ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Buekenhout-Tits Unitals

G.L. Ebert

DOI: 10.1023/A:1008691020874

Abstract

A Buekenhout-Tits unital is defined to be a unital in PG(2, q 2) obtained by coning the Tits ovoid using Buekenhout”s parabolic method. The full linear collineation group stabilizing this unital is computed, and related design questions are also addressed. While the answers to the design questions are very similar to those obtained for Buekenhout-Metz unitals, the group theoretic results are quite different

Pages: 133–140

Keywords: buekenhout unital; Tits ovoid

Full Text: PDF

References

1. V. Abatangelo, B. Larato, and L.A. Rosati, “Unitals in planes derived from Hughes planes,” J. Comb., Inform. and System Sciences 15 (1990), 151-155.
2. R.D. Baker and G.L. Ebert, “On Buekenhout-Metz unitals of odd order,” J. Combin. Theory, Ser. A 60 (1992), 67-84.
3. A. Barlotti, “Un'estensione del teorema di Segre-Kustaanheimo,” Boll. Un. Mat. Ital. 10 (1955), 498-504.
4. A. Barlotti and G. Lunardon, “Una classe di unitals nei -piani,” Riv. Mat. Univ. Parma (4) 5 (1979), 781-785.
5. S.G. Barwick, “A characterization of the classical unital,” Geom. Dedicata. 52 (1994), 175-180.
6. A.E. Brouwer, “Some unitals on 28 points and their embeddings in projective planes of order 9,” Geometries and Groups, Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, 1981, Vol. 893, pp. 183-188.
7. R.H. Bruck and R.C. Bose, “The construction of translation planes from projective spaces,” J. Algebra 1 (1964), 85-102.
8. F. Buekenhout, “Existence of unitals in finite translation planes of order q2 with a kernel of order q,” Geom. Dedicata 5 (1976), 189-194.
9. P. Dembowski, Finite Geometries, Springer-Verlag, New York/Berlin, 1968.
10. M.J. deResmini and N. Hamilton, “Hyperovals and Unitals in Figueroa Planes,” to appear in Europ. J. Combinatorics.
11. J. Dover, Theory and Applications of Spreads of Geometric Spaces, Ph.D. Thesis, University of Delaware, 1996.
12. G.L. Ebert, “On Buekenhout-Metz unitals of even order,” Europ. J. Combinatorics 13 (1992), 109-117.
13. K. Gruning, “A class of unitals of order q which can be embedded in two different planes of order q2,” J. Geom. 29 (1987), 61-77.
14. C. Lef`evre-Percsy, “Characterization of Buekenhout-Metz unitals,” Arch. Math. 36 (1981), 565-568.
15. H. L\ddot uneburg, “Some remarks concerning the Ree groups of type (G2),” J. Algebra 3 (1966), 256-259.
16. R. Metz, “On a class of unitals,” Geom. Dedicata 8 (1979), 125-126.
17. L.A. Rosati, “Disegni unitari nei piani di Hughes,” Geom. Dedicata 27 (1988), 295-299.
18. J. Tits, “Ovoides et groupes de Suzuki,” Arch. Math. 13 (1962), 187-198.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition