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Abstract. We give a simple combinatorial proof of Ram'’s rule for computing the characters of the Hecke Algebra.
We also establish a relationship between the characters of the Hecke algebra and the Kronecker product of tw:
irreducible representations of the Symmetric Group which allows us to give new combinatorial interpretations to
the Kronecker product of two Schur functions evaluated at a Schur function of hook shape or a two row shape.
We also give a formula for the regular representation of the Hecke algebra.
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1. Introduction

Frobenius began the study of the representation theory and character theory of the symmetr
group S¢ at the turn of the century [5]. There is one irreducible representatio® of
corresponding to each partitianof f. Frobenius gave the following remarkable formula

for the irreducible characters of the symmetric groupp,Jfdenotes the power symmetric
function ands, is the Schur function, then

P =) x&(Ws. @)

AEf

Wherexgf (w) is the value of the irreducible characb@f(u) evaluated at a permutation of
cycle typeu ([13] | Section 7 and [12] contain proofs of this formula which are essentially
the same as that of Frobenius). This formula can be used to give a combinatorial rules
often called the Murnaghan-Nakayama rule, for computing the irreducible characters of the
symmetric group.
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A Frobenius type formula for the characters of the Hecke algeki@) was derived in
[14] by studying the Schur-Weyl type duality between the Hecke algebra and the quantum
groupUq(st(n)). Theg-extension of the Murnaghan-Nakayama rule was also given in
[14]. It was derived there through a connection between the irreducible characters of the
Hecke algebras and Kronecker products of symmetric group representations. For eacl
partition . of f there is a symmetric functioq, (depending o) such that for certain
special element$, € Hy

G = xi, (TS, @)

ukf

Wherex,ﬂ|f denotes the irreducible character of the Hecke algebrasargithe ordinary
Schur function. By specializing = 1 in (2) one gets the classical Frobenius formula (1).

In this paper we begin with the Frobenius formula (2) derived in [14]. Using this for-
mula we give a direct proof of the combinatorial algorithm for computing the irreducible
characters of the Hecke algebra by using the Remmel-Whitney rule for multiplying Schur
functions. The Remmel-Whitney rule is a version of the Littlewood-Richardson rule which
is particularly nice for our purposes.

Following the proof of the combinatorial rule for the characters of the Hecke algebra, we
derive explicitly the connection between the Hecke algebra characters and Kronecker prod
ucts of symmetric group representations which came into play in [14]. By understanding
this connection one gets a combinatorial rule for computing Kronecker coeffigignts
wherev is the partition(1f~™m), for somem. Furthermore one finds that this approach can
be generalized to compute Kronecker coefficients for other cases. We work this out explic-
itly to give a combinatorial algorithm for computirg,,, in the case where = (f —m, m).

In the most general form, this approach gives a new proof of the Littlewood-Garsia-Remmel
formula [6] which is particularly painless.

In the final section of this paper we give two further applications of the Frobenius formula:

(1) We compute explicitly the character of the regular representRtadthe Hecke algebra.
The formula is

flg—1"*

R
x (T, = ,
7 patpa! e !

(2) We compute explicitly the generic degrees of,Gl).

A combinatorial proof of the rule for computing Hecke algebra characters has also been
given by van der Jeugt [20] by using the version of the Littlewood-Richardson rule given
in [13]. One can also give a combinatorial proof of the rule for computing Hecke algebra
characters which avoids the use of the Littlewood-Richardson (see the remark in Section 2)
Some of the methods used in this paper have been used in [18] to obtain further results ol
Kronecker product decompositions. The formula for the trace of the regular representation
of the Hecke algebra is, to our knowledge, new. The generic degrees,ofF Glare well
known, only the approach is new. For further background on generic degrees see [3] and [8]
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2. The Frobenius formulas and Murnaghan-Nakayama rules

We will use the notations in [13] for partitions and symmetric functions except that we will
use the French notation for partitions. In particulak, i§ a partitionA = (0 < A3 < A, <

- < Ag), then the length of, ¢(%), is the number of parts;, the weight ofy, |A|, is the
sum of the parts, and we write- f to denote that is a partition off, i.e.,|A| = f. We
let F;, denote the Ferrer’s diagrams.ofvhereF; is the set of left justified rows of cells or
boxes witha; cells in theith row from the top foi = 1, ..., £. ' denotes the conjugate
partitiontor. If A =0 <A1 <---<Apandu =0 =< puy <--- < ux), then we write
ACuif e <kandip_j < uk_ifori =0,...,¢£—1. If x C u,thenu — A is the set of
boxes in the Ferrers diagram@that are not contained in the Ferrers diagrar.dfx — A|
is the number of boxes containedin— A.

Let S¢ denote the symmetric group of permutationsfafymbols and denote the group
algebra of the symmetric group ov€rby CS;. CS; can be defined as the algebra ofer
generated b, S, ..., Sf_1, with relations

ss; =sjs, ifli—j|>1 3)
SS+1S = S41SS+1, (4)
=1 (5)

Heres may be thought of as an element &f by identifyings with the transposition
@i,i +1). The irreducible representations 8f are indexed by partitions of f and we
shall denote the corresponding irreducible character;sgb.y

The Hecke algebr&d s (q) is the algebra ove€(q), the field of rational functions in a

variableq, generated by, @, ..., g;_1 with relations
g9; =0jg, ifli—jl>1 (6)
G0i+19 = gi+10idi+1 (7)
¢ =@-1g +q. (8)

The irreducible representations df (q) are also indexed by partitions dfand we shall
denote the corresponding characters(hy.

Leto € S;. A reduced decomposition ef is an expressionr = §,S,---S, with k
minimal. k is called the length o and denoted by (o). To each permutatioa € S
we associate an elemeff = g;,0i,--- 0i; € Ht(Q), whereo = s.,S,--- S, is areduced
decomposition of. It is well known that each elemeiit. is independent of the reduced
decomposition o& and that the set of elemerif§, }, s, form a basis oH+ ().

Let y; be the permutation ity given byy; = s_1S_2---S. Thus in cycle notation,
v = (r,r —1,...,1). For any partitionu = (u1, uo, ..., ux) of f one has a natural
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imbedding ofS,, x S,, x --- x §, into S; under which we can view the element

Y = VYur X Yua X000 X Vi )

as an element db;. Thus in cycle notation

)/M:(/Ll,...,1)(M2+/L1,...,1+/L1)---(f,...,l-i—z,ui).

i<k

T,, is the corresponding element bff; (). Since any permutation € Sf is conjugate
to ay, for some partitiori, we have that for any charactgg, of St, xs, is completely
determined by the valuegs, (y,). We shall sometimes writgs, (1) for xs, (y,). The
following theorem is proved in [14].

Theorem 1 Any character xy, of H:(q) is completely determined by the values
XH{(T)/,,)'

Let X1, X2, ..., Xn, (n > f), be independent commuting variables. A column strict
tableau of shape is a filling of the Ferrers diagram of with numbers from the set
{1, 2,..., n} such that the numbers are weakly increasing in the rows from left to right and
strictly increasing in the columns from bottom to top. Similarly, a row strict tableau of
shape is a filling of F,, with numbers from{1, ..., n} such that the numbers are weakly
increasing in columns from bottom to top and strictly increasing in rows from left to right.
The weight of a column strict tableduis given by the product

n
xT=]]x
i1

wheret; is the number of's appearing in the tableall. The Schur functiors, is defined

by
S, = E XT,
T

where the sum is over all column strict tableaux of shapendx™ denotes the weight of
the tableadr .
For each integer > 0 define the power symmetric functiop,, by

Pr= Pr(Xe, X2, ..., Xn) = X3 + Xp 4 + Xy,
and for a partitionn = (1, u2, ..., uk) define
Pu = Pruy Pz -+ Pru-

TheFrobenius formuldor S¢ is

Py = Z x& (WS (10)

AEf
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Define, for each integer > 0,

G=G0... %)= Y q=Oq-nNDxx,..x (11)

T=(ig,....ir)

where the sum runs over all weakly increasing sequerﬁceSls i1<---<ir<n
and N_(i) =|{j <r:ij=ijs1}l and N_(i) =|{j <r:ij <ij41}|. For a partition
I’L = (l’l’la MZ? M Mk)l Iet

O = Oua Oz~ * - (12)

Note that forg = 1, § = pr andq, = p,. TheFrobenius formulafor the irreducible
characters ofH (q) is

Q= xir (Ty,)s. (13)

A-f

(see [14)).
The following algorithm for computing the valueps\é;f (), called the Murnaghan-
Nakayama rule, can be derived from the Frobenius formula ([13] | Section 7 Ex. 9, [12]).

X§ (w) =Y wt(T), (14)

T

where the sum is over ajll-rim hook tableauxT of shaper. Here a rim hook of is a
sequence of cells along the north-east boundarif,ofo that any two consecutive cells
in h share an edge and the removal fréin of the cells inh leaves one with a Ferrers
diagram of another partition. See figure 1 for a picture of all rim hooks of length 3 for
Ar=(2,22,34%.

If wu =0 < ug <--- < uk), au-rim hook tableaul of shapex is a sequence of
partitions

T=@=29cA®c...ca® =)

—

Figure 1L Rim hooks.
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suchthatforeach i <k, A® —x0-Disarimhook forr(’ of lengthu;. The weight
of a rim hookh is

wi(h) = (=1)"™-1 (15)

wherer (h) is the number of rows ih and the weight oT is
k . .
wi(T) = [ [ wta® = 20D). (16)
i=1

There is also a@-extension of the Murnagham-Nakayama rule giving a combinatorial
rule for computing the value@if (T,,) derived in [14].

xh (Tn) = ) wig(T) (17)
T

where the sum is over gll-broken rim hook tableauXk of shape.. Here a broken rim hook
b of A is a sequence of rim hookhy, ..., hg) of A (starting from the bottom) such that for
alll <i < d, hj andh;,; do not have any cells in common nor are there azlls h; and
C; € hi;1 such thatc; andc, meet along an edge. We leth) denote the number of rim
hooks inb. See figure 2 for a picture of a broken rim hdokf A = (2, 2, 3, 3, 7) where
n(b) = 3.

Note that any rim hook of is a broken rim hookb of » wheren(b) = 1. Then if
w = (u1, ..., 1k, au-broken rim hook tableall is a sequence of partitions

T=0=22ca®c...ca®)

such thatforeach £ i <k, A" — 10D is a broken rim hook of£®") of total lengthu;. In
this case the weight of a rim hodkis

Wig(h) = (=1)" M-1geM-1 (18)

h3

1
T

hl

Figure 2 A broken rim hook.
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wherec(h) is the number of columns ¢f. The weight of a broken rim hodkis

Wig) = (@ - D"t [T wig(h). (19)

rim hooksheb

For example the weight of the broken rim hook tableau pictured in figure(@ is 1)
(—9)(—1)(g® = (g — 1)%g°. Finally the weight ofT is

k

Wig(T) = [ [ wig® —247D). (20)

i=1
We note that a more succinct way to describe broken rim hooks and rim hooks is the
following. A skew shape. — u is a broken rim hook i — p contains no 2« 2 block of
boxes and. — w is a rim hook ifA — i contains no Z 2 block of boxes and itis connected
in the sense that any two consecutive cells ef i« share an edge.
Finally, we note that if we sef = 1 in (19), then the weight of a broken rim hobk
is nonzero only ifo is a rim hook. Thus wheqg = 1, the righthand side of (17) reduces
to the righthand side of (14) and hence thextension of the Murnagham-Nakayama rule
reduces to the Murnagham-Nakayama rule.

3. The combinatorial rule for the irreducible characters of H¢ (q)

In this section we will give a proof of the combinatorial rule described in (17) for computing
the irreducible characters of the Hecke algebra by using the Frobenius formula and the
Remmel-Whitney rule for multiplying Schur functions.

The Remmel-Whitney algorithm [19] for expanding the product the Schur funcgjons
ands, as a sum of Schur functions is the following. Place the shamesdv end to end so
that the lower right corner af is touching the upper left corner pf Fill the resulting dia-
gram, which we shall calD, from right to left and bottom to top with the numbers 140+
|v]. Forexample, inthe case where= (2, 4, 4) andv = (1, 3, 3), D is pictured in figure 3.

17
16 |15 (14
13 (12 [ 11

10 |9

Figure 3  Filling for u = (2, 4, 4) andA = (1, 3, 3).
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then in T, we have:

. Ifin D, we have:

(1) -

[x+1 [x ] XWy//////j///l/////////////

=]
\

1 L

Figure 4 R-W conditions.

This given, one constructs all tableatix(fillings of Ferrers diagrams with the numbers
1to|u| + |v|) that satisfy the following rules.

(1) x is weakly below and strictly to the right ofin T if y is immediately to the left ok
in D.
(2) vy is strictly above and weakly to the left @fin T if y is immediately above in D.

Any standard tableauX satisfying (1) and (2) is calle®-compatible and the number of
D-compatible tableauX of shapex is the coefficient of, in s,s, which we denote by
ch .
MThe two conditions (1) and (2) may be conveniently pictured as in figure 4.
One further remark about the Remmel-Whitney algorithm is to note that the rules (1) and
(2) will completely force the placement of the numbers in the lower Ferrers diagrém of
Thatis, ifu = (u1 < --- < k), then in allD-compatible tableaux,,1. ., uy lie in the
firstrow, w1 + 1, ..., u1 + uo lie in second row, etc. Hence the numbers.1, || will
fill a diagram of shape in all D-compatible tableaux.

The first step in proving (17) is to give the expansion of the funafjodefined by (11)
as a sum of Schur functions.

Theorem 2 Let s, denote the Schur function and ptbe as defined ii11). Then
r
G = (—D""q" sgmm. (21)
m=1

Proof: Define a marked increasing sequence of lendgthbe a sequende= (i, iy, ...,
ir), 1 <ii <iz--- <iy <nsuchthateach is either marked or unmarked according to
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the following rules.

(1) i1 is unmarked.

(2) fij =ij41thenij;1is unmarked.
(3) Ifij <ij41thenij;1 may be either marked or unmarked. ]
Given a marked increasing sequerice= (iy, iz, ...,ir), letU(l) = # of unmarked

elements of andM (1) = # of marked elements ¢f Then we define the weight ofto be
wt(l) = q¥OH =DM Dx;,x;, -+ X,

It is easy to see from (11) that
G =y wtl),
|

where the sum is over all marked increasing sequences of length
To each marked increasing sequericwith m unmarked elements, we associate the
column strict tablead of shape(1'~™, m) containing

(1) i1 in the corner square.
(2) the unmarked elements bfin the horizontal portion of1"~™, m), and
(3) the marked elements ofin the vertical portion of1"~™, m).

See figure 5 for an example of this correspondence where we have underlined the marke
elements.

This gives a bijection between marked increasing sequences of leagthcolumn strict
tableaux of shaped"~™m). We have

G =) wih=) (=1"g" Y x
| m=1 T

r
=Y D" samm
m=1

[SIN BN e

—

1=11122334566 — ol 2 s |3 |5 e |

Figure 5 The column strict tableau of a marked sequence.
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where the inner sum in the second line is over all column strict tableaf shape
(1™ m). ]

Theorem 3 The irreducible characters of the Hecke algebra are given by

xi (Ty) = D wig(T),
T

where T, is the element of H(q) described in Sectioh and the sum is over ajt-broken
rim hook tableaux T of shapg and wt;(T) is as defined irf20).

Proof: Let v be a partition. We use the Remmel-Whitney rule for multiplying Schur
functions and the formula (21)

r

G =Y =D"q" sanm),

m=1

to compute the produdjs,. In order to compute the produ¢t-1)""™q™ 1sqr-m ms,
easily, modify the Remmel-Whitney rule slightly so that the boxes in the vertical part of
(1'-™, m) have a weight of-1 and the boxes in the horizontal part have weight et the
corner box of(l"~™, m) have weight 1. ]

Now compute the coefficient o in Sar-m m)S,. Note that by our remarks following
figure 4, when one applies the Remmel-Whitney rule, e@mgompatibleT must contain
the shape of. Moreover, itis easy to see that the R-W conditions (1) and (2) corresponding
to the elements ob in the hook(1'~™, m) force thath — v does not contain any 2 2
block. Thus the coefficient &, in Sir-m m)S, iS zero unless. 2 v andi — v is a broken
rim hook. Moreover ifT is a D-compatible tableau of shapeandd denotes the elements
of T which lie in the shapa — v, then

(i) any boxiné which has a box to its right must be filled with an element in the horizontal

part of (1'~™, m) in D,

(ii) any box in6 which has a box i under it must be filled with an element which lies
in the vertical part of1'~™, m) in D,

(iii) the lowest and rightmost box if must be filled with the element in the corner box of
A"~™ m)in D,

(iv) any box of6 which has neither a box @f below it or to its right could be filled with
either a box from the horizontal or the vertical part(@f~™, m) in D depending on
the value ofm and the placement of the other elements.

In fact, it is easy to see that if we placecfor corner),m — 1 h’s (for horizontal), and

r —mo’s (for vertical) in the diagram of following rules (i)—(iv) above, then we can easily
reconstrucd by filling the box with ac with the element in the corner element@f™, m)

in D, filling the boxes withh’s from right to left with the elements in the horizontal part of
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17
16 |
15
14
13
12| o fo [8 e

15
10

D T must be

:r<l<|

Figure 6 Correspondence fa@1)" " g™ sr-m ) Sy.

(™" n) in D, and filling in the boxes with's from bottom to top with the elements in
vertical part of(1™", r) in D. See figure 6 for an example.

Now suppose. 2 v andx — v is a broken rim hook. It then follows that if we compute
the coefficient; of s, in s, = Z[nzl (=D'™Mg™154r-m mS,, thenc, equals the number
of all fillings of A — v with h’s, v’s, and 1c such that

(I) any box of A — v with a box to its right must be filled with ah and hence have
weightq,
(I1) any box of > — v with a box of» — v below must be filled with @ and hence have
weight—1,
(1l the lowest and rightmost box must be filled witkand hence have weight 1, and
(IV) any box of A — v with neither a box of. — v below it or to its right can be filled with
either arh or av and hence contributes a factorgf- 1 toc;,.

Note that the boxes df — v which satisfy condition IV above are precisely the lowest and
rightmost cell in a rim hook; which lies strictly above the lowest rim hodlg of A — v. It
thus follows that ik — v = (hq, ..., hy) wherehq, ..., hy are the consecutive rim hooks
of A —v starting from the bottom, then

k
G = (=D ™ @)™ [ (@ - D= ™ igen
j=2

— (q _ 1)“()»—1))—1 1—[ (_1)r(h)—l(q)c(h)—1 — Wtq()\, _ V).

rim hook hex—v
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Thus we have proved that

Gs =) Wa( —v)s,, (22)

A

where the sum is over all partitionssuch that. — v is a broken rim hook of lengthand
the weight wg (A — v) of the broken hook — v is as in (19).
We know that

G =Y xii, (Tn)s. (23)

A-f

and that

On = O Opez - Q-
The theorem follows by induction on the lengthof O

Remark The proof of (17) given in this section is probably the most straightforward
combinatorial proof if we allow the use of the Littlewood-Richardson rule. However one
can avoid the use of the Littlewood-Richardson rule and use only Pieri’s rules for expanding
the products s, andsirs, as a sum of Schur functions by using the identity

;
Samm = > _ (=D e i (24)
k=m
which implies that

_ 1 _
g = m Z hme& —m(—=1)"""g™. (25)

using (25) to express the prodwgt g, - - - Gm,, One can easily derive formula (6.4) of [14]
and then follow the proof of [14] to derive Theorem 3. Moreover one can derive Theorem 3
without any use of Pieri’s rules or the Littlewood-Richardson rule.fsing manipulations,

see [15].

4. X-ring notation for symmetric functions

In this section we introduce thering notation for symmetric functions. This notation
is the primary tool for deriving the connection between the Hecke algebra characters anc
Kronecker products of symmetric group representations. See [10] and [11] for more details
on A-rings.

An alphabet is a sum of commuting variables, so that, for example,x; + X, + - - -
+ Xy, is the set of commuting variablas, X, . .., Xs. In this notation, ifX = X3 + X+ - - -
+XpandY = y1 +Yyo+- - -+ Yo thenXY represents the alphabet of variabigsy; }1<i j <n.
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For each integer > 0 the power symmetric function is given by

pr(0) =0,
pr(x) =X,
Pr(X+Y) = pr(X) + pr(Y),
Pr (XY) = pr (X)pr (Y),

wherex is any single variable anX andY are any two alphabets. For each partition
w= (1, L2, ..., ug) define

p;/.(X) = pp.l(x) pﬂz(x) T p,uk(x)~

Note that the above relations imply

Pr(=X) = —pr (X),
Pu(XY) = pu(X)pu(Y),
wherer is a positive integery is a partition andX andY are arbitrary alphabets.

If p is a partition andm; is the number parts ofp equal toi, then we let
z, =1M2™...mylmy! - - - and define the Schur function by

x&, ()
500 =) = p,(X) (26)

pHIA] »

Note that (26) is a generalized Frobenius formula. Define the skew Schur fusgtjoX)
by

Su(X) =Y ¢, 5(X). (27)

v

wherec}w are the Littlewood-Richardson coefficients computed by the Remmel-Whitney
rule in Section 2. Then we have the following properties of Schur functions, see [13].

$.(X)8,(X) = Y ¢,5.(X) (28)
A
SX+Y) =) 5,(X)s,(Y) (sumrule (29)
HEA
Su(—=X) = (=D)*s (X)  (duality) (30)
SUXY) = ZKWUSM(X)SU(Y) (product rule (31)
W,V

In (31), ;. is the Kronecker coefficient which is equal to the multiplicity of the irre-
ducible representatioA* of the symmetric group in the Kronecker produdt. x A”, of
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the irreducible representatiodg’ and A’ and is defined by

x& (0)xs, (0)x8, ()

Ky = E
4
P

pf

Define the homogeneous symmetric function by
hr(x) == S(f)(x)a
for integers > 0, and

hu(x) = hul(x)huz(x) e huk(x)’

for partitionspu = (1, u2, ..., uk). For each pair of partitions and . define numbers
-1
K. by
S0 =Y hu (XKL (32)
2

The numberﬁ(l:kl have the following combinatorial description (see [4]):

Given partitionsu C A, we say thak — p is a special rim hook ik — w1 is a rim hook
and) — u contains a box from the first column bf A special rim hook tableali of shape
A is a sequence of partitions

T=@=22ciPc...ca®=xn

such that for each k¥ i < k, A0 — 20- is a special rim hook o£®. The type of the
special rim hook tableali is the partition determined by the integex§’ — 20—V |. The
weight of a special rim hook; = A1 — A0~ is defined to be wh;) = (—1)'™ -1 asin
(15) and the weight of is defined to be

wt(A® — 20Dy, (33)

k
WH(T) =

=1

Then

Kb = wi(T), (34)
T

where the sum is over all special rim hook tableduaf shape. and typeu.
By (31) and the fact tha; ;) = 8.

he (XY) =D 5,008,(Y), (35)

u=r
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and from (29)

he(X+Y) =Y hn(X)he m(Y).
m=0

5. Kronecker products
We now have the machinery to develop the connection between the characters of the Heck

algebra and Kronecker product decompositions. We recall two lemmas from [14]. Our first
lemma easily follows from the sum formula (29).

Lemma4 Lett be avariable and a partition of f. Thenin A-ring notation

[a-vEnt-m ifa=@"~™ m) forsome m>1;
S(1-b= { 0, otherwise (36)
Lemmab5 In A-ring notation
B q‘ll| _1
0.(X;q) = mhu(x(l -q7)), (37)
where h, denotes the homogeneous symmetric function.
Proof: Combining (35) and (36) we have
h(XAL—g™) =) s(X)s.1—-q™h
ukEr
;
=Y sammX)qH M@ -gh.
m=1
If we multiply both sides byy" and divide byg — 1, then by (21)
r r
qq_ T XA—a) =) (=D s m (X) = G (X; Q).
m=1
The lemma then follows from the definitions fof andd,,. O

We note that in light of Lemma 5, we can derive an alternative way to coan(é'y“).
Let

9. (X; @) = h, (X1 - q)). (38)
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0, (X; q) is the Hall-Littlewoodq-function of [13]. Using (29) and (30), we have

a (X;q) = hr(X(l —-q)

=5 (X —=aX)
=Y spX) (=) Psgp(X).
p=0

Thusifu = (0 < p; <--- < ), then

M1 Mk
QuOG @) = Yoo Y (=P (X) -+ S (X)Sara-en (X)
P1= P

0 =0
X o+ S(lukfpk)(X). (39)

Now let

|l

Kiu@ =Y (—a)K], (40)
r=0

whereK;,M is the number of pairs column strict tableaix S) such thafT is of shapey
wherev C A and content® - - - k¥, Sis of shape.’ — v’ and content® - . . kP [A —v| =,
anda; + bj = puj for j = 1,...,k. Here we say a column strict table®has content
1% ... n% ifthere are exactlg; occurrencesafin Pfori = 1, ..., n. Anotherway to view
the pairqT, S) istoreplacesby S whereS results fromSby transposing about the main
diagonal and then replacing each numtarSbyi’. ThenP = T + S is afilling of F; with
regular numbers plus primed numbers such that the regular numbers form a column stric
tableau of shape C A, the primed numbers form a row strict tableau of shapev, and
for anyi, the total number of occurrencesidndi’ in P is uj. Such tableau® are called
(k, k)-semistandard tableau of typeby Berele and Regev [1]. For examplepif= (2, 2)
andi = (1, 3), figure 7 pictures the 122, 2) semistandard tableau of shapand typeu
along with their associated power @fnd shows thaK; , = —2q + 592 — 4q° + g*.

We note that clearlyik,ﬂ(O) = K, . whereK, , is the Kostka number which is equal
to the number of column strict tableaux of shapand content 4t . - . k¥k,

This given, one can apply Pieri’'s rules or the Remmel-Whitney rule to expand the right-
hand side of (39) and derive the following.

Theorem 6

QX ) = Ky u(@si(X). (41)
"

Combining Lemma 5, Theorem 6, and the Frobenius formula, we have the following.
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2 2' 2 2' 1
1 2 1 I 1
1 2' 1 1 1 2 2 1 2 2
q4 _ q3 _ q3 _ qa _ q3
2 2 2' 1 1
2' 1 2 2 1
1 1 1 12 1 1 1 2 2 2
q2 q2 q2 (]2 q2
2' 1
2 2
1 1 1 2
—q —q

Figure 7. (1, 3) semistandard tableaux of type (2, 2).

Theorem 7

B ||

[1e] 1 _
Py _ 9 -1y _ lil—
XH; (Typ.) = 7((:1 ~ D Kpn(@) = = Dt ;_0 (=D g*™ fK;,M.

Proof: By (2), (37), (38), and (41),

[l
; Xﬁf (T)/M) S)‘(X) = q/i(xv q) = mqu(x, qil)
[l _
- m ; Ko (@ H$1(X).

The theorem then follows by taking the coefficientsptX) and using the definition of
K- a
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Theorem 8 Letx;,,, denote the Kronecker coefﬁmeﬂ( 1 the inverse Kostka number
given in(33), and x/;, the irreducible character of the Hecke algebra. Then

Z K- (=D MG =" (@ — DO (T,) Ko (42)
ukf

Proof: Using Lemma 5, (33), and the Frobenius formula (14) we have

S(XA—g™) =) h(XA-g K}

u=f
( )W ]
ukf
1)¢w)
=30 Y S (T s.00KG
u=f AT

On the other hand by the product rule and Lemma (4),

SXA—-a™) =) x5 (X)s,1-q
Ay
f
=3 karms (=g H M1 -q ™).
AT m=1
Setting these two equal and taking the coefficiers,6K) on each side, we have

— 1)tw
Z uxﬁf (T,) Koo = Z Korcat-mm (=47 H ML — g 7.

[l
ukf q

The theorem follows by multiplying each sidepy = q'*! and dividing each side tyy— 1.
a

Recalling that the vaIue,ng( ) andK | ~1 have combinatorial interpretations, given in
Theorem 3 and (34) respectlvely, we get the following.

Corollary 9  The Kronecker coefficiert,, 11-my is equal to the coefficient ofrtin

> (=1'Mg - - 12 Wi (T)Wt(R) (43)

ukf

where the inner sum is over all pai(3, R) consisting of au-broken rim hook tableau T
of shape, and a special rim hook tableau R of shapand typew. The weights wi(T),
wt(R) are as in(20) and (33).
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We note that calculating the polynomial in (42) gives an efficient way to compute the
multiplicity of the irreducible components corresponding to all hook shapes in the Kronecker
product of the irreducible modules corresponding andu. For example, il = (1, 2, 3)
andv = (2, 4), then there are two special rim hook tableaux of shape

R1: RQ: —

wt(Ry) = +1 wt(Ry) = —1

Now R; is of type (2, 4) and there are two broken rim hook tablealix= (9 c 1 ¢
1@ = 1) of type (2, 4) where below we indicate the shap@ by placing 1's in the boxes
of AY and 2’s in the boxes of®@ — 1D,

2 2
2 12 1 2
Tl(l) = |1 I 12 Tz(l) = 1 2 12
wto(TH) = ql(g = 1)(~q)] wig(TsV) = (=1)[(g — 1)(=q)].

There is one broken rim hook table@fp of type (1, 5).

(R

[Ne]
o

23
N,
[
[\
o

Thus for our giverk andv,

> @- 1", (T,) K = (@ = D[-0%(@ = D +q@@ — D] — (q — Dg?

ukf

=-q"+29° - 20 +q (44)

6
6-mm-1
=Y Koasnm (=DM
m=1
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We can then read off from (44) that

Ko =0, k@2 =1 K@y =2
K24 =2, kuazs =1 and k., e =0.

Theorem (8) thus explicitly gives the connection between the irreducible charagters
of the Hecke algebra and the Kronecker coefficieptg - m). Corollary 9 uses this result
to give a combinatorial algorithm for computing the Kronecker coefficiefigs-mm).

One finds that the same type of approach can be used to compute other Kronecke
coefficients. In some sense the Frobenius formula say§ 14t q) is a generating function
for the irreducible characters of the Hecke algebra. In Lemma 5 we found) thés ) can
be described via a homogeneous symmetric function in the alpbatiet g—1). The idea
is to use a homogeneous symmetric function in a different alphabet to compute different
Kronecker coefficients.

We shall work out the case where the alphabeKi{d + t). This example gives a
combinatorial algorithm for computing the coefficieris, wherey is a partition with two
rows. The analogous results to (36), (22) and (43) follow in (45), (46) and (49). We shall,
for the most part, omit the proofs as they are so similar to the previous case.

In A-ring notation,

tmMt™ o4 tf-m i A = (m, f —m) for some
s(l+1t) = O<m< [f/2]; (45)
0, otherwise

Using the sum rule,

h  (X(1+1)) = he (X +tX)

= Z tmhm(x)hr—m(x)-
m=0

It follows then, from Pieri’s rule or the Remmel-Whitney rule, that

he(XAL+t)s,(X) = Y tH s (X), (46)

VCUCA

where the sum is over all sequences of partitiors « C A such that. — pw andu — v are
both horizontal strips and such tHat— v| = r. Here a horizontal strip is a set of boxes
such that no two boxes are in the same column. This leads us to defiftoable strip
tableauT of shape\ to be a sequence of partitions

T=@=29c) D crA@c...caA@® =)
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such that for each k& i < 2k, A" — 20~V is a horizontal strip and such that, for each
1<j =<k [A@ —2@=2] = pu;, wherey = (u1, 2, . .., uk). Define

K .
w:j (T) — l—[ t\A(zkl)fx(zwz)‘. (47)
j=1

Then, forp = (w1, u2, ..., uk),

A= T

hu(XA+1) =) [Z %(T)}sk(xx (48)

where the inner sum is over alldouble strip tableauX of shape.
Evaluatings, (X (1 + t)) by way of the product rule and then using (45), one has

SXAL+1D) = kiys(X)s,(1+1)

Ay
Lf/2]
= Z Z Kuaam, £ —mySi(X) Z t)
AT m=0
1 Lf/2]

=11 Z Z SA(X)(tm_tf+lim)/(vk(m,f—m)-
A m=0

From this one gets that fon < L%J,

S XL+ D) — S, XA+ D = Y Kiam 1-m S (X), (49)
A

wheres, (X(1 + t))|im denotes the coefficient @f" in s,(X(1 + t)). On the other hand,
from (48),

S, (X(1+1) = Z hu (XA +t)K
= Z Z Z wh(MS (XK, (50)

where, as before, the inner sum is ovenaliiouble strip tableauX of shape.. Taking the
coefficient ofs, (X) in (49) and (50) gives

comim = (z wam) K= (2 wam) Ko
n T " T

from which we get the following combinatorial algorithm for computing the coefficients
Kyr(f—m,m)-
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Theorem 10 Let gn(1, v) denote the coefficient oftin

D0 wh(THwR), (51)

u-f (TR
where the sum is over all paik§, R) consisting of au-double strip tableau T of shape

and a special hook tableau R of shapand typex. The weightsv|(T) and wiR) are as
in (47) and (33) respectively. Then

Kyim, f—m) = Cm(A, V) — Cm—1(A, V).

Inview of these examples one would like to find a general method for computing arbitrary
Kronecker coefficients. The general result coming out of this approach turns out to be
equivalent to a theorem of Littlewood and Garsia-Remmel, in fact this approach gives a
particularly nice proof of the Littlewood-Garsia-Remmel result.

The Littlewood-Garsia-Remmel resultis as follows. Define an operagtion symmetric
functions by defining

$.(X) ®8,(X) = Y K38, (X),

where the,,, are the Kronecker coefficients. Extend linearly so tRas defined on all
symmetric functions. In view of (31), we have that

$.(X) ® s, (X) = coefficient of s, (Y) in s.(XY),
and, more generally, for any symmetric functidnXx),
A(X) ® s, (X) = coefficient of s, (Y) in A(XY).

Theorem 11 (Littlewood-Garsia-Remmel) If h, and s denote the homogeneous sym-
metric function and the Schur function respectivéthen
k
h(X) ®5,(X) =Y [ so0p60(X). (52)

(p) =1

where the sum is over all sequences of partitigns= (@ = p© c p® c --- c p® = p)
such thatp® — pl0—V| = ;.

Proof: The proof is by induction on the length pf In view of formula (35),

h (XY) =) 5,(X)s,(Y),

pkr

so thath; (X) ® s,(X) = s,(X) proving the formula whe#i(n) = 1, (u = (1)). O
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Now, letu = (w1, wo, ..., uk) andletic = (uq, 1o, ..., uk—1) and assume that
k—1
ha(XY) =" 55N D T ss050-0(X),
Al poi=1

where the inner sum is over all sequen¢gs= (4 = 5@ c p® c --- c p*D = p)
such thatp® — p@~P| =y, 1 <i <k—1. Then

h(XY) = h, (XY)h(XY)

k-1
= (Z s[(X)s[(Y)> [ Yo s T sﬁm/ﬁm(X)}.

Tk AFIA (p) i=1

Using formula (28) to multiphys, (Y) ands;(Y), we have

k—1
haXV) =" >0 > clis,(Ns 00 D] sporjpen(X).

Tk pHIAL pDp (p) 1=1

Then, using (27) to rewrit® ", cfﬁsr(X) and recalling thap = p*~, one obtains

k—1
hXY) =" 5,(Y) Y 5,500 () Y [ ss0/50-0(X)

P pkDcp (p) i=1
k
= Z Sp(Y)Z l_[ Sy /pi-0(X)
p (p) i=1
and the theorem follows. O

In order to state this result in a fashion similar to the results in (43) and (51) define a
generalu-skew tableau of shapeto be a sequence of partitions

T=0=22cAPc...ca® =)

such thata® — A0V | = 1;, wherew = (u1, uo, . . ., u). Define the weight of a general
u-skew tablead to be

k
wig(T) = Z S0 /ni-0 (X). (53)
i=1

Then we have the following corollary of Theorem 10.
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Corollary 12 Letx,,, be the Kronecker coefficient. They), is the coefficient of g X)
in

>0 wig(THwt(R)

uEf (T,R)

where the inner sum is over all paif¥, R) consisting of a generagk-skew tableau T of
shapei and a special hook tableau R of shap@and typen. The weights wt{T) and
wt(R) are as in(53) and (33) respectively.

Proof: The product rule for Schur functions is

SXY) = Ky S (V)s, (X).
Ay

On the other hand we have, from Theorem 46, that

S(XY) =Y h(XVK, !
"

K
= Z Z SA(Y)Z l_[ SMi)/Mifl)(X)K,:vl,
TR

o) i=1

where the inner sum is over all sequen¢es= (9 = 1@ c A® c --- c 2% =) such
that, for each 1< i < k, |A") — A0-D| = y;. Taking the coefficient 0§, (Y) in each of
these two expressions we have that

DS (X)) =" WK,
y T

n

where the inner sum is over all generakkew tableauX of shape.. The theorem follows
from (34). ]

We would like to point out that although this gives an algorithm for computing the
coefficientsk,,,,, the complexity of these computations can be enormous. In many cases,
these computations can be greatly simplified. For example, Remmel has found explicit
formulas fork ir-m my,(1r-p, p),» @NAK@r-mm ). (p.r—py,2 IN [16] and [17] starting basically from
Corollary 7. Whitehead and Remmel [18], starting from Theorem 10, have developed an
algorithm to ComMput& im,r —my, (p.r—p),» fOr anyx, which will compute such coefficients for
r in the thousands.

6. g-analogues of the regular representation o&

In this section we use the Frobenius formula to give an explicit formula for the character of
the regular representation Biff (q) and to compute the generic degrees of,(&g). Each
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of these computations involves a character of the Hecke algebra whiciramalogue of
the character of the regular representatio®saf First we consider the trace of the regular
representation offi; (9).

Let x R denote the character of the regular representatidi@f)), i.e., the trace of the
action ofH¢ (q) on itself by left multiplication. We want to compute the vane%(TyH),
w = f whereT, is as in Section 1. We will need two facts from the representation theory
of semisimple algebras.

(1) The multiplicity of a given irreducible representatibit in the regular representation
is equal to the dimension of the representatith

(2) The dimension of a representatibnwith charactety is given byy (1) where 1 is the
identity element.

Denote the identity element &f; (q) by 14 and the identity element & by 1s. In the
notation of section 1,1 = Ty(lf) and s = y;1,. One can easily see from the combinatorial
rules for computing characters that the dimension of the irreducible representatietof
corresponding ta. is

di = xf, (1) = x§ (19).
Thus, from (1) above, for the character of the regular representafipn

XR(TVM) = Z Xl):'f (Tylt)d)L

A

=" xh, (T,)x4 . (54)

A

Now, the classical Frobenius formula gives that

S0 =)

pf L

x& (0)

P, (X).

Sincez, = 17 f! = flwhenp is the partition(1)

Xéf (1)
fl

SUX) pyr o0 = (55)

wheres; (X)|p,; denotes the coefficient gh+ in s, (X). Combining (54) and (55) we have
that

XR(TVu) = Z Xl):if (Tyu) f!S)‘(XNplf :

A1

However, by the Frobenius formula this is

xF(T) = F1G.0G Dl (56)
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Theorem 13 If xR denotes the character of the regular representation efcH then for
each partitionu = (w1, uo, ..., uk) of f.

fl(g—1f*

XR(TVM) = 1 1 1
patpal - !

Proof: Lemma 5 gives that

qW|

mhu(x(l —q™).

0.(X;q) =
By the Frobenius formula (27)

b puX( -
h (XA =g Y) = s (XA—q ) = 3 10 2EE=D)

vhr v

From the combinatorial rule for computing the character§Sofone can easily see that
xsf)(y‘,) =1forallvkr. Thus

q|ﬂ| el(_[/“'“) 1
————=[[ ha(X—a™)
(q — 1)tw 1 K

q|li| L)

T @-1w

0. (X;q) =

)3 Py (X(L—q71))

=1 v<')HL. Z @)

w Z Py (X)pyo (L —q7h)
yA0)

ql/tl
GRS

i=1 Oy,

qlul
KRG

vy
1=<i=<t(uw)=k

o P OO Py (X) - -+ Puto (X) Py (1 — aHpe@—g) - pu@-—g?t)

2,02, - Zyk

Sincep,a (X)py@ (X) - - - Py (X) = pary(X) ifand only ifv® = 14 forall 1 <i < €(w)
andz,» = u;i! when v(” = 1M,

q“ pu@-gh
@ =D palpa! - !
gl (1-qghf
S @ =DM pglpgl !

qu(x§ q>|p1f =

Sinceq'*! = qf and¢(u) = k we have that

flq—1'*

R
T, )= -2
1T palpal - !
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Generic degrees of GI(Fy)
Let x' be the character of the Hecke algebtaq) given by

| _fInp, i =AM
X (Ty,) = {O, otherwise 0

where[] =14+q+09?+---+g~tand ]! =[n][n—1]---[1]. The generic degrees of
GL(Fq) are the integerm, such that for every - n

x! (TVM) = Z XI)—\L‘ (Ty,l)m»

AN

Background on generic degrees can be found in [3] and [8]. Although we do not need to
know the origin of the character' for our computations we would like to motivate, very
briefly, their definition. LetG = GL,(Fy) whereF is the finite field withq elements.
Let B be a Borel subgroup d& (for example, the upper triangular matrices in/{@Ey)).

Let I be theG module given by inducing the trivial representation®fo G. There is an
action of H,(q) on | such that the actions dfi,(q) and of G on | each generate the full
centralizer of the action of the other in Efigl. The charactey' is the trace of the action

of the Hecke algebra ohand them;, are the dimensions of the irreducible representations
of GLn(IFq) appearing irl .

The trick to computing then, by using the Frobenius formula is to recognize tpt
is a Markov or Ocneanu trace for the Hecke algebra. For ealIt there is an Ocneanu
tracex* on Hn(q), defined inductively using the inclusiomt (q) € Ha(q) C - -+, by

x*An) =1,
x2(ah) = zx*(h) ifh e He(q).

Here 1,4 denotes the identity element of the Hecke algebra andght< k < n — 1, are
the generators dfi,(q).

King and Wybourne [9] and Gyojia [7] have proved the following result (see also [14]
for a proof). Letu be a partition oh. Then, ini-ring notation

P AT
() =2 —a (477 =

wherew =1—q+z.
Applying the Frobenius formula to (59) we have that

_ w—12Z
x(T) = q“<1—t1)

Xﬁn (Tyu)s}‘<1:f__qz> (59)

Al

T

n
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Itis shown in [13] | Section 3 Ex. 3 that

w—Zz _ wqi_l—ij_l
s(1=¢)=I1 "= (€0)

(i.))er

where(i, j) € A denotes the box in theh row and thejth column of the Ferrers diagram
of A and

h(, j)=nr—i+21;—j+1,

Ai being the length of theth row of A andA] the length of thejth column ofi. For each
partitionx define the polynomiaH”(q), ag-analogue of the product of the hooks, by

1—qgh@:h
H (@) = —_
(i.lj_)[ex 1-q
Theorem 14 The generic degrees of G(F,) are given by

q"*[n]!
H*(q)

m; =

2(r)
where (x) = > (i — ;.
i=1

Proof: From the definitions of thg' and the Ocneanu trace we have
XI (TVM) = [n]l XO(T}’M)

for all u partitions ofn, x° being the Ocneanu trace foe= 0. Thus, from (60) and (61)

_ i-1__ Ayi-1
X (T =[S (T, [T Eo9re -0

*n (i.])er 1—gnt-h
q-t1l-q
= Z Xt (Ty, ) [n]! H 1—qGh U
AEn (i,])er

Remark It follows easily from (57) and (58) that, for the charactgfsandy ' of H¢ (q),

. . fl, ifu=@1";
R _ I _ ) w ;
é@lx (Tn) = é@lx (Tn) = {0, otherwise
This shows that the regular representatidaf H; (q) and the representatidnof H (q)
on the induced representation from a BdBaio G = GL ¢ (Fy) are bothg-analogues (dif-
ferentg-analogues!) of the regular representation of the symmetric gBpup
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