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Abstract. In this paper, we show how to endow the algebra of noncommutative symmetric functions with a
natural structure of cochain complex which strongly relies on the combinatorics of ribbons, and we prove that the
corresponding complexes are acyclic.

Keywords: noncommutative symmetric functions, complexes, ribbons

1. Introduction

The algebra of noncommutative symmetric functi@sn, introduced in [4], is the free
associative algebra (over some field of characteristic zero) generated by an infinite sequence
(S)n=1 of noncommuting indeterminates (corresponding to the complete symmetric func-
tions), endowed with some extra structure imitated from the usual algebra of commutative
symmetric functions.

Noncommutative symmetric functions have already been used in different contexts. They
provide a simple and unified approach to several topics such as noncommutative continued
fractions, Pad approximants and various generalizations of the characteristic polynomial
of noncommutative matrices arising in the study of enveloping algebras and their quantum
analogues (cf. [4] and [11]). Moreover they gave a new point of view towards the classical
connections between the free Lie algebra and Solomon’s descent algebra (see [3], [6] and
[12] for more details). Note also that noncommutative analogues of some aspects of the
representation theory of the symmetric group (also related with free Lie algebras) have been
obtained (cf. [8]).

More recently, quantum interpretations of honcommutative symmetric functions and
guasi-symmetric functions have been obtained. Indeed it appears that the algebra of non-
commutative symmetric functions (resp. of quasi-symmetric functions) isisomorphic to the
Grothendieck ring of finitely generated projective (resp. finitely generated) modules over
0-Hecke algebras. Working with the quantum dual point of view, honcommutative ribbon
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Schur functions and quasi-ribbon functions can be in particular considered as cocharacters of
irreducible and projective comodules over the crystal limit of Dipper and Donkin’s version
[1] of the quantum linear group (cf. [7] for more details).

In this paper, we present a new aspect of noncommutative symmetric functions. We
show how to endovymwith a natural structure of cochain complex which strongly relies
on the combinatorics of ribbons. It is interesting to observe that our construction is purely
noncommutative: it is not possible to define differentials on ordinary commutative sym-
metric functions by taking the commutative images of the differentials constructed in this
paper. We must stress the fact that we do not have at this moment any intrinsic interpretation
of our complex. According to all the contexts where noncommutative symmetric functions
play a role, this complex should certainly have some natural interpretation in the context of
Lie algebras or of quantum linear groups.

The paper is organized as follows. In Section 2, we briefly present noncommutative
symmetric functions (the reader is referred to [2, 4, 6] or [7] for more details on this
subject). Section 3 is devoted to the construction of the cochain and chain complexes that
are studied in the paper. In Section 4, we give explicit expressions for the images of the
corresponding differentials using different classical baseSyoh. Finally Section 5 is
devoted to the proof of our main result, i.e., the acyclicity of the complexes considered.

2. Noncommutative symmetric functions

The algebra ohoncommutative symmetric functidasghe free associative algel®gm =
Q(S1, S, ...) generated by an infinite sequence of noncommutative indetermiSates
calledcompletdfunctions. For convenience, we s&t=1. Lett be another variable com-
muting with all theS;. Introducing the generating series

+00
ot) = Z Sctk,
k=0
one defines other noncommutative symmetric functions by the following relations:
A =07
d
g cO =¥, o(t) = exp(o (1)),

whereA(t), ¥ (t) ande (t) are the generating series given by
+00
At) =) Axt®
k=0

+0oo K 400 (Dk K
Y(t) = k; Pyt d(t):= 2. R
The noncommutative symmetric functiong are callecelementary functiongOn the other
hand, W, and®y are respectively calledower sumf thefirstandsecond kind
The algebr&ymis graded by the weight function defined byw (&) = k. Its homoge-
neous component of weightis denotedSym,. If (F) is a sequence of noncommutative



ACYCLIC COMPLEXES 105

symmetric functions with, € Sym, for everyn > 1, then we set

Fl'=F,F,...F

r

for every compositionn = (i, iy, ..., i;). The familie(S'), (A"), (¥') and(®') all form
homogeneous bases®ym.

The set of all compositions of a given integeis equipped with theeverse refinement
order, denoted<. For instance, the compositiodsf 4 such thatl < (1, 2, 1) are exactly
(1,2,1),(3,1), (1, 3) and(4). The noncommutativebbon Schur function$R,) can then
be defined by one of the two equivalent relations

S=Y R, R=) (p0Og,

J<I J<I

wheref (1) denotes théengthof the compositiorl, i.e., the number of its parts. One can
easily show that the familyR, ) is a homogeneous basis 8ym.

The commutative image of anoncommutative symmetric fundfig@ihe (commutative)
symmetric functionf obtained by applying td- the algebra morphism which mafs
onto hy,, using here the notation of Macdonald [9]. The commutative image,dé then
€,. On the other handl, and®, are both mapped tp,. Finally R, is sent to an ordinary
ribbon Schur function, which is usually denotedrhy

There is also a strong connection between noncommutative symmetric functions and the
descent algebra of the symmetric group. This is the subalgelyp&{], the group algebra
of &, defined as follows. Let us first recall that an integer [1, n — 1] is said to be a
descenbf a permutatiorr € &, iff (i) > o(i + 1). Thedescent sebf a permutation
o € G, is the subset of [In — 1] that consists of all descents®f If | = (i1,...,I;)isa
composition ofn, we associate with it the subs&tl) = {dy, ..., d._1} of [1, n] defined
bydy =i1+---+ik foreveryk. We setD, to be the sum iQ[S,] of all permutations with
descent sef\(1). Solomon [13] has shown that tiiy form a linear basis of a subalgebra
of Q[&,] which is called thedescent algebraf &, and denoted b¥E,. An isomorphism
of graded vector spaces

+00 +00
a:Z =P = - Sym=Ep Sym,
n=0 n=0
is obtained by setting
a(D)) =R

for every compositiorl. The direct sun® can be endowed with an algebra structure by
settingxy = O for everyx € X, andy € Xy wheneverp # q. Theinternal product
denoted, on Symis defined by requiring that be ananti-isomorphism, i.e., by setting

FxG=al@G) at(F)),

for every noncommutative symmetric functiohsandG.
The graded dual dfym can also be identified to the algelip&ym of quasi-symmetric
functionsintroduced by Gessel [5]. LeX be an infinite totally ordered commutative
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alphabet. Let us then recall that a formal series Q[ X] is said to bequasi-symmetric
iff one has

(f IYRy2 ... y,i(k) = (f |2r 27 ... z{(k)
for every sequences < y» < --- < Yk andz; < z, < --- < z of elements ofX and for
every exponents, io, ..., ix € N. Here,(f | y) stands for the coefficient of in f. The
algebraQSym inherits a grading fron@[ X]. A natural homogeneous basis QSym s
then provided by thguasi-monomial functiongM, ) defined by

M= > WiyE W
Y1<Y2<--<Yr
for every compositioh = (i, i, ..., i;). Another convenient basis is formed by theasi-

ribbon functions(F,) (also called “fundamental” quasi-symmetric functions by Gessel)
defined by

Fi=>) M,.
J>1
A pairing (-, -) betweerQSymandSymcan equivalently be defined by one of the following
relations
(M, S%) = (FI, Ry) = 81

wherel, J are arbitrary compositions.

3. Constructions of differentials
3.1. A coboundary operator ddym

We devote this section to the construction of a coboundary opera8yranTo this purpose,
we first need to introduce some notation concerning ribbons and compositionsbéet
composition ofn and letr (1) be the ribbon diagram associated withFor every integer
i € [1, n], suppressing théth box inr (1) (the boxes of (1) are numbered from left to
right and top to bottom by all integers between 1 ahtreaks it into two ribbon diagrams
r(l,i)~ andr(l,i)*, in this order. We denoté™ (i) and! *(i) the compositions of — 1
andn—i whose ribbon diagrams are respectively, i)~ andr (1, i)*.

Example 3.1 For the composition = (2, 1, 3, 1), the corresponding ribbon diagram is
(we indicated here the numbering of every box @f))

12

3

415|6

Then,e.g.)] 3 =2), IR =GB, Dandl~ @ =21, T4 =(21).
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Let us also recall two natural operations on compositions. #f (i1, ...,i;) andJ =
(j1, ..., js) are respectively compositions nfandm, one defines two new compositions
| - Jandl < J by setting

|~J=(i1,...,ir,j1,...,js) and |<1J=(i1,...,ir,1,ir+j1,j2,...,j5).

In other words,| - J and| <« J are the compositions corresponding to the two different
ways of concatenating the ribbon diagramJcét the end of the ribbon diagram bf The
product of two noncommutative ribbon Schur functions can easily be described using these
two operations. Indeed, one has

RIRi=R.g+ R

for any compositions andJ (cf. [4]).
We can now define an operaly: Sym, — Sym,_, by setting

n—1
n(R) =2Ris@ + Y (=D Ri-gy Rivgy + (=D 2R ().
i=2

This leads to a linear operatdion Sym defined by

The following proposition shows thatendowsSym with a structure of cochain complex.
Proposition 3.2 The familyR = (Sym,, dn)n=0 IS & cochain complex.
Proof: We have to check th@f = 0. To provide a simple proof of this result, we shall

now introduce a graphic notation. We use the notation 1 to denote a generic
ribbon diagram encoding a noncommutative ribbon Schur function. We also denote by

| o [ I

the sum of theéwo ways of gluing the second ribbon diagram at the end of the first one.
Thus this notation encodes the product of two nontrivial ribbon Schur functions. Observe
that when one of the ribbon diagrams is empty, both ways of gluing one diagram at the end
of the other give the same result. Hence we have

Bl | = [ e =21 7.

The reader will easily see that the operatsofextended to formal linear combinations of
ribbon diagrams) is associative. Before going back to our proof, let us introduce the last
piece of notation. If (1) = 1 is a ribbon diagram, then

— Y —



108 BERGERON AND KROB

will stand forr (1,i)~ er(l,i)*. We can now rewrite the definition éfas

L (e—EE N C . (1)
i=1
Therefore
_ i-1 . _
S(C e =) (-1 oo
j=1

+ Z (—1)l o141

j=i+1

for any function of the forrr— o, Using the two last relations, we obtain

n i—1 . )
() = Z(—l)‘1<2(—1)11| e —Tel
i—1 i—1

+ Z (—1)) C—Ter—T4| |>

j=i+1
= > (=D 4T Tel
1<j<iz<n
D G el =0,
1<i<j=<n
as desired. O

3.2. First properties

The following proposition gives a compatibility 8fwith the multiplication of noncommu-
tative ribbon Schur functions.

Proposition 3.3 For all compositions | and Jone has

S(RI Ry) =8(R) Ry + (=D R, §(Ry). (2)

Proof: The formula can easily be proved using the graphical formalism introduced in the
proof of Proposition 3.2. Using (1), we obtain for every compositibasd J:
| J

8(1 ] o | 1)

1) .
:Z(—l)i‘l| Y — —
i1

+H@ | i
+ > (=Dt | o el
i=l(H)+1
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(1) _ i 5
= (Z(—l)'l{ ol |>.|
i=1

1) .
+(—1)'<'>t|.(2(—1)“1|:|$:|>
i=1
= (1 ; ) e . |+ (=1)'D : @ §( | 1),

as announced. O

We shall now give some basic symmetry properties.olet us first introduce some
notation concerning compositions.ll&= (i, . . ., iy ) is a composition| denotes thenirror
imageof I, i.e., the compositioni,, ...,i;). We also denote by~ the composition
whose ribbon diagram is the conjugate diagram of the diagram ofhe composition
| = (2,1, 3, 1) of Example 3.1 is for instance self conjugate, i.e., one has

I"=1=(2,131),
wheread ~ = (2, 1, 2) whenl = (1, 3, 1). The following result is easy to check.
Proposition 3.4 For every composition,lone has

S(R~) =38(R)™ and S8Ry = (-1'DTER). (3)

3.3. A decomposition &f

Let us now introduce two new operatdrs ands,; from Sym, into Sym,_, by setting

n n
STRY= Y (D" 'Rigpary  and 8, (R)= D (=D Ri-gyervi),
i=1 i=1

for every compositiori of n. These two operators are associated in an obvious way with
the two ways of gluing a ribbon diagram at the end of another. Defisiingnds~— as the
direct sum of the operatosg ands;,, we clearly have

§=686T46". 4)

Moreover it is easy to see (cf. proof of Proposition 3.2) thaands— are also differentials.
We can now summarize our results in the following proposition.

Proposition 3.5 8™ ands™ are two differentials whose sumds

This shows that the cochain complgxan be decomposed into two cochain complexes,
denotedR* andR ™, naturally associated with the two differentidfsands—.

Note 3.6 Using relation (4) and the fact that 6 and s~ are differentials, one can
immediately deduce tha#tt o 6~ + 8~ o 67 = 0. In fact, a stronger relationship holds



110 BERGERON AND KROB

betweens*™ ands~. The reader can indeed easily check that one has

5T o8 =8 08T =0.

3.4. Dual boundary operators
One can transfer by duality every cochain complex definegyoninto a chain complex on
QSym. We can thus associate to every operéata dual operatod, such that the following

diagram is commutative (here therrows correspond to the natural duality betw&gm
andQSym (cf. Section 2)):

)
Sym, ;«————Sym,

QSy”MqT’ QSym,

This defines a differential (the direct sum of all operatofg) on the commutative algebra
of quasi-symmetric functions. This differential is characterized by

(9CF1) | Ry) = (Fi [ 8(Ry)) (5)

for every compositions andJ. We can of course use the same technique to define two
others differential®* andd~ (the dual operators @™ andé~) whose sum gives.

4. Differentials in classical bases

In this section we give explicit expressions for the matrices of the differéntiith respect to
classical bases &ym. Let us introduce some more notationFl (F)) (resp.G = (G)))
is a basis oBym, (resp.Sym,_;), we denote byD,(F, G) the 2~ x 2"~2 matrix defined

by

S(F)= Y (Dn(F.G)); Gy.

JEn—-1
We also associate with evenyx m matrix M, then x m matrix M defined by
Mij = Mnoizim-j+1-
Itis easyto see thal is obtained fromvl by a symmetry with respect to its center. Finally,

whenM is an x m matrix with an even number = 2k of rows, we denote b @ (resp.
by M®) thek x m submatrix ofM formed by the first (resp. lask)rows of M.
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4.1. Differentials of ribbon Schur functions

The matriceD, (R, R) give explicit expressions for the functiofgR, ) in the ribbon basis
of Sym. They can be recursively constructed as follows.

Proposition 4.1 For every n> 3, one has

- |2n—3
An
I n-s
Dn(R, R) =
I s -
An
— s

where bs denotes the identity matrix of ord2?—3, and A, is a2"~2 x 2"~3 matrix defined
by the following recursive rules

—lpn-s
An_2 |2n—4
I on-s
0 1 0 E—
— n—5
ra=(3). A= |2 Z| and A=| = ~Bus 21704
1 0 -1 s
1 -2
Oon-4
Bn
[ on-a
for every n> 5, where B denotes th@"3 x 2"~ matrix defined by
~ —lpn-s
—Bn-a1 0
n—5
B, = -1 and B, = :
4= _2 - - |2n—5 - Br(i)l
- |2n—5 AI€127)2
for every n> 5 (the null matrix of orde2® is always denoted above By).
Proof: A thorough analysis of the definition éfeasily gives this result. |

Note 4.2 As an immediate corollary of the last result, the reader may check that all the
entries of the matribD, (R, R) belong to

,—1,0,1, 2} whenn = 2k is even
0

o {—2,-1
e {—2,-1,0,1,2, 3} whenn =2k + 1is odd.
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Moreover the value 3 is only involved in the expansions

2k—1

8(Roks1) = 3Rac+ Y (1) 2R ai—1.
i=1
2k—2

8(R12k+1) = 3R12k —|— Z (—1)i_1 R1|_2’12k—2—i .
i=0

Example 4.3 Forn = 2, 3, 4, 5, the matriceD, (R, R) are:

3 21 12 111
0 1 -1 O

4
s 11 sl 2 0
1 3 /.3 -1\ 2|01 10
2 /0 21| 1 1| 212] 1 -2 o 1
112\0) 12 1 1) 13 1 0 -2 1|
mi\-1 3/ w21 o ; 4 o
112
1112 -t 0 2 -1
0 -1 1 0
4 31 22 211 13 121 112 1111
. 3 -1 1 0-1 0 0 O
" 1 1 0 1 0-1 0 0
20 o 1 2 0 0 0-1 0
s11 |-1 2 0o 2 0 o o0-1
23 0 0 2-1 1 0 0 0
21| 0 0o 1 0 0o 1 0 o
o122l 1 0-1 1 0o o0 1 o0
2111 o0 1 -1 1 o o0 o 1
14 1 0 0 0 1-1 1 0
B 0 1 0 0 1-1 0 1
122 0O 0 1 0 O 1 0 oO
12111 0 0o 0o 1 -1 2 o0 o©
1B121 o o 0 2 o0 2-1
Ei; 0O-1 0 0 0 2 1 0
o 0-1 0 1 0 1 1
11111
0O 0 0-1 0 1 -1 3
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Let us now denote b (R, R) (resp.D; (R, R)) the matrix of the differentiai™* (resp.
87), restricted tdSym,, in the ribbon basis. Observe first that

Dn(R,R) =D/ (R,R) + D, (R, R)

forn > 1. The matrice®; (R, R) andD (R, R) can be computed frord,(R, R) using
the following result.

Proposition 4.4 For every n> 1, one has
D (R, R) = D, (R, R).
Proof: A simple analysis of the nature of the central symmetry involved in our formula

shows that our proposition follows from the fact that- J)~ = J~ < |~ for every
compositiond andJ. ]

4.2. Differentials of complete functions

The §-images of complete functions are given by the matribgsS, S). These can be
recursively constructed using the following proposition in conjunction with the first several
matricesDy (S, S) given in Example 4.7.

Proposition 4.5 For every n> 5, the matrix (S, S) is equal to

anz(Sv S)(l) |2n74
Oon-44on-5 ‘ —Dn_3(S, S Alpna — lon-s
Oon-3,on-4 ‘ Dn_2(S'S Oon-s
_ D
4|2n—3 Dn—1(s, S)
02n—3 02n73><2n—4 Dn—Z(S, S)

Proof: Using Proposition 4.1, one can easily show that

2n-2
8(Sen) = ) (=D,
i=1
2n—1

8(Sny1) =4S + Z (—1)i g
i=1
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for everyn. An adapted version of Proposition 3.3, together with a thorough analysis, gives
the required result. |

Corollary 4.6  Every entry of Q(S, S) belongs to{ —4, —1,0, 1, 4}.

Example 4.7 Forn =2, 3, 4, 5, the matrice®, (S, S) are:

3 21 12 111

4 01 -1 o0
2 11 31 | -4 4 o0 -1
1 3 /4 -1 22 00 0 O
2 /(0 2114 O 2121 0 0 O O
11(0)’ 124 o] 13 4 0 -4 1|
111\0 4 121 0 4 -4 0
11221 o0 0 O
11121\ 0 0 0 O
4 31 22 211 13 121 112 1111

5 4 -11 0-1 0 0 O

41 |4 00 1 0-1 0 O

322 lo 04 0 0 0-1 0

311 |0 00 4 0 0 O0-1

23 lo 04 -1 0 0 0 O

221 l0 04 0 0 0 0 O

22 lo0 04 0 0 0O 0 O

2111/0 0 0O 4 0O O 0 O

14 |4 00 O 0-1 1 o0

131 |0 40 0 4 -4 0 1

122 lo 04 0 0 0 4-1

12110 0 0 4 0 0 4 O

123 |0 00 0O 0O 0 4 -1

11220 00 0O O 0 4 O

11220 0 0 0 O 0 4 0

11112\0 0 0 O O O 0 4

5. Cocycles and coboundaries

This section is devoted to the proof of the acyclicity of the different complexes constructed
above. We also give explicit bases for the cochain (or coboundary) modules of these
complexes. For everg > 1, let us define recursively the subden) of the set of all
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compositions oh as follows

{D} if n=1,
InN=1{0¢ if n=2,
{(i1,...,ip) (1 =2and(ip,...,iy) el (n—=2)or(iy>3)} ifn>3

It can be easily checked thhtn) consists of all compositions ofthat are greater than or
equal to (in the sense of the lexicographic ordér) Avhenn = 2k + 1, and to &2 31,
whenn = 2k. Let us also denote bi(n) the number of compositions ih(n). By
constructionj (n) satisfies to the recurrence relations

iM=1 i@ =0andin=2"2+i(n—2) for n> 3. (6)
It follows that

21y 2(-pnt

. _ 7
i(n) 3 (7)
for everyn > 1. One can also give the generating series of the sequiémce
e t(l-t
> imt = _a-n (8)

— A+ tH@a-2t

We are now in a position to prove our main result.
Proposition 5.1 The cochain compleR = (Sym,,, 8n)n>0 is acyclic.

Proof: We first prove by induction on that the family(6(R;)) < ) is linearly indepen-
dent. Thisisclearfon = 1andn = 2. Letus suppose now that> 3. Observe thatone has

RoR;y = Ro g+ Royjy o

for every composition) = (j;) - J’ of n — 2. Since 2+ j; > 3, it follows from this
identity and from the definition df (n) that the independence of the famiB(R; ) < (n) is
equivalent to the independence of the family consisting of@}), with J = (j1, ..., jr)
andj; > 3, and alls(R> Ry), with J € | (n — 2). Proposition 4.1 implies that

§(Ry) = —=Ruj 2, + > cH Ry
H<(@ 12 j2,-s )
for every compositiod = (j, ..., jr) with j; > 3. Onthe other hand, using Propositions

3.3 and 4.1, one can write

S(ReRy) =Re8(Ry) =*Ron+ Y R,
L<@ZH)
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for every compositiord € | (n — 2). It now suffices to use the independence of the family
(8(R3))3e1 (n—2) and a simple triangularity argument to deduce the independence of the
family (6(Ry))1e1 () from the two last above relations. It follows that
dim Imé, >[I (n)| =i(n),
for everyn > 0. On the other hand,
dim Kers, = dim Sym, —dim Im§, < 2" —i(n) =i(n+ 1),
for everyn > 1. But, since’? = 0, one always has I8, c Kers,_;. Hence
dim Imé§, < dim Kerd,_1 <i(n).
Thus dim Ims,, =i (n), and
dim Kers,_; = dim Sym, ; —dim Imé,_1 =2""2 —i(n—1) = i(n).
This shows that Ket,_; and Imé,, have the same dimensions, implying
Imé, = Kerdn_1,

for everyn > 1 as desired. ]

The results obtained in the proof of Proposition 5.1 have the following immediate con-
sequence.

Corollary 5.2 For every n> 1, the family(§(R,)) <1 is a basis of the cochaitor
coboundary modulelm §, = Kerd,_1, which has dimension(n).

Corollary 5.3 For every n> 1, the family (§(S')),cim is a basis of the cochairor
coboundary modulelm §, = Kerg,_1.

Proof: According to Corollary 5.2, it is sufficient to check linear independence of the
family (§(S"))1<i - This follows from Proposition 4.5. O

Corollary 5.4 The dual chain compleR* = (QSym,, d,)n>0 iS acyclic.

Note 5.5 One can also dualize Corollaries 5.2 and 5.3 to obtain explicit bases for the chain
(or boundary) modules associated wWRh.

Using techniques similar to those of the proof of Proposition 5.1 together with Proposi-
tion 4.4, it is possible to obtain the following result.

Proposition 5.6 The cochain complexés™ = (Sym,, §;)n-0 andR™ = (Sym,, 87 )ns0
are acyclic.
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Corresponding versions of Corollaries 5.2 and 5.3 are also valid for the comitéxes

andR™.
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