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Abstract. To each symmetricn × n matrix W with non-zero complex entries, we associate a vector spaceN ,
consisting of certain symmetricn × n matrices. IfW satisfies

n∑
x=1

Wa,x

Wb,x
= nδa,b (a, b = 1, . . . , n),

thenN becomes a commutative algebra under both ordinary matrix product and Hadamard product (entry-wise
product), so thatN is the Bose-Mesner algebra of some association scheme. IfW satisfies the star-triangle
equation:

1√
n

n∑
x=1

Wa,xWb,x

Wc,x
= Wa,b

Wa,cWb,c
(a, b, c = 1, . . . , n),

thenW belongs toN . This gives an algebraic proof of Jaeger’s result which asserts that every spin model which
defines a link invariant comes from some association scheme.
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1. Introduction

A spin model is one of the statistical mechanical models which were introduced by V. Jones
[12] to construct invariants of knots and links. Aspin modelis a tripleS = (X, W+, W−),
whereX = {1, . . . , n}, andW± are symmetricn×n matrices with complex number entries
such thatW+

b,cW−
b,c = 1 for all b, c ∈ X.

Jones gave the following conditions, under which the normalized partition function of a
spin modelS = (X, W±) is invariant under Reidemeister moves of Types II and III.

Type II.
∑
x∈X

W+
a,xW−

b,x = nδa,b, (a, b ∈ X).

Type III.
∑
x∈X

W+
a,xW+

b,xW−
c,x = √

n W+
a,bW−

a,cW−
b,c, (a, b, c ∈ X).

In this paper, we associate a vector spaceN to each spin modelS = (X, W+, W−) as fol-
lows. For eachb, c ∈ X, we consider ann-dimensional column vectorub,c of sizen with x-
entryW+

b,xW−
c,x. ThenN will be the set of all symmetricn × n matricesAsuch thatub,c is an

eigenvector ofA for all b, c ∈ X.
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WhenS satisfies the Type II condition,N is closed under both ordinary matrix product
and Hadamard (entry-wise) product, andN becomes a commutative algebra (with unity
element) with respect to each of these two products. This implies thatN is the Bose-Mesner
algebra of some association scheme. Definitions of an association scheme and its Bose-
Mesner algebra will be given in Section 3. Spin models with the Type II condition are of
special importance for the study of subfactors in the theory of von Neumann algebras (see
[1, 6]).

WhenS satisfies the Type III condition,N containsW+. WhenS satisfies both Type
II and Type III conditions,N is the Bose-Mesner algebra of some association scheme and
containsW+, W−. This gives an algebraic proof of a result by Jaeger [11], which was
obtained by the method of “tangles”.

In Section 2, we show thatN is an algebra with respect to both ordinary product and
Hadamard product whenS satisfies Type II condition. In Section 3, we consider relations
between the algebraN and Bose-Mesner algebras of an association scheme.

For general references about association schemes and their Bose-Mesner algebras, see
[4, 5]. For spin models and related link invariants, see [7, 12]. For spin models constructed
from association schemes, see [2, 3, 8, 9, 10, 14, 15].

2. The AlgebraN

Throughout this note, we fix a spin modelS = (X, W+, W−), whereX = {1, . . . , n}.
For eachb, c ∈ X, we consider ann-dimensional column vectorub,c of sizen with

x-entry

(ub,c)x = W+
b,xW−

c,x.

Let us defineN to be the set of all symmetricn×n matricesAsuch thatub,c is an eigenvector
of A for all b, c ∈ X. Let λA

b,c denote the eigenvalue ofA onub,c:

Aub,c = λA
b,c ub,c.

ClearlyN is a subspace of the full matrix algebraMn(C), andI ∈ N . For A, B ∈ N and
α ∈ C, the eigenvalues ofA+ B andαA are given byλA+B

b,c = λA
b,c +λB

b,c andλαA
b,c = αλA

b,c.
From now on,we assume that S= (X, W+, W−) satisfies the Type II condition.
We need the following well-known fact to show thatN is an algebra with respect to

ordinary matrix product. Here we give a proof to emphasize that this fact follows from the
Type II condition.

Lemma 1 For a fixed b∈ X, the n vectorsub,x, x ∈ X, are linearly independent.

Proof: The matrixU = (ub,1, . . . , ub,n) can be written asU = 1W−, where1 denotes
the diagonal matrix with diagonal entriesWb,1, . . . , Wb,n. Since we haveW+W− = nI
from the Type II condition,W− is non-singular, and henceU is non-singular. 2

In particular, the vectorsub,c, b, c ∈ X, span then-dimensional space. Now it is easy to
prove thatN is closed under ordinary matrix product.
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Lemma 2 For A, B inN , AB = B A ∈ N . The eigenvalue of AB is given byλAB
b,c =

λA
b,cλ

B
b,c.

Proof: We haveAub,c = λA
b,cub,c and Bub,c = λB

b,cub,c. So (AB)ub,c = A(Bub,c) =
A(λB

b,cub,c) = λB
b,c(Aub,c) = λB

b,c(λ
A
b,cub,c). In the same way, we have(B A)ub,c =

λA
b,c(λ

B
b,cub,c). Therefore(AB)ub,c = λA

b,cλ
B
b,cub,c = (B A)ub,c holds for allb, c ∈ X.

This impliesAB = B A since the vectorsub,c span then-dimensional space. SinceA and
B are symmetric and commute,AB is also symmetric, and soAB ∈ N . 2

We have shown thatN is an algebra with unity elementI under ordinary product. Next
we show thatN is closed under Hadamard product. We need the following Lemma. For
two matricesA, B (of any sizes), letA ◦ B denote the Hadamard product ofA and B,
defined by(A ◦ B)b,c = Ab,cBb,c.

Lemma 3 For all n × n matrices A and B, and for all b, c ∈ X,

(A ◦ B) ub,c = 1

n

∑
x∈X

(Aub,x) ◦ (Bux,c).

Proof: Thea-entry of(A ◦ B)ub,c is

((A ◦ B)ub,c)a =
∑
x∈X

Aa,x Ba,xW+
b,xW−

c,x

=
∑
x∈X

∑
y∈X

δx,y Aa,x Ba,yW+
b,xW−

c,y.

From the Type II condition, we have

δx,y = 1

n

∑
z∈X

W+
y,zW

−
x,z.

So the above equation implies

((A ◦ B)ub,c)a =
∑
x∈X

∑
y∈X

1

n

∑
z∈X

W+
y,zW

−
x,zAa,x Ba,yW+

b,xW−
c,y

= 1

n

∑
z∈X

∑
x∈X

Aa,xW+
b,xW−

z,x

∑
y∈X

Ba,yW+
z,yW−

c,y

= 1

n

∑
z∈X

∑
x∈X

Aa,x(ub,z)x

∑
y∈X

Ba,y(uz,c)y

= 1

n

∑
z∈X

(Aub,z)a (Buz,c)a

= 1

n

∑
z∈X

((Aub,z) ◦ (Buz,c))a.

This proves the assertion. 2
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Lemma 4 For A, B ∈ N , and for b, c ∈ X,

(A ◦ B) ub,c = λA◦B
b,c ub,c

holds, where

λA◦B
b,c = 1

n

∑
x∈X

λA
b,xλ

B
x,c.

Proof: For x ∈ X, we have

(Aub,x) ◦ (Bux,c) = (
λA

b,xub,x
) ◦ (

λB
x,c ux,c

) = λA
b,xλ

B
x,c (ub,x ◦ ux,c).

Hereub,x ◦ ux,c = ub,c holds by the definition ofub,c. Then Lemma 3 implies

(A ◦ B) ub,c = 1

n

∑
x∈X

λA
b,xλ

B
x,cub,c. 2

Let J denote then × n matrix, all entries of which are equal to 1.

Lemma 5 J ∈ N .

Proof: Thea-entry of Jub,c is given by

(Jub,c)a =
∑
x∈X

Ja,x (ub,c)x =
∑
x∈X

W+
b,xW−

c,x = nδb,c.

So Jub,c = λJ
b,cub,c holds withλJ

b,c = nδb,c. 2

We have shown thatN is a commutative algebra under Hadamard product with unity
elementJ.

Theorem 6 If the spin model S= (X, W+, W−) satisfies the Type II condition, thenN
is closed under both ordinary matrix product and Hadamard product, and I, J ∈ N .

3. Association schemes

A d-class (symmetric)association schemeon X is a partition of X × X into d + 1
subsetsRi , i = 0, . . . , d, where R0 = {(x, x) | x ∈ X}, which satisfies the following
conditions:

(1) If (x, y) ∈ Ri , then(y, x) ∈ Ri (i = 0, . . . , d).
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(2) For everyi , j , k in {0, . . . , d}, there is an integerpk
i j such that, for everyx, y in X with

(x, y) in Rk,

pk
i j = |{z ∈ X | (x, z) ∈ Ri , (z, y) ∈ Rj }|.

Definen×nmatricesAi , i = 0, . . . , d whose(x, y)-entry(Ai )x,y equals 1 if(x, y) ∈ Ri

and equals 0 otherwise. Then the above definition can be written as follows.
(3) Ai 6= 0, Ai ◦ Aj = δi j Ai , tAi = Ai ,
(4) A0 = I ,
(5)

∑d
i =0 Ai = J,

(6) Ai Aj = Aj Ai = ∑d
k=0 pk

i j Ak.

Let A be the vector space spanned by the matricesAi , i = 0, . . . , d. From the above
conditions,A is a commutative algebra under both ordinary matrix product and Hadamard
product, which is called theBose-Mesner algebraof the association scheme.

It is known (see [5] 2.6.1) that a vector spaceA of symmetricn×n matrices is the Bose-
Mesner algebra of an association scheme onX = {1, . . . , n} if and only ifA is closed under
both ordinary matrix product and Hadamard product, andI , J ∈ A. Theorem 6 together
with this characterization of Bose-Mesner algebras implies the following corollary.

Corollary 7 If the spin model S= (X, W+, W−) satisfies the Type II condition, thenN
is the Bose-Mesner algebra of an association scheme on X.

Now we consider the Type III condition.

Lemma 8 If S satisfies the Type III condition, then W+ ∈ N .

Proof: Type III condition can be written as(W+ub,c)a = √
n W−

b,c(ub,c)a, and so

W+ub,c = √
n W−

b,cub,c

holds for allb, c ∈ X. This means thatub,c is an eigenvector ofW+ with the eigenvalue√
n W−

b,c, so thatW+ ∈ N . 2

Remark It is known (see [12]) that, assuming the Type II condition, the Type III condition
is equivalent to∑

x∈X

W−
a,xW−

b,xW+
c,x = √

n W−
a,bW+

a,cW+
b,c.

As in the above proof, this equation shows thatuc,b is an eigenvector ofW− with the
eigenvalue

√
n W+

c,b. So, if S = (X, W+, W−) satisfies both conditions of Types II and III,
thenW− belongs toN .
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Theorem 6 and Lemma 8 imply the following result by Jaeger.

Corollary 9 (Jaeger [11]) If a spin model S= (X, W+, W−) satisfies the conditions of
Types II and III, then there is an association scheme whose Bose-Mesner algebra contains
W+ and W−.
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