the anti-clockwise rotation of
with 360’/ n; this shows in particular tha¢ is a bijection, also the important fact tha(r)
andK ~1(r) have always the same block structure (since they differ by a rotation). It is
also easy to see that < p = K () > K(p) (and the converse must also hold, sice
is an isomorphism oNC(n)).

We mention that Simion and Uliman ([12], Section 1) have shown how the definition of the
complementation mald can be modified to yield an anti-automorphignof NC(n) which
has®? = identity. Also, it was shown by Biane in [1] th&& and® generate together the
group of all skew-automorphisms (i.e., automorphisms or anti-automorphismikj(of,
which is the dihedral group withrdelements.

1.3. The canonical product decomposition of the intervals in NC(n)

Modulo a modification of the convention concerning how many one-element lattices are to
be taken in the decomposition, we follow here [13], Proposition 1 in Section 3.

Givenn > 1 andr < o in NC(n), we denote by#, o] the interval{p | 7 < p <o} C
NC(n). We denote by nt, the set of intervals dlC(n), and byZnt the disjoint union of the
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Figure 1

Int)’s,n > 1. Each intervalf, o] € Zntis carrying a lattice structure, coming from the
NC(n) where the interval has been taken from; of course, if the consideted happens
to be [}, 1,], with 0, = {{1}, {2}, ..., {n}} and }, = {{1, 2, ..., n}}, the minimal and
maximal elements dliIC(n), then the lattices, o] is NC(n) itself.

Now, each intervalf, o] € Znt can be decomposed in a natural way as a product,

[7, 01201, 11]% x [0, 1] x -+ x [On, 1n]* x - -+, (1.1)

where(kn);2; is a sequence of non-negative integers, suchikthat 0 for sufficiently large
n. (1.1) is a lattice-isomorphism, and can be obtained in two steps:

Step 1 If we write 0 = {Bq,..., B¢} andw = {Ay1, ..., Army, o oos Aty ooy Acme)
such thaBj = Aj 1 U---UAjm forl < j <k, then

k

[rol= [T[{A - A} Ly ) (1.2)

i=1

ontheright-hand side of (1.2)A; 1, ..., Aj m,} is viewed as partition ofL, 2, ... ., | B;|}
rather than one dB; (viathe order preserving bijection betweBpand{1, 2, ..., |B;[}).
The verification of (1.2) is immediate, and left to the reader.

Step 2 Due to (1.2), we are left to consider the decompositionobf] in the case when
o = 1, (for somen > 1). In this case, iK () = {A4, ..., Ay} € NC(n) denotes the



144 NICA AND SPEICHER

complementation map applied #q we have

[7. 1] = [Ojay: Liag] > -+ x [Ojaq): Lia]- 1.3
Indeed, using the symb&} for anti-isomorphism, we have

[, 1,]<3 [0, K(r)] (via K onNC(n));
[0n, K(m)] = [Oja,), Ljay] x -+ X [Oja,, Lay]  (by the Step 1)

and [Qa,, L] X - -+ % [Oa,> LA, ] IS anti-isomorphic to itself (via the product of the
complementation maps MC(|Aq)), ..., NC(|An]).

For example, ifr = {{1, 9}, {2, 5}, {3}, {4}, {6}, {7, 8}, {10}, {11}, {12}} ando =
{{1,6, 9,12}, {2, 4,5}, {3}, {7, 8}, {10, 11}} in NC(12), then Step 1 gives

[, o]~ [{{1. 3}, {2}, {4}}, L] x [{{1. 3}, {2}, 13] x [{{1}}, L]
x [{{1, 23}, 1o] x [{{1}. {2}, 12]; (1.9)

and Step 2 gives
[{{1. 3}, {2}, {4}}, 14] ~ [0z, L)%, becaus ({{1, 3}, {2}, {4}})

= {{1.2}. {3, 4}}
[{{1. 3}, {2}}, 1s] = [01, 1a] x [02, 1], because ({{1, 3}, {2}})

={{1.2}.{3}} (1.5)
[{{1}}, 1] >[04, 14], because& ({{1}}) = {{1}}
[{{L.2}}, 1o] = [01, Lu]?, because& ({{1, 2}}) = {{1}, {2}
[{{1}, {2}}, 1] >~ [02, 12], because& ({1}, {2}}) = {1, 2}}.

Hence the canonical decomposition af f] is, by (1.4) and (1.5),7, o] ~ [01, 13]* x

[0,, 15]*. The specifics of working with non-crossing partitions can be seen well in the first
Eq. (1.5), where we get j01,]?, rather than [, 13], as one would expect at first glance;
this is related to the fact that when connectifiy 3}, {2}, {4}} with 14 by a chain irNC(4),

we are not allowed to start by putting together the blo@sand{4}.

1.4. Multiplicative functions on non-crossing partitions

This notion is obtained by paralleling the considerations of [3], Section 5.2 (see, equiva-
lently, Section 3.5.2 in [11]), in the context of the product decompositions observed in the
previous subsection. We will be again following [13], Sections 2 and 3.

Letusrecallthat theonvolutiorof f, g: Znt— C (with Zntthe set of intervals considered
in 1.3 above) isf x g:Znt— C defined by:

(fxg)((r.oD) € Y f(lm pha(lp.o]). [7.0] € Int (1.6)

p€lnr,o]
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With this operation (as multiplication) and with addition and scalar multiplication defined
pointwisely, the sef of all complex functions defined @intbecomes a complex associative
algebra, called théarge incidence algebra on non-crossing partitioftompare to [3],
Section 5).

Definition 1.4.1  Afunction f : Znt— C will be calledmultiplicativeif whenever [r, o] €
Znt has canonical product decomposition,[0]% x [0o, 15]% x [03, 13]*¢ x - - -, then

f([7,0]) = f([01, L) f([02, L])*2 f ([03, L]k - - - (1.7)

We will denote byM the set of all multiplicative function$ : Znt — C, and byM; € M
the set of multiplicative function$ such thatf ([0, 1;]) = 1.

Clearly, each sequen¢e,)s° ; of complex numbers determines uniquely a multiplicative
function f € M (defined by (1.7) and the condition th&{[On, 1,]) = an, N > 1). Every
f € M can be obtained in this way, and it is.¥ if and only if ¢; = 1.

Itis easy to see that the convolution (1.6) of two multiplicative functibrg € M is still
multiplicative' (see Proposition 2 in Section 3 of [13], or compare to Proposition 5.1 in [3]).
If f,g e M are corresponding (in the sense of the preceding paragraph) to the sequences
(an)2, and(Bn),, respectively, therf » g corresponds to the sequergg)s ,, where

Yn = > i A BBy - Bl (1.8)

Indeed, (1.8) comes out by writing that

o= (F %[00, 1)) = Y f([0n, 7Dg(l, 1n),

7eNC(n)

and by using what we know about the canonical product decomposition, ot [dsee
Step 1in 1.3) and off, 1,] (see Step 2in 1.3).

It is, moreover, easy to see that; of 1.4.1 is a subgroup of the invertible elements
of the large incidence algebiad Indeed, M; is also closed under convolution, since we
have(f x 9)([01, 11]) = f([01, 11])g([04, 11]) = 1 for every f, g € M;. The unité of £
is in My, and corresponds to the sequeiite0, 0---). Eachf € My hasf([n, n]) =
f([01, 1;])" = 1 foralln > 1 andz € NC(n), which implies thatf is invertible inL—see
for instance [15], Proposition 3.6.2. In order to verify that the inversé efM; is still
in M3, one can proceed as follows: starting with the sequesice f ([0, 1,]), n > 1,
determine recursively by using (1.8) a seque(Bgq: ; such that the,’s obtained in (1.8)
arey; = 1 andy, = y3 = --- = 0; then the multiplicative functioly determined by
(Bn)22, will have f x g = 6—henceg = 1.

Itis interesting to remark next that

Proposition 1.4.2 The convolution operation is commutative oy .
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Proof: Let f, g be in M3, and let us make the notatiorig[On, 1,]) = an, g([On, 1,]) =

Bn, (f x9)([0n, 1n]) = yn, (@ T)([On, 11]) = ¥4, N > 1. Theny, is expressed in terms of
thea’s and theB’s by Eqg. (1.8). Since the complementation map is bijective we can also
write, by denotingk () = p in (1.8):

Yn = > Bigal -+ - BB Ay - Ay (1.9)

peNC(n)

K~1(0) & [Ar.... An)

Moreover, in the sum on the right-hand side of (1.9) we can replEcg(p)” by “K (p)”
(because, as remarked in 1K(p) andK ~1(p) have the same block structure). But when
this is done, the right-hand side of (1.9) becomes exactly the expressipn\e conclude
thaty, = y/, i.e., that(f xg)([0n, 14]) = (g* f)([On, 1n]). for everyn > 1, which implies
fxg=gxf. a

It should be noted that (by exactly the same argument) convolution is in fact commutative
on the larger semigroupt > M. As the proof of 1.4.2 clearly shows, this phenomenon
depends on the self-duality 8fC(n) (its analogue can't therefore hold in the framework
of the lattice of all partitions ofd, ..., n}).

1.5. Remark: Convolution 0G;(R) and the Fourier transform

Let us recall now another framework where an operation called “convolution” is studied.
Let C.(R) denote the space of continuous compactly supported functions on the real line.
For f, g € C.(R), their convolutionf x g € C.(R) is defined by

oo

(fxg)) = / f(s)git —s)ds, teR. (1.10)

o]

As it is well-known, one way of studying the convolution @j(R) is via the Fourier
transform. Forf € C;(R), its Fourier transfornf f is defined by

(Ff)2)= /Oo eZf(t)dt = Z('n_l /Oo t”f(t)dt)z”; (1.11)
-0 n=0 YT

F f is an analytic function—but for our purposes it is more convenient to view it as a
formal power series ia. The relevance of the Fourier transform for convolution is that it
transforms it into the simpler operation of pointwise multiplication of power series,

[F(fx9]@ = FH@OFDD. f.geCcR. (1.12)

The relation between the present remark and the considerations preceding it would seem
at first to be reduced to the fact that in both cases an operation called “convolution” and
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denoted by *” is studied. In particular, one would be inclined to find it unlikely that the
analogue of (1.12) could be somehow reached in the framework of non-crossing partitions.
Itis quite surprising that this is in fact the case. While the deeper reasons of this phenomenon
remain to be elucidated (and a more general context for a “combinatorial Fourier transform”
remains to be found), let us state the main result of the paper, which is the following.

Theorem 1.6 For every f in the groupM; of 1.4.1 we denote by; the formal power
series

912 = Y 1([0n. 12", (1.13)
n=1

and we denote bcy<f_1) the inverse o in the group of the formal power series of the form
Z+ 7% + y3Z° + - - -, endowed with the operation of compositiam other words <p(f_l)
is the unique formal power seriggs without constant coefficienin a variable z such that
Yoly F(On. L) (v (@) =z

If we put for every fe Mj:

1
FH@ = ¢ '@ (1.14)
(formal power series in,zwith constant coefficient equal 19, then we have

[F(fx9l(2 = (FH@OFY@D), f,9e My (1.15)

i.e., the “Fourier transform” defined by(1.14) converts the convolution of multiplicative
functions on non-crossing partitions into the multiplication of formal power series.

Corollary 1.7 The convolution group\; considered in Sectioh.4 is isomorphic to a
countable direct product of copies 6Gf

Proof: LetgG be the multiplicative group of formal power series with constant coefficient
equal to 1. It is immediate thaf : M, — G is a bijection, and the Theorem 1.6 ensures

that it is a group isomorphism. Bt is indeed isomorphic to a countable direct product

of copies ofC (since the formal logarithm takes it into the additive group of formal power
series without constant coefficient). a

2. The proof of the result

Notation 2.1

1° For everyn > 1, we will denote byNC'(n) the set of non-crossing partitions of
{1, ..., n} which have{l} as a one-element block. (Thd&C (1) = NC(1), while for
n > 2,NC'(n) is in natural bijection witiNC(n — 1).)
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2° For f, gin the groupM; considered in Section 1.4, we will denote byvf g € Mj the
multiplicative function uniquely determined by
(f*@)([0n. 1)) = > oA g Biey o BB (2.1)

dz-reNC’(n)

where am £ £ ([Om, 1), fm = 9([Om, Ln]), form > 1.

We would like to call the operation of 2.1.2° by the name of “pinched-convolution”;
this comes from the fact that the summation formula defimihé 9)([On, 1,]) is obtained
from the one defining f  g)([0, 1,]) (see Eq (1.8) above) by “pinching out” the terms
in NC(n)\NC'(n). The reason for mtroducmg is that considerations involving it will
turn out to simplify quite a lot the proof of Theorem 1.6.

Unlike the convolution operation oM 1, one cannot expect thatis commutative,
however there is a nice “symmetrization lemma” that holds.

Lemma 2.2 For f,g € M1 we have
011D9y1 1 (D = 29149(2) (2.2)

(wheregy, for h € M is defined as in{1.13) of Theoremnl.6).

Proof: Fix a positive integen. The coefficients o£"** on the two sides of (2.2) are

> (F%0)([05, ;D) (@* F)([Ons1j» Lnra j])

j_

—Z > 105, 7her, 1D9([Ons1-j, oD f (o, Lasa D), (2.3)

7eNC(j)
peNC (n+1-j)

and respectively

(f*@)([0n, L) = Y f([0n, oDg(o, 1a. (2.4)

oeNC(n)

What we need is hence the equality of the sums appearing in (2.3) and the right-hand side
of (2.4). It turns out that more is true: there exists a natural bijection between the index
sets of the sums in (2.3) and (2.4),

J NC()xNCi+1-j) — NCn) (2.5)
1<j=n

(disjoint)

such thatif(zr, p) € NC'(j) x NC'(n+1— j) corresponds by (2.5) t®8 € NC(n), then the
term indexed by, p) in the sum (2.3) equals the term indexeddoin the sum (2.4)—or
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more precisely:

{f([on,a]) = f([Oj,JT])f([,O,ln+1_j]) (2.6)
g([U, 1n]) = g([ﬂ, 1]])9([0n+1—1 ) IO]) '

The description of the bijection (2.5) goes as follows: start with § < n, 7 e NC'(j),
pe€NC(n+1— j); denote byrr e NC(j — 1) the partition obtained by deleting the one-
element block{1} of =, and consider on the other haid(p) € NC(n + 1 — j) (the
complementation map applied ). Theno € NC(n) which corresponds by (2.5) to
(, p) is obtained by simply juxtaposing and K (p), in this order. (For example: if
n==6,] =3 r={{1},{2 3}}, p = {{1}, {2 4}, {3}}, theno = {{1, 2}, {3, 6}, {4, 5}}.)

It is easy to verify that the map (2.5), as defined in the preceding paragraph, is indeed a
bijection. Its inverse is described as follows: start witle NC(n), and denote by the
smallest element of the blockefcontainingn. Theneachofl, ..., j—1}and{j, ..., n}is
a union of blocks o, thuso is obtained as the juxtaposition of two non-crossing partitions
01 € NC(j — 1) ando, e NC(n+1— j). We letr € NC'(j) be the partition obtained by
adding a one-element block to the leftaf and we putp = K~1(02) e NC(n+1— j)
(K~1(0,) has{1} as a one-element block—this is implied by the fact that 1raadl — |
are in the same block @f;). Then the paiXz, o) obtained in this way is the pre-image of
o by the map (2.5).

From the explicit descriptions made in the preceding two paragraphs, itis clear that (when
o corresponds tr, p)—i.e., is the juxtaposition ofr andK (p), as above):

f([On. o) = F([0j_1. 7]) f ((Ons1—j. K(0)])
= £([0;. 7]) f ([p. Lnsa_j]). @2.7)

i.e., the first relation (2.6) takes indeed place. (In (2.7), we Ha{@;, =]) = f ([0;_1, 7])
due to the hypothesis thdt([01, 1:]) = 1, and the equalityf ([On11-j, K(p)]) = f([p,
1n+1-]) follows from the Step 2 of 1.3.)

In order to verify the second relation (2.6), one “applies the complementation map” to
the bijection (2.5). More precisely (as the reader can check without difficulty on a circular
picture), the following happens: € NC(n) corresponds by (2.5) tor, p) € NC'(j) x
NC(n+1—j), then K~1(0) is the juxtaposition ofK (x) and p. (For instance, in the
concrete example given above, with= 6 andj = 3: K~1(o) = {{1, 3}, {2}, {4, 6}, {5}},
while K () = p = {{1,3},{2}}.) Butthen

g([o, 1)) =9([On, K(0)])  (by Step 2in 1.3)
=g([0n, K™1(0)]) (becaus& ~1(o) is a rotation ofK (o))
=9([0, K(m)D(Onj, 4]

(becaus& ~1(o) is the juxtaposition oK (7) and p)

= 9([7. 1;D9((On+1-j. p])

(by the same argument as for (2.7)). |
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The next Proposition 2.3 is based on the enumeration of non-crossing partithd@&rin
according to their block containingd {1, ... ., n}. We mention that an important particular
case of this proposition (whamof Eq. (2.8) is the; function on non-crossing partitions)
was previously done in [13] (Theorem in Section 3), and is the combinatorial equivalent of
a result of Voiculescu ([17], Theorem 2.9).

Proposition 2.3 For every f g € M; we have
Qf O‘Pfig = Qfxg (28)

(wheregy, for h € My is defined as i1.13) of Theoren1.6, and“o” denotes the formal
composition of serigs

Proof: We will need the following Lemma, the simple proof of which is left to the reader.

Lemma Letn be a positive integeand let B be a subset ¢1, ..., n} such that B> 1.
Denote by NG (n) the set of non-crossing partitions ¢, . . ., n} that are having B as a
block. Then we have a natural bijection

NCs(n) — [ [NC(ipt1 — p). (2.9)
p=1

wherel = j; < jo < --- < jmis the list of elements of B andh s L + 1, and

where the notation NGs as introduced inl° of 2.1. The bijection(2.9) associates to
7 € NCg(n) the m-tuple(mp)1<p<m, Wherer, is the restriction ofr to the interval
{ip-ip+ L ..., Jps1 — 1}. (Notethat{jp} is aone-elementblockof,, whilethe rest
of mp, 7p = 7p\{{jp}}, is @ union of blocks ofr.) Moreover if 7 — (7p)1<p<m aS

above then K() is the juxtaposition of Krq), ..., K(y), in this order(where K= the

complementation maas abové.

Now, let f, g be as in the statement of the proposition. We fix a positive integand
we write:

(f*@(0n, )= D f([0n, 7Dg([7, 1]

7 eNC(n)
= Y ( > f(0n 7D(r. 1n]>>. (2.10)
1eBC{1,...,n} \ 7eNCg(n)
Letus also fixaB = {j1,..., jm}, Withl= j; < --- < jm < n, and let us make, in the

sum indexed byNCg (n) which appears in (2.10) the “change of variable” provided by the

bijection (2.9). Instead of}" yc, )" We Willthushave D Nc/(io—in)....2meNC (imea—im) o



A “FOURIER TRANSFORM” FOR MULTIPLICATIVE FUNCTIONS 151

moreover—Dby taking into account howis related ta77p)1<p<m, and howK () is related
to (K (7)) 1< p<m—We will replace:

@ f(On. 1) = f (O D) - [T ([Ojpa=i- 70])

p=1

(f([Om, 1m]) comes from the blockB of x; then the other blocks of are given by
the union of therx p’s, where 77, = 7,\{{jp}}, 1< p<m, and this brings up the prod-
uct[Tp_y f([0j,.1—ip-1, 7pD) = [Tps T (05,5, 7p]) ); @nd

(b) g([7. 1)) =9([0n. K™D = [ 9([0j,11-i,- K (Tp)])

p=1
= l_[ g([np, 1jp+l*jp])‘
p=1
Therefore, we obtain:
Y f(O0n 7Dy, 1a])
7eNCg(n)
= Z f([om, 1m]) ’ l_[ f([ojp+1—jp’ ﬂp]) ’ 1_[ g([ﬂp, 1jp+1—jp])
p=1 p=1

ENC (2 1)
TmeNC (jmi1—Jm)

(om 1D ] ( S (ol 1,-,,+1_ip]))

P=1 \7peNC (jpr1—jp)
m

= f([om’ 1m]) ’ H(f xg)([ijH*J‘p’ 1jp+1*jp])‘ (211)
p=1

Next, we letB runin the set of subsets {f, . . ., n} which contain 1, and replace (2.11) in
(2.10). Itisconvenientto makein (2.11) the substitutigh js = i1, ..., jme1—jm =im; B
is completely determined kyn; i4, .. ., im),andwherBrunsin{B C {1, ..., n}| B> 1},
the correspondingm; iy, ...,im) runsin{(m;ig,...,im) |2 <m<n; iy, ...,im>1;
i1+ ---+im = n}. So, what we obtain in the continuation of (2.10) is

(Fx@)(On. 1) =Y > f(O0m 1u) - [[(F*0)([0;,. 1,]). (2.12)

M=1 i) i p=1
) such‘thalt
i1+-+im=n
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It is clear that the right-hand side of (2.12) is the coefficient"ah the series

o0 o0 m
> £ ([Om. 1m]>(2(f *«9)([0;, 1i])2') = (g1 09y )@
m=1 i=1

since the left-hand side of (2.12) is the coefficienzbfin ¢+.4(2), the proof of (2.8) is
hence completed. |

2.4. Proof of the Theorem 1.6

Once the Egs. (2.2) and (2.8) are established, we are only left to perform a short algebraic
manipulation. Letf andg be multiplicative functions in the group; (considered in the
Theorem). We start from the relation (2.2) obtained in the Lemma 2.2, and compose it on
the right with<p<f:é> (wheregy, for h € M1 has the significance introduced in 1.6). Denoting
the power series (in the variablez) by id, what we get is:
-1 —1 : -1 -1
(0r14°9tg) - (9g1¢ 0 9hg) = (id 005 - (prag o 0hg). 2.13)
We haveid o o}, = of,, ¢r.g00f,s = id (becauséd is the unit element for compo-
sition, While<p<f:;> is the inverse obf,q under the same operation); hence the right-hand
side of (2.13) isd - ¢, (the seriezyp|,; (2) in the variablez).
On the other hand we have

-1 -1
i1 P = 01 (2.14)

this follows from the Eqg. (2.8) of Proposition 2.3, by composing it on the left vpf,ﬂi”
and on the right withp| ;. By switching the roles of andg in (2.14), and taking into
account thatf » g = g« f, we also get thap, ; , o o.a = o U; hence the left-hand
side of (2.13) igp} " Y.

So we have obtained:

o @M@ = i @, (2.15)
and dividing in (2.15) byz? yields the desired relatiof (f » g) = (F f)(Fg). O

Remark 2.5 There are also other applications of the Eqgs. (2.2) and (2.8) that may be of
interest (besides the above proof, which was the main goal of the section). As an example,
we show here how (2.8) can be used to obtain a formula for the convolution with the Moebius
function on non-crossing partitions.

So, letu denote the Moebius function on non-crossing patrtitions, i.e., the inverse in the
large incidence algebra on non-crossing partitigh®f the functior; : Znt — Cidentically
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equal to 1. Since is, clearly, the multiplicative function on non-crossing partitions deter-
mined by the sequend#, 1, 1, ..., 1,...), the considerations preceding Proposition 1.4.2
above show that is also a multiplicative function. The sequence of numbers determining
w is found to be the one of the signed Catalan numbers,

—H"1(2n —2)!
©([On, 1n]) = % n>1 (2.16)

(see [7], Section 7). For the general theory of the Moebius function on posets see [10], or
[15] Chapter 3.

As it was realized in [13], the convolution with plays an important role in the com-
binatorial approach to the theory of free random variables; this will be confirmed by the
development presented in the next section (see the discussion in 3.2, 3.3). The formula
which we derive in the next paragraph (Eg. (2.18)) is equivalent to the result in the Theorem
in Section 3 of [13].

Leth be a multiplicative function inv,, and let us pug h*u (the relation defining
is, of course, equivalent fo= g« ¢). By comparing the Egs. (1.8) and (2.1), and by taking
into account that is identically 1, we see thz(ng)([On, 1D =(@*)([On 1, 1n_1]) =
h([On_1, 1,_1]) for everyn > 2; this implies the equality:

¢g:,@ = 21+ ¢n(@). (2.17)

Now, from (2.8) we get thap_, = = 05" 0 pge = 9§V o gn: hence, if we compose
with (ph Y on the right, the Ieft hand side of (2.17) becomes qmj,sil (or, in other words:
gz)hm>) On the other hand, composing the right-hand side of (2.17) wﬁl]f brings us to

Y(2) - (1 + 2) (argument similar to the one used in (2.13)), therefore the equality which
is obtained reads:

<pr<1:j> (2 = 1+ z)goﬁ]_”(z), for everyh € M;. (2.18)

The above mentloned Theorem |n Section 3 of [13] states that if (for someM;)
we setA(z) = 1 + onu(2), B() = 1 + ¢n(2), then A and B satisfy the equation
A(zB(2)) = B(2). This is equivalent to (2.18), in a formulation which avoids considering
inverses under composition (in order to check the equivalence, one only needs to compose
with ¢, on the right in (2.18)).

3. The connection with theS-transform of Voiculescu

The present work was started as an attempt of understanding, from a combinatorial point
of view, a theorem of Voiculescu [18] concerning tim@ments of the product of two free
random variables In this section we will review the mentioned result of Voiculescu, and
present its connection with the Theorem 1.6 above.
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We have to start with a few basic definitions related to free random variables; our pre-
sentation here will deal only with combinatorial aspects of this notion (for more details, see
for instance the monograph [19]).

3.1. Review of freeness and of the S-transform

Definition 3.1.1 Let .4 be a complex algebra with uniit and letr : A — C be a linear
functional, normalized by (1) = 1. Fora € A, the numbers in the sequen@ga”)) ,

will be called themoment®f a with respectta. Fora, b € A, the value of at monomials

in aandb (e.g.,7(a?bab’a®)) will be calledmixed momentsf a andb (with respect ta).

Note that.4 is not assumed to be commutative—thus for instance the mixed moment
r(abab is in general not the same thing a&?b?).

The terminology in 3.1.1 is inspired from the situation whéis an algebra of random
variables on a probability spa¢e, F, P) (e.g.,,A = L*(Q2, F, P)), and the functional
T is the integralz(a) = fQ a(w) dP(w), for a € A. Of course, the framework in 3.1.1
is leaving aside the measure-theoretic facet of the situation, while on the other hand it
is gaining a more complicated algebraic structure from the facttha&n't necessarily
commutative. Even with these differences, it is useful to thinkdoh 3.1.1 as of “an
algebra of random variables” (and this is why the elemenid4 afe sometimes referred to
as “non-commutative random variables”). Following this line of thought, the concept of
freeness in the next definition comes as a non-commutative analogue of the classical notion
of independence for random variables.

Definition 3.1.2 Let.4 be a complex algebra with uniit and letr : A — C be a linear
functional, normalized by (1) = 1. Consider two elements b € A, and denote their
moments byr(@") = apn, T(b") = Bn, N > 1. Let us callalternating productbased on

a andb a (non-void) product of factors fror@" — onl)2, U (0" — Ba1)2 4, such that:

for every factor coming fromfa” — «, 1) ,, its immediate neighbors in the product are
from (b" — Bn1)22,, and vice-versa—the immediate neighbors of every factor coming from
(b" — Bn1)32, are from(@" — anl)2 ;. (For instance(a® — agl)(b — p11)(@* — asl)
and(b? — B21)(@° — asl) (b — B11)(@® — ) are examples of alternating products.) The
elements, b € A are calledreewith respect ta if t(p) = O for every alternating product

p based ora andb.

Remark 3.1.3 It is important to note that (in the above notations)a,b € A are free
with respectta, then the mixed moments afandb (in the sense of 3.1.1) can be calculated
in terms of the individual moments(@") = «, andz(b") = B,, n > 1. For the sake of
keeping the notations simple, we will only show how the calculation goes in a particular
case; it will be clear, however, that the same method would work for an arbitrary mixed
moment.

Let us assume, for instance, that our goal is to calculeabab) (knowing thata andb
are free). We start from the equality

t((@—a)b—-pi@—oa1l)(b—p11)) =0 (3.1)
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(given by 3.1.2), and we expand the prodt- ayl)(b — B11)(@ — azl)(b— B1l) as a
sum of 16 terms, arriving to
r(abab) = eyt (bab) + B1t(a%b) + a1t (ab?) + Bit(aba)
—a1p17(ab) — afr(b?) — a1pa7(ba)
— prat(@b) — prT(a@%) — aapit(ab)
+onpront(b) + 01fZT(@) + aifrz(b) + fraapir(a)

—ayfragpir(l) (3.2)
=ayt(bab) + B17(a%b) + ay7(ab?) + B17(aba)

— a1B1[37(ab) + t(ba)]

+ 3022 — a2y — azp? (3.3)

((3.3) is obtained from (3.2) by replacing|) =1, r(a) =1, T(@%) =ay, t(b)=p1,

7(b?) = B>, and by collecting terms). Thus, the expansion of (3.1) has reduced the calcu-
lation of z (abab) to the one of some other mixed moments, of strictly smaller degree. By
continuing the same procedure (i.e., replacitgab) from the expansion af((b— 811 ) (a—
a1l)(b— B11)) =0, replacingr (a?b) from the expansion of (a? — ao1)(b — B11)) = 0,

etc) it is clear that we must come in the end to an expressiafiadiab only in terms of
thea’s and theg’s. If one effectively does all the calculations, it will turn out that (after
most of the terms finish by canceling out) the final expression fabab is

t(abab = ozz,Bf + afﬁz — a%ﬁlz. (3.4)
The result of Voiculescu [18] that we want to discuss is addressing the following

Problem 3.1.4 GivenA, rasin3.1.1, 3.1.2, and given two elemeatb € A thatare free
with respect tar. Describe the sequence of momeqit&™))o , of the product = ab e A
in terms of the sequences of momeatga™))s> , and(r (b"))p2, of a andb.

Of course,r(c") = r(abab-:--ab) is really a mixed moment ai andb with respect

2n factors
to z, hence (as remarked in 3.1.3), we know for sure that it can be expressed in terms of the

individual momentg (a") andz (b"), n > 1. For instance, fon = 1 it is immediate that
7(c) = z(ab) = (@71 (b), (3.5)
while for n = 2 the example calculated in 3.1.3 shows that
1@ = @)1’ + @t (b?) — r@?t(b) (3.6)
but unfortunately, when increases the method presented in 3.1.3 soon becomes difficult
to use (even for mere theoretical purposes), because of the very large number of mixed

moments involved in the calculation. What the problem in 3.1.4 really asks for is a more
direct way of obtaining the moments of
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In[18, Theorem 2.6], a solution for the problem in 3.1.4 is given in the case w{agn#
0 # 7(b). Without much loss of generality, we will assume here t@) = t(b) = 1 (the
case t(a) # 0 # 7(h)" is reduced to this by replacingwith ;2 andb with _i;b).
Theorem 3.1.5 ([18], Theorem 2.6) Let A be a complex algebra with unit, land let
7: A — C be a linear functional, normalized by(1) = 1. To an element & .4 having
t(a) = 1we attach aformal power serieg Sthe S-transform of a with respecttd) in the
following way if x denotes the inverse under composition of the sérigs, z(a")z", then

SN2 = x@z 1+ 2). (3.7)

Now, consider two elements, & € A that are free with respect to, and such that
(a) = t(b) = 1, and denote ab= c (note that we also have(c) = 1, by (3.5)). Then

(2 = K@DS?). (3.8)

In other words, the moments of the prodaet abare calculated as follows: we take the
StransformsS, and§, after the recipe in (3.7), we multiply them together to ob&irand
then the serie3_ 1" | 7(c")z"is found as the inverse under compositionZ&(z)(1+2) 1.

It should be mentioned that the proof given to Theorem 3.1.5 in [18] is not easy, and goes
by studying the exponential map of a certain infinite dimensional Abelian Lie gioup)),
which is in some sense the universal object containing the information about multiplication
of free random variables. Our goal in what follows is to present an alternative proof which
is entirely combinatorial, based on Theorem 1.6 above.

3.2. The line of the combinatorial proof of Theorem 3.1.5

that we will present is described as follows. Consider—and fix for the rest of the section—a
complex algebrad with unit |, and a linear functional : A — C, normalized byt (1) = 1.

For everya € A we denote byh, the unique multiplicative function on non-crossing
partitions (in the sense of Section 1.4) which has:

ha([On, 1) = z@"), n=>1; (3.9)

moreover, we will use the notation

fa % hoap, acA, (3.10)

whereh, is as in (3.9) andx is the Moebius function on non-crossing partitions, as in
Remark 2.5. We will show that:
1°if a, b € A are free with respect to, then

fab = fa* fb; (3.11)
2° for everya € A such thatr(a) = 1, we have

S = F(fa) (3.12)
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(whereS,isasin (3.7) of 3.1.5, an# (-) is the Fourier transform considered in the Theorem
1.6; note that, due to the conditiarfa) = 1, we haveh, € Mg, hencef, = hy x u is
indeed in the domain af).

The proof of Theorem 3.1.5 is immediately obtained from the assertions in (3.11) and
(3.12), since for everg, b € A that are free with respect toand witht(a) = 7(b) = 1,
we will have:

@15

S 2 F(fap) B F(fax fo) 20 F(f)F(f) 2 5.5,

The proofs of the assertions in (3.11) and (3.12) will be made in the Sections 3.5 and 3.6,
respectively.

Remark 3.3 We take the occasion to point out here that the multiplicative functipn
considered in 3.2 is an important object in the theory of “free probability”. The generating
function

Ra(2) & —mz) > fa([On, )™ ! (3.13)
n=1

was first considered, via an approach involving Toeplitz operators, in the work [16, 17]
of Voiculescu, and is called “thB-transform of the distribution cd”. The combinatorial
facet of f, (which appears in 3.2) was discovered by Speicher in [13], where the numbers
(fa([On, 1n]))52, are studied as “the free cumulantsaoivith respect to the functional’.

The important property of thB-transform which is proved in [16, 17, 13] is that

Ratb(2) = Ra(2) + Ro(2) (3.14)

whenevera andb are free with respect te. In other words, théR-transform can be used

for the problem of addition of free elements in the same way in whiclSttransform is
used to handle the problem of multiplication. The “analytical’ formulaforFﬂqteansform
proved in [17, 13] can be written ag\(zB(z)) = B(2), whereA(z) def 1 + zRy(2) and
B(z) = Y o o t(@"2" (see the Theorem in Section 3 of [13], or the equivalent derivation
in the Remark 2.5 of the present paper); of course, Eqg. (3.10) is itself providing a “lattice-
theoretic” approach to thB-transform.

We now go to the proofs of the assertions made in (3.11) and (3.12). For (3.11) we will
need a particular case of a result in [13], which shows how to express mixed moments of
a pair of free elements, b as summations over non-crossing partitions. This is stated as
follows:

Lemma3.4 Foreveryn> 1, letus denote by N&y(2n) the set of non-crossing partitions
7 € NC(2n) that separate the even numbers from the odd dreswhich have the property
that each block ofr is contained either if1,3,5,...,2n — 1} orin {2,4,6, ..., 2n}.

For m € NGCseg(2n), writing m = {As, ..., An, By, ..., B} will mean that the blocks

odd even
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A4, ..., Ay ofr have union(l, 3,5, ..., 2n — 1}, while the blocks B ..., B¢ have union
{2,4,6,...,2n}.

Now;, in the notations 08.2, consider two elements b € A, free with respectta. Let
fa, fp be the multiplicative functions defined ag(8110). Then for every = 1 we have

h K
(abab- --ab) = > [ fa([Oar- 1a1]) l_[ ([08,1- Lig, ])-
2n factors 7eNCeep2n) =1 =1
= (A A By By
odd even (3.15)

For the proof of the Lemma 3.4 we refer the reader to [13] (see Proposition 2 in Section 4,
and the three un-numbered equations preceding it, in the cited paper).

3.5. The proof of the Assertion (3.11)

We will show thath,, = f; x hy (Wwhere the notations are as in 3.2); this will imply (3.11)
by taking convolution withx on the right:
fab=haprxpu = faxhpxpu = fax fp.
Now, for everyn > 1, hap([On, 1n]) 39 ((ab)") is exactly the quantity appearing
in (3.15). We will transform the right-hand side of (3.15) by using the following re-
mark (borrowed from [14], Section 3.4). Let= { A1, ..., Ay, By, ..., Bc } be a par-
odd even
tition in NCseg(2n), and let us denote by’ and " respectively the two partitions in
NC(n) that are identified with{A,, ..., Ay} and{By, ..., By} via the order-preserving
bijections{1,3,...,2n — 1} - {1,...,n} and{2,4,...,2n} — {1, ..., n}; then, by the
very definition of the complementation map (reviewed in Section 1.2), we have that
7" < K(z"). Conversely, itis clear that every paif, 7”7 € NC(n), satisfyingt” < K ('),
comes from ar € NCse(2n) in this way. Note moreover that if’, 7”7 € NC(n) with
n” < K(x') are corresponding to € NCgse(2n), then the productF[ih:1 fa([0/a 1> Lia 1D
and]‘['j‘:1 fu([08,1. 1;8,]) appearingin (3.15) are nothing btg([On, ']) and fy([On, 7"]),
respectively. This argument shows that we have:

hab([On, 15]) = r(abab- --ab) = Z fa([On, 77/]) fo([On, 7TH]), (3.16)
2n factors 7', eNC(n)

such thatr'<K (z”)

and we can continue (3.16) with:

> fa([on,n/b( > fb([on,n”D)

7' eNC(n) O0<n”<K(n")

D faOn, 7D (o % £)([0n, K(x))])

7’eNC(n)
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> fa(On, 7Dhu([0n, K()])  (becausefy + ¢ = h)
7’eNC(n)

> fa(On. 7 Dhu([7', 1)) (by Step 2 in Section 1)3
7'eNC(n)
= (fax hb)([om 1n])‘

We have thus obtained thiag, and f, x hy agree on an arbitrary interval {01,], n > 1,
and this concludes the proof. O

3.6. The proof of the Assertion (3.12)

We use the notations introduced in 3.1.5 and 3.2. Since the multiplicative furigtion
hasha([On, 1n]) = z(@"), n > 1, the series) -, r(a")z" appearing in 3.1.5 is just
¢n, (2) (wheregn, h € M,, is as in Theorem 1.6). Thus tt&transform ofa is S(z) =

def

o\ V(2 - 2711+ 2); on the other handA(f2)](2) = z %} (2) (Theorem 1.6), so what
we need to show is

A+2¢. 7@ = ¢} @. (3.17)
But (3.17) follows from (2.18), becaudg = h, * 1. O
The argument in 3.6 completes the combinatorial proof of the Theorem 3.1.5 of
\oiculescu.

We would like to conclude by signaling some developments related to our work here,
which have occurred recently, or/and were brought to our attention by the referees.

(a) Anelegant analytical proof for the multiplicativity of ti&transform (Theorem 3.1.5)

(b)

(©

(d)

was given by Haagerup [5], via calculations involving the resolvent functions of certain
Toeplitz operators.

In [2], Biane has given another proof for the (main) Theorem 1.6 of the paper, in an
equivalent form where it appears as a result in the harmonic analysis of the group
S~ (of finitely supported permutations &f). The counterpart for the convolution of
multiplicative functions on non-crossing partitions is provided, in Biane’s approach,
by the restricted convolution of “multiplicative central functions 8g”, and the
combinatorial Fourier transform is viewed as acting on the latter set of functions.

The considerations involving the block-structure of a non-crossing partition, considered
at the same time with its Kreweras complement—as in Eqgs. (1.8), (1.9), and (2.1), for
instance—are related to the study of the minimal factorizations of a full cycle in a (finite)
symmetric group (see e.g., [1], Theorem 1). As it was pointed out to us by one of the
referees, this yields a natural connection between the topics of the present paper and
earlier work of Jackson [6], Goulden and Jackson [4], where factorization problems in
the symmetric group were studied, by using methods from the theory of the symmetric
functions. The study of this connection might open an interesting line of research, but
its possible implications are not so clear at present, and await further investigation.
The statement made in (3.11), together with the interpretation (see Remark 3.3) of the
multiplicative functionf, appearingin (3.11) as arelative of tReransformR,, lead to
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the possibility of studying the multiplication of free elements by usingReansform
(instead of theS-transform). In a subsequent paper [9] we have shown how this pos-
sibility can be exploited in a “multivariable” setting, in order to obtain interesting free
probabilistic applications (to compressions with free projections, and to a realization of
the free analogue for the Poisson process). Oddly enough, the problem of extending to
several variables th&-transform itself (or the combinatorial Fourier transfaffircon-
sidered in this paper) appears to be sensibly harder than the multivaRatdaesform
approach, and we weren't able to solve it up to present.

Note

1. M is not closed under addition or multiplication by scalars, it is merely a multiplicative subsemigroup of the

large incidence algebréa.
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