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Abstract.  With the help of some new results about weight enumerators of self-dual codé&avelinvestigate
a class of double circulant codes ov&, one of which leads to an extremal even unimodular 40-dimensional
lattice. Itis conjectured that there should be “Nine more constructions of the Leech lattice”.
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1. Introduction

The inspiration for this work was the discovery made in [2] that the Leech lattice can be
obtained by lifting the binary Golay code of length 24 to a self-dual code dyeand
applying Constructiond, (cf. Section 4). We were interested in seeing if other binary
codes could be lifted t&, codes so as to produce unimodular lattices.

In Section 3 we investigate a class of double circulant codesZyémnat lie above the
binary double circulant codds studied in Chapter 16, Section 7 of [14]. These are self-
dual codes oveZ, in which the norm of every vector is divisible by 8, and in Section 2
we establish some new results about the weight enumerators of such codes. In Section 4
we show that the code of length 40 leads to an extremal even unimodular 40-dimensional
lattice. In the last section we reconsider the Leech lattice, give another construction for
it based on a different double circulant code, and suggest that there may be seven more
constructions awaiting discovery! (But see the Postscript.)

2. Weight enumerators of codes oveZ,4

In this section we use invariant theory to establish some new results about weight enumer-
ators of codes ove#,. For background information about this technique, see [17] or [14],
Chapter 19.

As in [10, 12] we use the following terminology. The elementsZaf = 7Z/47 are
denoted by{0, 1, 2, 3}, and their Lee weights (denoted k) are respectively L, 2, 1.
The Lee distance between vectarsv € Zj is dist(u, v) = Zi”:l wt(u; — vj). Inthe
present paper we also consider the Euclidean norms (denotadrhy of the elements
of Z4, which are respectively,d, 4, 1, so that norrtu;) = wt(u;)2. The Euclidean norm
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between vectors, v € Z§ is normu, v) = Y., norm(u; — v;). A linear codeC of length

n overZ, is a subset oZ} which is closed under addition. Duality is defined with respect
to the standard inner produat v = ujvy + - - - 4+ Upun. As in [6] we say thaC has type
142k if by a suitable permutation of coordinates the generator matrix can be put into the

form
h, X Y
0 2, 2Z|°

for appropriate matriceX, Y, Z. If C is a linear code of length overZ,4 there are two
binary codes of length associated with it;

C1 = {c(mod 2 :c € C}, (2.1)
sz{%c:cec, CEO(moda}. (2.2)

Lemma1l If C is of typel then G = C,.

We omit the elementary proof.
Thecomplete weight enumerat@or c.w.e.) of a linear cod€ is

cwez(a, b, c,d) = Za”O(”)b”1<“)c“2(U>dns(U>,

ueC

wheren; (u) is the number of componentswthat are equal to(i = 0, 1, 2, 3). Following
Klemm [13] we also use the variables

To=(@+0)/vV2, Ti=b+d)/V2
T, =(@-0c)/vV2, Ts=({b-d)y/v2

A disadvantage of the c.w.e. is that it contains too much information. For most purposes
there is no need to distinguish between coordinates that are 1 and coordinates that are 3.
We therefore define th&ymmetrized weight enumeraior s.w.e.) ofC to be

swe:(a, b, c) = cwez(a, b, c, b).

We will use upper case letters for c.w.e.'s and lower case letters for s.w.e.'s. The subscript
gives the degree.

The Molien series of a polynomial rinB is the seriesb (1) = Zg":oadkd, whereay is
the dimension of the subspaceR®tonsisting of the homogeneous polynomials of dedgree
(see|[1, 14, 17-19)).

The first theorem is due to Klemm.
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Theorem 2(Klemm [13]) Let C be a self-dual code of length n ov&ythat containsl".
Then the c.w.e. of C is an element of the ring

Ro® AsRo @ A%Ro ® B1gRo ® AgB1sRo @ A% BisRo

= (10 As® A§)(1® BipRo 23)
with Molien series
1 )\,8 )\416 1 )\16
A+ 25+ A)A+ A1) (2.4)

(1=2HA =281 - 2121 —-219 "

whereRy is the ring of symmetric functions of TT/, T}, T4, and
Ag = T3T4 + T TS,
Bis = (o T To)*(To T + T, T3 - To T — T'TY).

Proof: We sketch the proof, since this will be the basis for the following proofs. The
c.w.e. ofC is invariant under the following linear transformations of the variablggd;,
T2, T3:

1 1 1 1

(2.5)

and hence is also invariant under the gra@gpthat they generate, which has order 1024.
The Molien series 06 can be calculated directly, for example using Magma [5], and is
equal to (2.4). Itis easily checked thag, B;g and the elements 68, are invariant under

Gy, and that the Molien series (2.4) describes the structure of the direct sum in (2.3). The
result then follows. a

The next result, which follows from Theorem 2, was given in [10].

Corollary 3 Let C be a self-dual code of length n ov&y that contains a vectoi=1".
Then the s.w.e. of C is an element of the ring

Ro @ agRo ® a3 R, (2.6)
with Molien series

1+ )LS +)\l6
1-AH1-218)(1Q - 112

=14+ 438+ 2 Lo 14 .. (2.7)
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where R is the ringC[ ¢4, ¢s, ¢12] and

¢s = a* + 6a°c® + 8b* + c*,

¢s = (°c® — bhH{(@® + c»? — 4b"},
¢12 = b*(@? — c?)*,

ag = b*(@a— o)*.

Proof: When we setl = b the ringRR, collapses tdR; and (2.3) collapses to (2.6). The
structure of the latter ring is described by the Molien series (2.7). |

Codes whose weight enumerators yield all the polynomials needed to obtain the rings
(2.3) and (2.6) were given in [10].

The codes used in the present paper have an additional property, described in the following
theorem, which we believe to be new.

Theorem 4 Let C be a self-dual code of length n ov&s that containsl" and has all
norms divisible by8. Then the c.w.e. of C is an element of the ring

(1@ Hg ® HE @ H3) (1@ Hip)(1® Ha) Ry, (2.8)

with Molien series

(1+)\‘8+)L16+)\‘24)(1+)L16)(1+)L32)
(1—28)(1—A10)(1—A2%H (1 —A%2)

(2.9)

whereR; is the ring of symmetric polynomials i TT8, T2, T8, and

Hg = To T, + T/ T4 + T + T T — Ty — 14T
His = (ToT1T2Ta)*,
Haz = (TOTeTTo) (T -+ ) (T34 T (18 4+ T5) (754 T6) (16— T4) (T4~ ),

Proof: The c.w.e. is how invariant under the groBp generated b, and the additional
transformation

wheren = (1+1i)/+/2,7® = 1. Using Magma we find tha®, has order 6144 and Molien
series given by (2.9). We then check tikt Hi6, H32 and the elements &, are invariant
underG;, and that there are sygygies expressitfy(but notHZ or H3), HZ andH2, as
elements of the ring (2.8). The result follows. m|
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Corollary5 Let C be a self-dual code of length n o&ythat contains a vectot-1" and
has all norms divisible b§. Then the s.w.e. of C is an element of the ring

Ry @ hgR1 @ h3R; @ h3Ry, (2.10)
with Molien series

14284218402
(1L =29)(A - A9 - 2%

=1+ 284+ 0 L 702 4 10032 4 14090
+ 1048 4+ 24056 1 30084 - . - (2.11)
where R is the ringC[0g, 616, 624] and
0g = a® 4 28a°c? 4 70a’c* + 28a°c® + 8 + 1288,
016 = {a2c?(a® + ¢?)? — 4b8}{(a* + 6a%c® + b*)? — 64b°},
024 = b¥(@® — %8,
hg = {ac(@® + c?) — 2b*)2.
Proof: Parallel to the proof of Corollary 3R, collapses tdR; whenwe setl =b. O

It is possible, although as we shall see not necessarily desirable, to impose a further
condition on the code.

Theorem 6 Let C be a self-dual code of length n ov&s that containsl" and has all
norms divisible by8 and all Lee weights divisible b4 Then the c.w.e. of C is an element
of the free polynomial rin@R, generated by Ik and all symmetric polynomials inT T8,
T2, T8. This ring has Molien series

1
(1—28)(1— A%6)2(1 — 124

(2.12)

Proof: The c.w.e. is invariant under the gro@ generated bys; and

1

Again using Magma we find th&, has order 49152 and Molien series (2.1@) is a
unitary reflection group (cf. [16]), and consists of all monomial matrices whose elements
are powers ofy such that the product of all the entries in each matrix is an even power of
It is then easily seen that the ring of invariants is equat o a

Corollary 7 Let C be a self-dual code of length n o&ythat contains a vectat-1" and
has all norms divisible bg and all Lee weights divisible b§. Then the s.w.e. of C is an
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element of the ring Rwith Molien series

1
(1—2A8)(1— A16)(1 — A2%)

=1+ 28+ 21843 L 4032 1 50 4 78

+88 4 1m%4 .. (2.13)
Remarks

1. The groupG; is half of the full groupG3 of all monomial matrices whose elements are
powers ofy. Gz has order 84! = 98304 and Molien series

1
(1= - 211 - 22H(1 - 232

However, there does not seem to be any additional condition arising naturally from coding
theory that can be imposed @which will force its c.w.e. to be invariant undexs.

2. The s.w.e.’s of the Klemm cod&%, K16, K24 (Which are generated by &nd all vectors
of shape 20", cf. [13], [10, Eq. (43)]) span the ring;. By adjoining the s.w.e. of
the octacode (see [10-12]) we generate the ring (2.10).

3. The next result shows why the additional property of the codes mentioned in Theorem 6
and Corollary 7 may not be a good thing. For as we saw in [12], it is quite unusual for
aZy-linear code to have a binary image that is also linear. Most interegtiicgdes do
not have this property.

Theorem 8 If C is a self-dual code ovef, with all Lee weights divisible b4, then the
binary image of C under the Gray méagf. [12]) is linear.

Proof: Letu, v be codewords irC and letl, v denote their binary images. By a fun-
damental property of the Gray map, distv) = dist(T, v), the latter distance of course
being Hamming distance. Since distv) = dist(u) = dist(v) = 0(mod 4, wt(a N b)
is even. IfC denotes the binary image @, and D is the linear span o€, we have
2" = |C| < |D| < |D*| (wheren is the length ofC), and soC = D. ]

3. Double circulant codes oveZ,

In this section we consider codes o¥amwhich when read modulo 2 are the double circulant
codes’5 described for example in Eq. (57), p. 507 of [14].

Definition Letn = 2p+ 2 wherepis a prime congruent to @nod 8. The codeD,, has
generator matrix

M= |1 0 (3.1)
: I | b(l +R)
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if p=11(mod 186, or

101 - 1|11 - 1

M= |1 0 (3.2)
: | | I +3R+2N
1 0

if p = 3(mod 16, whereR = (R;j), Rj = 1if j —i is a nonzero square maua or O
otherwise;N = (Nij), Nijj = 1if j —i is not a square mog, or O otherwise; antd can be
either+1 or—1.

Theorem 9 D, is a self-dual code ovét, in which all norms are divisible b§.

Proof: The two cases are similar, and we give details onlygfes 3(mod 16. The rows
of the matrixM are indexed by the elements of the projective toe0, 1, ..., p — 1.

The norm of rowM, is 2p + 2 = 8(mod 16 and the norm of rowM;, i # oo is
1+14+14+(p—21)/2+4(p—21)/2=(5p+1)/2=0(mod 8. Hence the norm of every
row of M is divisible by 8.

Next we check thab,, is self-orthogonal mod 4. Let

:
amT = |0 [ MMmIT
MuoMT | A

and observe that, for=0,1,..., p—1,
(MML), =1+14+14+3(p—1)/2+2(p—1)/2= (p+5)/2=0(mod 8.
The matrixA is given by
A=J+1++3R+2N)(I +3R+2N)" =2J+ 1 + RR" +2(RNT + NR"),

whereJ is the p x p matrix with every entry equal to 1. Now we use Perron’s Theorem
(cf. Ch. 16, Th. 24 of [14]) to write

RRT—(%l— )(J—I)+(p%1)l,
o= (£ (52 )

It follows that A = 0(mod 4 and thatD,, is a self-dual code oveé%,.
Since D, is generated by codewords with norms divisible by 8 and is self-orthogonal
modulo 4, it follows by induction that the norm of every codeword is divisible by 83
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Remarks

(1) The generalization to block lengthsof the form 21 + 2 whereq is a prime power
congruent to 3mod § is straightforward.

(2) This section began by mentioning a certain binary double circulant8adéengthn.
B is invariant under a permutation gro@y that is isomorphic to PGi(p). Indeed,
we could have started with this permutation representation, and constiziedrms
of the irreducibleG,-submodules.

There are several interesting linear codes @&sethat reduce t& when read modulo 2.
For example, whemp = 11(mod 16 the matrix

1(1 ... 11111 --- 17
3 2
\ : o | b(I +3R)
| : +2N
3 2 i

whereb is +1 or —1, generates a self-dual code o#arwith all norms divisible by 8.

However, the codeB,, are distinguished by reducingfmodulo 2 and by being invariant
under a grou, of monomial matrices that reduces®a when read modulo 2. Recall that
extended quadratic residue codes dgiare related to extended binary quadratic residue
codes in this same way (cf. [2]).

Theorem 10 The automorphism grou@, of D, is a central extension d?GLy(p); the
center ZG,) = {1 }andg,/Z(Gn) >~ PGLy(p). The grou, is generated by the following
automorphisms

1) T = [Td’ 21, where T is the permutation matrix corresponding to-2 z + i,

2) P, = [F(’)é g/], where a is a nonzero square modulp gnd E, is the matrix corre-
sponding to the permutation2 az,

(3) S=] Pol Pal], where P, is the matrix corresponding to the permutatiorz —z,

@ 1 = [’\01 ;’2], where (using O to indicate a nonzero square mod and 71 for a
nonsquare mod

) |f|=oo,j=0’
. ifi=0,j=oc0,
(Aij = ifi =0andj = —1/i,

ifi = handj = —-1/i,
otherwise

OF WwE



DOUBLE CIRCULANT CODES OVERZ, AND EVEN UNIMODULAR LATTICES 127

and
3, ifi=o00,j=0,
1, ifi=0j=o00,
(A2)ij =13 Iifi=0andj =-1/i,
1, ifi=pandj=-1/i,
0, otherwise

Proof: Again we give details only fop = 3(mod 16. Itis clear that the transformations
Ti,i=0,1,..., p—2andP,, a = 0O, are automorphisms d,.
Next we consider

MM = |~ ,

where

B=(P;+3RP;+2NP )" +3P, + RP,+2NP,.

SinceP’;NP’, = R, it follows that M(MS)T = O(mod 4. Hence the rows oMS
generateD, andSis an automorphism db,, as required.

Since the rows oM SgenerateD,, we may prove that is an automorphism by showing
that(MSA)MT = O(mod 4. There are several different cases: we shall only present a
typical calculation to show the general method. We consider the inner prodivtt (8
with M, wherea = 1 anda+1= @ (the same argument applies(d, Sk, M,) where
b is an arbitrary nonsquare).

My=@1 0 --- 0 1] 0 3 3 2 )
oo 0 a+1l=0 a+1#0O

M;S=@© 3 -~ - - | 3 030 0)

oo 0 1 -1

M_;SA=1 0 --- - - | 0O 1 0 0 1)

oo 0 1 -1

Next we take the inner product witfl,; note that(Mz)o = (M,)_1 = 3 sincea = i and
a+1l= 1.

Mg=(¢(1 O -.---01O0..-01] 03 .. .. 3)
o0 a 0 -1

We need to calculatéM_; Sk),, where the subscrigt indicates the left half. We know

1 L+1
a:zzm and a—i—lz%:m-
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If (M_1S\), = 1then(M_; Sk, My) = 0(mod 4, asrequired. Sinde= 71, (M_;Sk), =1
if and only if (M_;S)_,, = 3. Finally(M_;S)_, = 3ifand only if (M_;),, = 3, and this
follows from the assumptiof+ 1 = ©. O

4. The casen = 40 and a 40-dimensional even unimodular lattice

Theorem 11 In the case p= 19, the code Q defined by3.1) is a self-dual code of
length 40 ovefZ, with norms divisible by and with minimal norni6.

Proof: In view of the results of the previous section it is only necessary to show that the
minimal norm is not 8. In this proof we denote the code®y We show by computer
that the binary imag€; (see (2.1)) is a [4®0, 8] code, in which there are 285 words of
weight 8. By Lemma 1, this also holds fG%.

Letu € C, u # 0 have minimal norm. If all coordinates ofare even, norru) > 32, by
the previous paragraph. Otherwis@as exactly eight-1 coordinates and some unknown
number of 2 coordinates. The vectorsGrof shapet182*0* fall into 285 sets according
to their binary image. The following argument shows that the group aéts transitively
on these 285 sets.

It is easy to verify that the vectargiven by

c=(3 ---111-]01 3 003232 20
00 ---2314. 0

0
1 10 11 12 13 14 15 16 17 18

22020000
23456789
is a codeword irC. The permutation grou@ obtained from the automorphism group®f

by reduction modulo 2 is isomorphic to P&IL9) and has order 209.18 = 28524. This
permutation group is in fact the automorphism group of the binary code obtaine€flym
reduction modulo 2. LeS = {oo, 2, 3., 14, Og, 10R, 13g, 15r} be the set of coordinate
positions indexing entrieg1 in the codeword (the subscripté andR correspond to Left

and Right coordinate positions). It is sufficient to prove that the subgroup &abf G

that fixesS setwise has order exactly 24. We observe that this subgroup contains a group

of order 24 generated by the following automorphisms:

1) a symmetryg; corresponding t@ — 1/z which interchanges the left and right halves
because the underlying permutation is not in R3B),

2) a symmetnyg, corresponding ta — 7z which acts as the 3-cycl@, 13, 14) on the left
and as the 3-cycl€lO, 13, 15) on the right,

3) a symmetrygs corresponding t@ — 2(%‘) which acts on the left a0, 15)(10, 13)

and on the right ago, 2)(3, 14). ’

The subgroup generated lgy and gz has order 12 and is isomorphic to the alternating
group Ay (this is clear from the action on either half). |Btalks; (S)| > 24 then there must
existgs € Stals (S), fixing the left and right halves, such thi@b, gs, 94) is isomorphic to
the full symmetric groufs;. However, this provides a contradiction since it is not possible
to realize(c0)(2)(3, 14) as a permutation in P$L19).
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We now chose one vectare C of shapet182*0*, and examine the s@ti + 2c: ¢ € C}
by computer. It is found that the minimal Lee weight is 20, achieved by 512 vectors of
shapet182801°. These vectors have norm 32, which is therefore the smallest norm in the
set. This completes the proof. O

We had hoped to use Corollary 5 to determine the s.w.B4ef As we see from (2.11),
there are 14 degrees of freedom in the s.w.e. Unfortunately, even using everything we know
about this code (minimal Lee weight, the projections onto the binary cogdasdC,, com-
plete information about the words of shap&®2+0*, the theta series of the corresponding
lattice—see below), there still remains one undetermined coefficient. Any further piece of
information, such as knowledge of the words of shayi?2*0*, would be enough to pin
down the s.w.e.

We now use this code to obtain a lattice, by using the following version of Construction
A4 (cf.[2, 9]). Suppos€ is a self-dual code of lengthoverZ, of type 1"/ with generator
matrix [I A]. Suppose also that all norms@are divisible by 8 and that the minimal norm
in C is N. Then the matrix

17t A
2 [o 4 }
generates an even unimodutedimensional lattice with minimal norm mia, N /4}.
When applied to the codB4 this construction produces an extremal even unimodular
40-dimensional lattice. We do not know if this is the same as any of the known lattices of
this class (cf. [9], p. 194). (But see the Postscript.) It would be a worthwhile project for

someone to investigate the known extremal even unimodular lattices in dimensions 32 and
40 and to determine which ones are distinct.

5. Further constructions for the Leech lattice

There are nine doubly-even self-dual binary codes of length 24 [15]: the Golay code and
eight codes of minimal distance 4. The latter are best described by specifying the subcodes
spanned by the weight 4 words, which ak, diees, d2, dioe?, €3, d3, df andd? (see

Table E of [7]).

We conjecture that each of these nine codes can be lifted to a self-dual cod&,over
such that applying Constructioly, yields the Leech lattice. This would give “Nine more
constructions for the Leech lattice” (compare [8]).

As already remarked, the Golay code can certainly be lifted in this way [2]. We now
show that thal,, code can also be lifted. The other seven cases are still open! (But see the
Postscript.)

Consider the self-dual cod® overZ, with generator matrixI[A], wherel is a 12x 12
identity matrix andA is a 12x 12 bordered circulant matrix with first row and column'2.1
Let B be the 11x 11 circulant part oA. ThenB;; =2, B;; = 1ifi — j isasquare mod 11
or 3ifi — j is not a square. When read mod 2, this does indeed become the self-dual code
of typed,4. Using the Bell Labs Cray Y-MP we calculated the s.w.e. of this code, which in
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the terminology of Corollary 5 is
63 — 840gH16 — 7204 + 206gh16 — 1032305 + 103043,

Inspection of this weight enumerator shows that the minimal Lee weight is 8, the minimal
norm is 16, and all norms are divisible by 8. Applying Constructfgrwe obtain an even
unimodular lattice of minimal norm 4, which (see Chapter 12 of [9]) is necessarily the
Leech lattice.

Note thatC is a double circulant self-dual code ov&r with minimal norm 16 for which
the corresponding binary cod& has minimal distance 4. This is interesting in view of
Bachoc’s conjecture (quoted in [2]) that the minimal norm of an extended cyclic self-dual
code ovelZ, is twice the minimal Hamming distance of the corresponding binary code.

Postscript

(1) Afterthis paperwas written we became aware of the dissertation by Bonnecaze [2] and a preprint by Bonnecaze
et al. [4] which also prove Theorem 4 and Corollary 5 (in a different but equivalent form). We thank Patrick
Solé for pointing this out.

(2) Gabriele Nebe and Bernd Souvignier have determined the automorphism groups of the 40-dimensional lattice
constructed in Section 4 and the McKay lattice ([9], p. 221). These groups are respecti\RBGL2(19)
and 29. PGL,(19), showing that the lattices are not equivalent. Professor Nebe observes that this can also
be deduced from the fact that our lattice is generated by its minimal vectors, whereas in the McKay lattice
the minimal vectors span only a sublattice of index 2. Professor Nebe also found that McKay lattice can be
obtained from a different code ovEy.

(3) The remaining seven constructions of the Leech lattice have been found by Jessica Millar Young and N.J.A.S.
These will be described elsewhere.
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