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Abstract. Let (W, S, T') be a Coxeter system: a Coxeter grapwith Sits distinguished generator set aind

its Coxeter graph. In the present paper, we always assume that the cardigali§} of Sis finite. A Coxeter
element ofW is by definition a product of all generatass= Sin any fixed order. We use the notati@{W) to

denote the set of all the Coxeter element®\n These elements play an important role in the theory of Coxeter
groups, e.g., the determination of polynomial invariants, the Pagngalynomial, the Coxeter number and the
group order ofN (see [1-5] for example). They are also important in representation theory (see [6]). In the present
paper, we show that the S€{W) is in one-to-one correspondence with the G€éF') of all acyclic orientations

of I". Then we use some graph-theoretic tricks to compute the cardin@lity of the setC(W) for any Coxeter
groupW. We deduce arecurrence formula for this number. Furthermore, we obtain some direct forna¥&e of

for a large family of Coxeter groups, which include all the finite, affine and hyperbolic Coxeter groups.

The content of the paper is organized as below. In Section 1, we discuss some properties of Coxeter elements
for simplifying the computation of the valugW). In particular, we establish a bijection between the €g4/)
andC(I"). Then among the other results, we give a recurrence formuwé/sj in Section 2. Subsequently we
deduce some closed formulaeagf®V) for certain families of Coxeter groups in Section 3.
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1. Some properties of Coxeter elements

Let(W, S, T') be a Coxeter system. We shall first make some reductions for the computation
of the numberc(W). By abuse of notations, we shall identify an elemenSafith the
corresponding vertex df.

Lemmal.l Let(W,S I')and(W’, S, I'") be two Coxeter systems. Assume that there
exists a bijectiop : S— S such that st € S are adjacenti.e., they are joined by an edge

in T if and only if¢(s), ¢ (t) are adjacent in[’. Theng induces a bijection from the set
C(W) to the set GW’) naturally.

Proof: Notice that two Coxeter elements of a Coxeter griMpare equal if and only if

any reduced expressions of these Coxeter elements can be transformed from one to anothe
by only using the commutative relations on the Setf W (i.e., the relations of the forms

st =tsfors,t € S) successively [2, Ch. 1V, Section 1, Proposition 5 and Exercise 13].
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Thuswe can defineamayp: C(W) - C(W’) asfollows. Letw = t;t, - - - t, be anyreduced
expression of an element € C(W) with tj € S. We definep’(w) = ¢ (1)@ (t2) - - - @ ().
By the above remark, we see that the ngés well-defined and bijective. |

From this result, we see that the numlséwW) depends only on the underlying graph
IT'|, but not on the particular labellings of the edges of the giaptvhere the graphl|
is obtained fronT" by forgetting the labellings of all the edges. So from now on, we shall
identify a graph™ with its underlying graphrl"|. Notice that a Coxeter graghis always a
simple graph, i.e., it contains no loop and no multi-edges. A graph mentioned in the present
paper will be assumed simple.

The next result will reduce the problem to the case when the grapltonnected.

Lemmal.2 Let{I'i}1<i<nbethe collection ofallthe connected components of the graph
Let (W, §) be the standard parabolic subgroups of W correspondini torhen

n

c(W) = [ Jewh).

i=1

Proof: Notice thatforany # jin {1, 2,..., n}, the elements o, commute with those
of W;. So each Coxeter elementof W can be expressed uniquely in the following form:

W = Wiw2 - - - Wp, w; € C(W).

Conversely, any element & of the above form is in the s&(W). Hence our result
follows easily from these facts. ]

In order to make further reduction, we need to investigate some properties for the reduced
expressions of a Coxeter elementWf Given a reduced expressign: $5,---5 of a
Coxeter elemenb € W, we denotes—gt fors,t € S, if the factors occurs to the left of

in&.

Proposition1.3 Leté:5%---9, ¢ :tito - - - 1) be reduced expressions of Coxeter elements
w, y of W respectively with;st; € S. Therw = vy if and only if for any adjacent pair
s,t € S(see Lemma.1), the relations s?t and s—5>t either both hold or both not.

Proof: (=) We see that applying the commutative relationStd the expressioé does
not change the relatiors— t for any adjacent pais,t € S. So the implication in this
direction follows from the remark at the beginning of the proof of Lemma 1.1.

(<) Apply induction onl = |S] > 1. It is nothing to prove for the case= 1. Now
assumé > 1. We havej = s, forsome > 1. By our condition, we havigt; = t;t; for any
j <i.So¢ :tity---f .-t is again a reduced expressionypfvhere the notatioh means
the deletion of the factdy. Now&y:s,---5 andgo:ty - - - f - - -t are reduced expressions
of s;w, 1y respectively, the latter are Coxeter elements of the Coxeter group generated by
S = S\{s;}. For any adjacent pag;t € S, the relation$? t ands?t either both hold

0 0
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or both not by our condition. So we hasgw = sy by inductive hypothesis and hence

By the above proposition, it makes sense to wsite t for any adjacent pas, t € Sif
for some reduced expressiérof w, the relations—gwt holds.

An orientation of a grapl@ is a directed graph (or digraph for brevity), which is ob-
tained fromG by assigning to each edge an orientation. Then we have actually defined an
orientation of the Coxeter graghfrom a Coxeter element of W.

For our further discussion, we need some more terminologies and results in graph theory,
which we introduce now. We also refer the reader to [8] for more detailed references.

Let G be a digraph. A vertex of G is called a source (resp. a sink), if for any vertex
u of G adjacent tav, we havev — u (resp.u — v). A directed pattp of G is a sequence
of verticesvg, v1, ..., vy in G such thatv,_; — vy forallh, 1 < h <r. The number is
the length ofp. Whenvy = v;, we also callp a directed cycle. A graph is acyclic, if it
contains no directed cycle. The following are some simple properties of an acyclic digraph
which we shall use later.

Lemma 1.4 Let G be an acyclic digraph with g 2 vertices. Then

(1) G contains at least one source and one sink.

(2) Any vertex of G belongs to some directed path of G which is from a source to a sink.
(3) Any subgraph of G is again acyclic.

Proof: Any vertex ofG belongs to some maximal directed patiGivhich can be shown
to start with a source and end with a sink. So (1) and (2) follow. The result (3) is obvious.
O

The following result establishes a relation between Coxeter elements and acyclic digraphs
which is the key to the subsequent discussion.

Theorem 1.5 Let(W, S, T') be a Coxeter system. Then there exists a bijection between
the set QW) of Coxeter elements of W and the s€f"¢of acyclic orientations of".

Proof: Itis easily seen that an orientation Bfcoming from a Coxeter element ¥ is
always acyclic. For any given acyclic orientatierof I', we define a Coxeter elemeint

of W as follows. Letl; be the set of all elements Bwhich are sources ia. Inductively,
suppose that we have defined subsets. ., I; of Sand that the seff; = S\(U'J-=l l;)is
non-empty. Then we define Hdy,; the set of all elements iR; which are sources in the
full subgraph ofx with F; its vertex set. By Lemma 1.4, we get a sequence of non-empty
disjoint subsetd;, 1 < j < p, of Swhose union isS. Note thats, t commute for any
steli,l1<i<p Wesetw = [[s,S[lie,t - Ilic,r- Thenw is the Coxeter
element ofW whose corresponding acyclic orientationIofis justa. Hence our result
follows by Proposition 1.3. ]

Thus computing the numbe(W) = |C(W)] is equivalent to computing the number
c(I') of all the acyclic orientations df.
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By abuse of notations, we shall not distinct between a Coxeter elem&t(dsp. the
setC(W)) and its corresponding acyclic orientationlofresp. the se€(I")).

It is well known that there is a natural bijection between acyclic digraphs and posets.
So Theorem 1.5 also establishes a relation between Coxeter elements and posets. We she
give some detailed discussion on this correspondence elsewhere.

The following corollary is concerned with the condition on a Coxeter element to have
neighboring factors, t € Sin one of its reduced expressions. This result is crucial in the
proof of Theorem 2.4.

Corollary 1.6 Let (W, S, T') be a Coxeter system with+ |S] > 2. Fors #tin S
an elementw € C(W) has a reduced expression of the formst- - - if and only if the
orientationa of I' determined byw satisfies the following condition.

(A) There is no directed path from t to s and also no directed path of length greater than
l1fromstot.

Proof: (=) Obvious.

(©) Itis nothing to prove it = 2. Now assumé > 2. We claim that there exists some
source or sink in @ with r # s,t. For otherwise, the elemengst would be the unique
source and sink of respectively by Lemma 1.4, (1), (2) and by the first half statement
of condition @A). Again by Lemma 1.4, (2), any verteéxin « with r # s, t (which does
exist by the assumption> 2) belongs to some directed pathwfrom s to t. But this
is impossible by the last half statement of conditiér).(Now assume that there exists a
sourcer ina withr £ s,t. Let S = S\{r} and leto’ be the digraph obtained from by
removing the vertex and all the edges adjacentrtoThenr w is a Coxeter element of the
Coxeter group generated I8/whose corresponding digraphds By Lemma 1.4, (3), we
see that’ is acyclic, which clearly satisfies conditioA). By inductive hypothesis,w has
a reduced expression of the form st- - - and so does the element The case thatis a
sink ina with r # s, t can be discussed in the same way but withreplaced bywr. O

2. Arecurrence formula

Theorem 1.5 and its corollary make it possible for us to use graph-theoretic methods in the
study of Coxeter elements. We shall deduce some formulae to relate the natWwerss

W varies over some different Coxeter groups. In particular, we get a recurrence formula
of c(W).

An edgeE of a graphG is orient-free, if reversing the orientation &fin any acyclic
orientation ofG results in another acyclic orientation @f For a given orient-free edge
of G, the process of reversing the orientationeofjives rise to a fixpoint-free involutive
permutation on the set of all orientations@f An edge ofG is a bridge, if it does not
belong to any cycle oG. Clearly, an edge of a graph is orient-free if and only if it is a
bridge. So we get the following result.

Lemma 2.1 Intwo Coxeter systenm®V, S,I') and(W’, S, I'), if I'” is obtained fronT
by removing a bridgethen W) = 2c(W').



THE ENUMERATION OF COXETER ELEMENTS 165

Assume thas # t in Sare not two termini of any path df. LetI"” be a graph obtained
from I" by fusings andt into one new vertex and let(W’, S) be a Coxeter system whose
Coxeter graph isisomorphic fd. For example, we candefil®e= {X’ | x € S, x #£ s, t}U
{z} such that for any, y € S\{s, t}, o(X'y") = o(xy), ando(x'z) = max{o(xs), o(xt)}.

Lemma 2.2 Inthe above setypve have ¢W) = c(W').

Proof: Notice that in the above definition of the s&t the order(xs) ando(xt) can’t

be both greater than 2 by our assumption. This implies that there is a natural bijection
between the edge sets BfandI’, which induces a bijection between the orientations of

I andI”. Since the vertex does not lie in any cycle df’ by the assumption os t, this
bijection induces a bijective map from the acyclic orientationE o6 those ofl’. So our

result follows immediately by Theorem 1.5. O

2.3. For anys # t in S, we denote byx (s, t) or (s, t) the set of all the elements
w € C(W) having a reduced expression of the formst- ... Then it is easily seen that
3(s,t) = X(t,s) if and only if s, t are not adjacent. Whes)t are adjacent, we have
(s, )N E(t,s) =Pand|=(s, t)| = |Z(t, )|

The following is our main result in this section, which can be regarded as a recurrence
formula for the numbec(W).

Theorem 2.4 Let (W,S, TI'), (W', S, I') and (W’, S", T"”) be three Coxeter systems.

Assume that there are two elements & S such that

() s, t are adjacentinr".

(2) I is isomorphic to the graph obtained frofby removing the edge joining &

(3) I'” is isomorphic to the graph obtained fromby fusing two vertices s and t into a
new vertex z.

Then we have the relation&/) = c(W’) + c(W").

Proof: WewriteS ={r' |r € SfandS" = {r" | r € S\{s, t}} U {z}, wherer’ (resp.r”)
is the vertex o™ (resp.T"”) corresponding to the vertexof I'. LetCo(W) (resp.Co(W"))
be the complement (s, t) U Zr(t, s) in C(W) (resp. = (s, t') in C(W")).

By Corollary 1.6, we see thair (s, t) can be regarded as the set of all acyclic orientations
of I with s — t which contains no directed path of length greater than 1 saat. Also,
>r (8, t") can be regarded as the set of all acyclic orientatiodd abntaining no directed
path withs', t’ its two end vertices. On the other har@€h(W) (resp. Co(W’)) can be
regarded as the set of all acyclic orientationg’qfesp. I'’) containing a directed path of
length greater than 1 with t (resp.s/, t') its two end vertices. Note that in the casdof
this directed path determines the orientation of the edge jomihg_etn be the map from
C(W) to C(W') defined by removing the edge joinirggt from any element ofC (W),
where we regar@ (W) (resp.C(W’)) as the set of acyclic orientations Bf(resp.I"’) and
regardl™’ as a subgraph df. Then itis clear tha induces bijections fronzr (s, t) (resp.
2r(t, s))to X (g, t’) and fromCy(W) to Co(W’). Thus by the observation of 2.3, to show
our result, it is enough to establish a bijection between theXets, t) andC(W”).
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We observe thatify € S\{s, t} is adjacent to bothandt, then for any acyclic orientation
of I''in Xr(s, t), the relationsw — s andw — t either both hold or both not.

Now we defineamap : Zr(s,t) — C(W"). Fora € Xr(s, t), we define an orientation
¥ (a) of I'” as follows. For any adjacent pairv € S\{s, t}, we setw” — v” if u— v. For
anyu € S\{s, t} adjacent to at least one sft (say it is adjacent ts for definity), we set
u”— z(resp.z— u”) if u— s (resp.s— u). By the above remark, we see thafx) is
well-defined. We claim tha¥/ («) is acyclic. For, if not, then there exists some directed
cyclep in ¥ («). By the acyclicity ofe, we see thap must contaire as its vertex. But this
would imply that eitherx contains a directed cycle with at least onesdf as its vertex, or
a contains a directed path of length2 fromstot.

Now that we get a magp from Zr(s, t) to C(W”). To showy is bijective, it is enough
to find its inversing map. To any acyclic orientatiafi of I'”, we define an orientation
A(a”) of I as below. For any adjacent paif, v" € S’\{z}, we setu— v, if U - v".
For anyv” € S’\{z} adjacent taz, we setv —r (resp.r — v) for anyr € {s, t} adjacent
tov, if v/ — z (resp. z— v”). Finally, we sets— t. By the acyclicity ofa”, it is easily
seen that the orientation(«”) so obtained is acyclic and is B (s, t). Therefore we get
a mapx from C(W”) to Xr (s, t). We see that is the inversing map of and hencey is
bijective. |

For a graplG, we denote by (G) (resp.e(G)) the number of vertices (resp. edgesiof
Then in Theorem 2.4, we hawél') = v(I') = v(I'’) + 1 ande(I') = e(I'") + 1 > e(I").
Thus Theorem 2.4 actually provides us a recurrence formula for the nuot\b®r where
the recurrent step is taken on the su() + e(T") > 1.

3. Some closed formulae

Keep all the notations given before. In particular(lét S, T") be a Coxeter system. In this
section, we shall use the results of the previous sections to deduce some closed formulae
for the numberc(W) in some special cases.

The following two extreme cases are the simplest ones.

Lemma 3.1
(1) c(W) =1ifeI) =0.
(2) c(W) =11if I is a complete graph with(I") = I.

In general, we have £ c(W) < Ilif v(T") =1.
The next simplest cases are a tree and a cycle.

Lemma 3.2
(1) If the graphr is a tree with €[") = |, then qW) = 2'.
(2) Ifthe graphr is a cycle with €I') = I, then qW) = 2' — 2.

Proof: We know that the number of orientations of a grapfs equal to 2. WhenI"
is a tree, all the orientations &f are acyclic. Wher" is a cycle, all the orientations are
acyclic except for two directed cycles. So our result follows by Theorem 1.5. m|
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Now we want to deal with some slightly complicated cases. To do this, we need first
establish two propositions.

Proposition 3.3 LetI" be a connected graph covered by two subgrdphendl’,. Assume
that the intersection of'; andI'; is a cut vertex x of". Let(W;,S) (i = 1, 2) be the
Coxeter system withi; its Coxeter graph. Then(@V) = c(W;) - c(Wo).

Proof: LetI” be a graph consisting of two connected compong&htandI’,, wherel’]

(i = 1,2)is isomorphic talj. Let (W', S) be the Coxeter system with its Coxeter
graph. Then by Lemma 1.2, we has@V’) = c(W,) - c¢(W>). Let us denote the vertex of
I'/ corresponding ta ( with respect to a fixed isomorphisgn : T’y — I’} ) by x;. Then up
to isomorphism[I" can be obtained fro1” by fusingx; andx, into one vertexx. So we
havec(W) = c¢(W’) by Lemma 2.2. This implies our assertion. O

By the above result, we can split a graphnto some relatively simpler subgraphs,
i =1,2,...whenTI contains cut vertices, by which the computation of the nunsbér)
can be reduced to the computation of these simpler nuntiErs.

The next result provides some more simplification.

Proposition 3.4 LetI" be a connected graph covered by two subgrdptendl’,. Assume
that the intersection of these two subgraphs is an gilg®ther words a tree with two

vertices st). Let(W, §) (i = 1, 2) be the Coxeter system withits Coxeter graph. Then
(W) = 3e(W1)e(Wa).

Proof: Define a graph to be a disjoint union of the graplig andI",, where the vertices
sandtin T (i = 1, 2) are denoted bg andt; respectively. Thus the gragdh can be
obtained fromI’ by fusing the vertices,, s; into s, andty, t; intot. Let (W', S) be
the Coxeter system with’ its Coxeter graph. We define the following four subsets of
C(W"): fora # o' in {s;, t1}, andB # B’ in {s,, 1o}, let T(«a, o’; B, B') be the set of all
the elementsy of C(W’) such that there exists a reduced expression af the form
-af---a’B - --. ThenC(W) is a disjoint union of these four subsets, each of which has
the same cardinalit%c(w/). There exists a well-defined magdrom the se (s, t1; S, to)

to C(W) by replacing the factors s, andt;t, by sandt respectively in areduced expression
of an element o£(W') of the form-.. S, - - -t1t> - - -. Also, there exists a well-defined
mapy from the setX(ty, s1; to, ) to C(W) by the same replacement on the factors of a
reduced expression of an element of the fermt;t, - - - 55 - - -. We see that both mags
andyr are injective and tha® (W) is a disjoint union of the sets ighand imy,. Hence our
result follows. ]

Now we shall give some applications of Propositions 3.3 and 3.4.

Proposition 3.5 LetI" be a graph containing exactly r cycles of,ym,, ..., m; edges
respectively. Assume that no verteX'dbelongs to more than two cycles and that no pair
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of cycles of” share more than one common vertex. Then

c(W) = 2" ]_[(zmi—l -1,
i=1

where n=1+r — Y "/_; m; and | is the number of edges bf

Proof: LetI” be the graph obtained from by removing all the edges not belonging to
any cycle and by splitting each vertex belonging to two cycles into two vertices, one in each
cycle. Thernl” consists of isolated cycles ofng, my, ..., m. edges respectively, together
with some isolated vertices. L&V, S) be the Coxeter system will its Coxeter graph.
Thenc(W') = [T _;(2™ — 2) by Lemmas 1.2 and 3.2, (2). Thus our result follows by
Lemma 2.1 and Proposition 3.3. |

Remark 3.6 The result of Lemma 3.2 covers all the irreducible finite and affine Coxeter
groups. Then Proposition 3.5 further covers all the irreducible hyperbolic Coxeter groups
with three exceptions whose Coxeter graphs are as below:

A 1 L

@

Figure 1

where (a) is a complete graph which has been included in Lemma 3.1; (b) and (c) will be
included in Theorem 3.8. Theorem 2.4, together with Propositions 3.3, 3.4, can be used to
simplify the calculation of the numbe(W) in many cases. In particular, this is the case
whens, t € Sin the theorem form a vertex cut set of the grdpti.e., the removal of these
vertices increases the number of connected componenmts dfet us illustrate this point

by some examples.

Example 3.7 Let(W, S, ') be a Coxeter system. Recall that the notatidn) stands for
the numberc(W).

(1) Let
~

Then by Theorem 2.4 and Propositions 3.3, 3.4, we have

o) = c(i_.\_o_}_l) + c( 1%%) = o(T') + (")
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C<Fl):c< ‘\o |>+C(O—O;O‘ < O:)
S (e | B

1
=2~254+§-302=958

o(Ty) = c(l_o_oéi) n c< M) — o) + (™).
\O/

c(F’):c(T T>+2-c<o—o—Ao)

T~o—

—aeo([ ) rzegeo( A o([])
=4.62+6-30=428

e L) (2
~25 ol A) [+ 5 el ) ()

1
:6-30+Z~62~14:306

\\

This impliesc(I") = 958+ 428+ 306= 1692.
(2) Suppose that the graph is as below.

SR

Then by Theorem 2.4 and Propositions 3.3, 3.4, we have

g ) U
o []) el A)o([D)-2o([]) (&)

1
4
%30614 2-14.6 =462

169
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We can deal with even more general cases than that in Examples 3.7, (2). Consider a
Coxeter graph satisfying the following conditions.

(i) There aren + 2 vertices inl” withn =m(1) + m(2) + --- + m(r) —r, wherer > 1,
1<m@ <m@ <---<m(r)andm(2) > 1. These vertices are labelled Gy j),
(I=<i=<r,1=<j<m()),andx,y, respectively.

(i) The edges ofl" are {(i,1),x}, {(i,m@{) —1),y} @ < i <), {G,])d,j+D}

(1< j <m(@)—1). Inthe case whem(1) = 1, {x, y} is also an edge.

We use the notatioh(m(1), m(2), ..., m(r)) for the numberc(W) when the graph®
satisfies conditions (i) and (ii). Then we have the following formula:

Theorem 3.8 In the above setupve have

AMD), M), ..., m(r))
=2[[@V -1 -]@"" -2
i=1 i=1

=) ()tE@Tt-2 Y 2mivrermi, (3.8.1)

o<t=<r 1<ip<--<ig<r

Proof: Let (W', S, T'") be a Coxeter system such tH&tis obtained fronT" by adding
an edggx, y} if m(1) > 1 or that is isomorphic td' if m(1) = 1. Let(W”,S",T"”) be a
Coxeter system such thBt’ is obtained fronT" by fusing the verticeg andy into a new
vertex. By repeatedly applying Propositions 3.3 and 3.4, we have

(@mh+L _ 9y — zn(zmm 1 (3.8.2)

c(W) = !
2t i=1

r

and
r
(W) = ]"[(zm(” —2). (3.8.3)
i=1
So by Theorem 2.4, the first equality of (3.8.1) follows from (3.8.2) and (3.8.3). Then the
second equality of (3.8.1) can be obtained by directly calculation. |

Theorem 3.8 holds even without the restrictioi) # 1 for 2 < i < r. This can be
seen directly from formula (3.8.1). On the other hand, we see that Examples 3.7, (2) is a
special case of Theorem 3.8, where we have 3, m(1) = 2, m(2) = 3 andm(3) = 4.
Thus by formula (3.8.1), we get

A(2,3,4) =223+ _ 222+ 22+ 2% + 6 = 462,

just the same as that we got before. Figures 1(b) and (c) are also special cases of Theoren
3.8; the corresponding valuesatiV) areA(1, 2, 2) = 18 andi(2, 2, 2) = 46, respectively.
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In particular, wherm(l) = m(2) = --- = m(r) = k > 1, we denote the number
A (k. k, ..., k) simply byA(k"). Then (3.8.1) becomes
——
r factors
Corollary 3.9

r K _ 4\r _ ok _ o\ : _ re1tfl r—t tk
Ak =22 -1 — (2 2)_2( 1) <t>(2 2)2tk,

t=0
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