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Abstract. We study flat flag-transitive.c*-geometries. We prove that, apart from one exception related to
Sym(6), all these geometries are gluings in the meaning of [6]. They are obtained by gluing two copies of an
affine space over GB). There are several ways of gluing two copies of thdimensional affine space over
GF(2). In one way, which deserves to be called the canonical one, we get a geometry with automorphism group
G = 2%". L,(2) and covered by the truncated Coxeter complex of pe. The non-canonical ways give us
geometries with smaller automorphism gro@£ 22" - (2" — 1)n) and which seldom (never ?) can be obtained

as quotients of truncated Coxeter complexes.
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1. Introduction

We follow [21] for the terminology and notation of diagram geometry, except that we use the
symbol Au(I") instead of Au(I") to denote the group of type-preserving automorphisms
of a geometry".

A c.c*-geometryis a geometry with diagram as follows:

c c*

1 S 1
points lines planes

(c.c)

wheres is a positive integer, called treder of the geometry. We recall that the stroke
c

1 S

means the class of circular spaces v&ith 2 points and
C*
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has the dual meaning. We also recall that a circular space is a complete graph with at leas
three vertices, viewed as a geometry of rank 2 with vertices and edges as points and lines
respectively. Thus, given a s¥tof size|V| > 3, a group of permutations &f is flag-
transitive on the circular space with set of poixt§ and only if it is doubly-transitive oV .

A c.c*-geometnyl” is said to bdlat if all points of I" are incident with all planes df. In
this paper we shall focus on flatc*-geometries admitting a flag-transitive automorphism
group.

Getting control on these geometries turns out to be useful to aquire information on
universal covers of other geometries. The reader may see [20] (Section 5.3) for an exampl
of this.

The paper is organized as follows. In Sections 2 and 3 we survey some exangptés of
geometries which we need to have at hand in this paper. We will focus on flat ones, but some
non-flat examples will be considered, too. The Main Theorem of the paper is stated and
proved in Section 4. Our Theorem does not finish the investigation af ffageometries.
Rather, it points at a number of problems. We study some of them in Section 5.

2. Examples by gluing
2.1. On 1-factorizations of complete graphs

We need to recall some facts on 1-factorizations of complete graphs before describing the
gluing construction.

LetI"' = (V, E) be a finite complete graph of valenky> 1, with set of vertice&/ and
set of edgeg&. A 1-factorizationof I' is a mappingy from E to a setl of sizek, calledthe
set of colours ofy, such that, for every vertex € V, the restriction ofy to the setE, of
edges containingis a bijection fromE, to | . Thatis, denoted blythe equivalence relation
on E defined by “being in the same fiber gf, | is a parallelism of the circular spatein
the meaning of [6]. According to the notation of [6], we denote the set of colobys™*°
and, given an edge € E, we writeco(e) for x (). We calloo(e) the point at infinityof e.

We recall that a complete graph of valerdcgdmits a 1-factorization if and only Kis
odd (see [16]).

Let x1, x2 be 1-factorizations of a complete graph= (V, E), with the same set of
coloursI"®. An isomorphisnfrom yx; to x» is a permutationf of V that maps the fibers
of x1 onto the fibers of,. That is, a permutatior of V is an isomorphism frony; to x»
if and only if there is a permutatiam of I'*° such thaty>( f (€)) = a(x1(e)) for every edge
e € E. Clearly, such a permutatian if it exists, is unique. We call it thaction at infinity
of the isomorphismf and we setf * = «.

In particular, given a 1-factorization of I", the isomorphisms frony to x are called
automorphismsf x. We denote the automorphism groupyoby Aut(y).

The function mappingf € Aut(x) onto f* e Aut(I'*) is a homomorphism from
Aut(y) to Aut("'*°). We denote its image bp> and its kernel byK, in slight variation
to [6]. We call A theaction at infinityof A andK thetranslation groupof .

Clearly, K acts semi-regularly on the setof vertices ofl" and, given a vertea € V,
its stabilizerA, in A acts faithfully onI"*°. It is not difficult to see that, iK is transitive
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(hence regular) ol , thenA*® = AY° (= A,). Inthis case the extensigh= K - A* splits,
and A is doubly-transitive oV if and only if A is transitive on">°.

Let" = (V, E) be a finite complete graph of odd valency Whenk = 2" — 1 and
whenk = 5, 11 or 27, a 1-factorization can be defined off in such a way that Aujy)
is doubly-transitive or/. We shall describe these 1-factorizations in detail, since we will
refer to their properties later on.

1)

)

®3)

Letk=2"—1. ThenI can be viewed as the point-line system of thdimensional
affine geometry A@, 2) over GK2). The case oh = 1 is too trivial to be worth a
discussion. Thus, we assume- 1.

Take the points of PG — 1, 2) as colours and lek be the function mapping
every line of AGn, 2) onto its point at infinity. Clearlyy is a 1-factorization of”
and Auty) = 2": L,(2), then-dimensional affine linear group over G, doubly-
transitive on the se¥ of points of AGn, 2). The translation groulK of x is just the
translation group of A@, 2), andA* = L, (2).

Aut(y) also contains proper subgroups doubly-transitive/onWhenn # 7, all
of them have the following form (see [9]}5 = K - X, with X a proper subgroup of
Ln(2) transitive onl"* (for instance, a Singer cycle, or its normalizer). On the other
hand, wherk = 7 (that is,n = 3) an exceptional phenomenon also occurs. We have
Lo(7) = L3(2) (see [10]) and there is bijective mappipgirom the setV of points
of AG(3, 2) to the set of points of P@, 7) such that the grou@ = {¢ ‘g | g €
Lo(7)} = La(7) = L3(2) is contained in the 3-dimensional affine linear group over
GF(2) (see [9]). ThatisG < Aut(yx). As L, (7) is doubly-transitive on P@, 7), G is
also doubly-transitive olY. However,G N K = 1.

It will be useful to have a symbol and a name for the géiry) with I" and y as
above. We will denote it by A®, 2) and we call it then-dimensional affine space
overGF(2), keeping the symbol A@, 2) for then-dimensional affine geometry over
GF(2), viewed as a geometry of ramk
Let k = 5. ThenI’ admits just one 1-factorization, which can be constructed as
follows ([7, 17]).

We can assume that = H, for a hyperovalH of PG(2, 4). As set of colours
we take a lineL of PG(2, 4) external toH and, given any two distinct pointg b €
H, we definey ({a, b}) as the meet point of with the line of PG2, 4) joining a
with b.

The stabilizer ofH in PI'L3(4) is Sym(6), the full permutation group on the six
points of H. The stabilizer ofL in this group is Synb), acting doubly-transitively
and faithfully both onH and onL (it acts as PGE(5) on the six points oH and as
PT'L,(4) onL). Hence Auty) = Sym5), K = 1 andA* = Aut(y).

The group Alt5) < Aut(x) = L2(5) = L»(4) also acts doubly-transitively oH .

It is the only proper subgroup of Agt) with this property.

Let k = 11. We can now assume thdt = C, with C a nondegenerate conic of
PG(2, 11). Thus, the edges df can be viewed as the secant line<ofThe stabilizer

of Cin L3(11) is PGLy(11), doubly-transitive orC. Its commutator subgrouip,(11)

is also doubly-transitive o€ and acts imprimitively on the 66 secant lines®fwith

11 classes of size 6. Furthermore, it is doubly-transitive on that set of imprimitivity
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classes [7]). Since the secant linesoére the edges df, we can take those imprim-
itivity classes as the fibers of a 1-factorizatignof I'. We have Auty) = Lo(11)
(see [7]), doubly-transitive both ovi = C andI"* and faithful on"*°. Thus,K = 1.
No proper subgroup of Agy) is doubly-transitive otV (see [7]; also [8]).

(4) Finally, letk = 27. Asvertices of we can take the 28 points of the Ree urlifal3).
There are nine subgroups= 23:7in L,(8) = R(3)’, forming a complete conjugacy
classX’ both in R(3) and inR(3) = L»(8) - 3 (see [10]). AnX € X is maximal in
R(3)’, whereas it has index 3 in its hormalizerR{3), which is maximal inR(3). A
group X € X is transitive onV = Ug(3), with point stabilizer of order 2, contained
in the maximal subgroul = 22 of X (see [10]). Therefor& acts imprimitively on
V, with seven imprimitivity classes of size 4. L€tbe one of those classes and let
Xa be the stabilizer inX of a pointa € X. SinceY is abelian,X, is normal inY.
Furthemore) transitively permutes the four points 6f HenceXj, fixes all points
of C andY acts as 2on C. That is, viewingC as a copy of A®2, 2), Y acts onC
as the translation group of A@, 2). Therefore, if{L1, L,} is a partition ofC in two
pairs,{L1, L,} has seven images by, one for each of the imprimitivity classes ¥f
onV. These seven pairs give us a partitionvofn 14 pairs. We call this partition a
parallel class contributed by XSinceC can be partitioned in pairs in three ways,
contributes three parallel classes. Clearly, it stabilizes each of them. LeXnasy
in X. Thus we obtain % 9 = 27 parallel classes, which can be taken as the fibers of a
1-factorizationy of I'. Itis clear by the above construction tHa¢3)’ is not transitive
on the set of fibers of, but it has three orbits on it, each of size 9 (note tRRed)’ is
transitive, but not doubly-transitive o). For everyX € X, the three parallel classes
contributed byX belong to distinct orbits. HoweveR(3) permutes the fibers of.
Indeed, in order to geR(3) from R(3)" we only need a 3-element belonging to the
normalizer inR(3) of someX € X, and that element cyclically permutes the three
parallel classes contributed . This also shows thaR(3) is transitive on the set of
fibres ofx. This amounts to say th&(3) is doubly-transitive ol (compare [8]). Itis
clear from [8] that no group of permutations\éfproperly containingR(3) preserves
x. Hence Auty) = R(3), doubly-transitive orV/.

R(3)’ is the only proper nontrivial normal subgroup Bf3). ThereforeK = 1.
Note also that no proper subgroupR€3) is doubly-transitive oV (see [8]).

(The above construction is due to Cameron and Korchmaros [9]. The exposition they
give for it in [9] is fairly concise. We have expanded it a bit.)

Proposition 1 (Cameron and Korchmaros [9]) LetI’ = (V, E) be a complete graph
of odd valency k and let be al-factorization ofl" such that Auty) is doubly-transitive
onV. Thenk=2"—1,5, 11or 27andy is as in the above Exampl¢$)—(4).

2.2. Gluings

LetI’ = (V, E) be a complete graph of odd valericy- 1 and lety;, x» be 1-factorizations
of I with the same set of colouls™ = I'f® = I's°. Letw be a permutation of*. We
define ac.c*-geometnyI” as follows.
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We takeV x {1} (respectivelyV x {2}) as the set opoints(plane$ of I'. Aslineswe
take the pairge;, &) € E x E with a(x2(e2)) = x1(e1). We state that all points df are
incident with all planes of . A point or a planga, i) (wherei = 1 or 2) and a linée;, &)
are declared to be incident whare g,.

It is not difficult to check thaf is in fact ac.c*-geometry of ordes = k — 1 and it is
clear by the definiton thdt is flat. We call it thegluing of (T, x1) with (T, x2) via« (also
thea-gluing of x; with x», for short), and we denote it by the symbol,Gt1, x2)-

The above construction is in fact a special case of a more general construction describe
in [6]. The properties we shall mention in what follows are also specializations of properties
proved in [6] (Section 3.4).

Fori = 1, 2, letK; be the translation group gf and letA™ be the action at infinity
of Ay = Aut(y;). Every type-preserving automorphigyof Gl, (x1, x2) induces orV an
automorphisng; of xi, i = 1,2. As Aut(GL, (x1, x2)) acts on the lines of the gluing, we
haveg® = aga~t. On the other hand, givegn € A; andg, € A, such thatgl® =
ag?a’l, the functiong that mapgv, 1) onto(g:(v), 1) and(v, 2) onto(gx(v), 2) defines
an automorphism of Glx1, x2). Thus we may identifjK; (K5) with the automorphism
group of the gluing that inducés,; (K,) on the points (planes) and the trivial automorphism
on the planes (points). Therefore

AUt(Gly (X1, x2)) = (K1 x Kp) - (AP Na AFa ™) (1)
The following is an obvious consequence of this description of Ayi(al x2)).

Proposition 2 Let K; and K; be transitive on V. Then Glx1, x») is flag-transitive if
and only if £° N aAXa~1is transitive onl*.

Assume that bot#K; andK are transitive o’/. Chosen a vertea € V, we can identify
AZ° with (A)a and A with (Az)a, anda can be viewed as a permutation\df{a}. Thus,
the groupXa.a = (Ap)a N a(Az)aa ™1, which is the stabilizer in AUGl, (x1, x2)) of the
flag{(a, 1), (a, 2)}, is isomorphic withA3® N a A3« ~1 and the extension (1) splits:

Aut(Gly (x1, x2)) = (K1 x K2) : X2 2)
Giveng € X, , andx € V, we have

g((x. D) =(g(x), 1) and g((x,2)) = (¢ 'ga(x),2) 3)
Assumey; = x2 = x, say. The following holds (see [6], Theorem 3.9):

Proposition 3 Given two permutationa, g of I'*°, we have Gl(x, x) = Glg(x, x) if
and only ife € A*BA>®.

Therefore

Corollary4 The number of non-isomorphic gluingsyowith itself is equal to the number
of double cosets of Ain the group of all permutations af*°.
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Agluing Gl, (x, x) is said to beanonicalf « € A>.Inparticular, Gl(x, x) is canonical,
where: denotes the identity permutation Bf°.

By Proposition 3, the canonical gluings pfwith itself are pairwise isomorphic. Thus,
if Gl,(x, x) is canonical, then we can assume that (. By (1) we have the following:

AULG(x. 1)) = (K x K) - A% @)

In short, the automorphism group of a canonical gluing is as large as possible.

2.3. Gluing two copies of AS(n, 2)

The canonical gluing of the affine space &S2) with itself (see 2.1.2(1)) is flag-transitive.
Its automorphism group has the following structure

2" x 2" - Ln(2)

whereL,(2) acts in the natural way on both factors isomorphic'to 2

By Corollary 4, the number of non-isomorphic gluings of two copies ofiA) equals
the number of double cosets bf,(2) in Sym2" — 1). Whenn = 2 we havelL,(2) =
Sym(3), hence only one gluing is possible, namely the canonical one.

Letn = 3. Exploiting the information given oh3(2) and Alt(7) in [10] and [5] (p. 69),
it is not difficult to check thal 3(2) has four double cosets in Sy, corresponding to
elementsy, 8, v, § with

o € L3(2),
L3(2) N BL3(2)B~1 = Froh(21),
L3(2 NyLs@y ™ = Alt(4),
L3(2) N8L3(2)8 1 = Sym(4).

Thus, we have three non-canonical ways of gluing two copies @BAZ. Only one of
these gluings is flag-transitive, namely the gluinggidndeed Frok21) is transitive on the
set"* of points of PG2, 2) (it is even flag-transitive on P@, 2)), whereas no subgroup
of Sym(7) isomorphic to Syr¥) or to Alt(4) can be transitive oir*°.

Needless to say, the largers, the more ways exist of gluing AB, 2) with itself. Most
of these gluings are not flag-transitive. However, flag-transitive non-canonical gluings exist
for everyn > 2, as we will see in Section 5.

3. More examples

In this section we describe a few mare*-geometries we shall deal with in this paper.
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3.1. The truncated Coxeter complex of typg D

Let A, be a Coxeter complex of tyge,, (m > 3). We taket+, — . m—2,m—-3,...,2,1
as types, as follows:

+ m—-—2 m-3 2 1
-~ e .. e o

A c.c*-geometry of ordem — 2 is obtained fromA, by removing all elements of type
i =1,2,....,m— 3. We denote this geometry by (Fx,,) and we call itthe truncated
Coxeter complex of typenp (In[3] Tr(An) is calledthe two-coloured hypercubeTr(A )

is simply connected (see [3], p. 327).

Theorem 5 The universal cover of the canonical gluing of(AS2) with itself is T(A ),
with m= 2",

Proof: LetI" be the canonical gluing of A8, 2) withitself. Since we consider a canonical
gluing, @ can be assumed to be the identity in (3) of Section 2.2. Thus, we can apply
Corollary 3.5 of [3] and we get the result. m]

3.1.1. Quotients of TrQA,). We firstly recall some properties d@,. The elements of
A of type 1 and 2 from a complete-partite grapha L2, with the elements of type 1 as
vertices and those of type 2 as edges. The elememnts,off typei = 3,4,...,m—2
are thei-cliques of this graph, and those of typeand — are the maximal cliques. The
maximal cliques ofA’:2 have sizem and two maximal cliqueX, Y are of the same type
whenm — |[X NY| is even. The blocks oAl have size 2.

Given a maximal cliquéA = {aj, a, ..., an} of Aﬁf, let B = {by, by, ..., by} be the
(unique) maximal clique oA 12 disjoint from A, with indices chosen in such a way tfaat
andbj are joined inA%?2 if and only ifi # j.

ForJd € | =({1,2,...,m}, lete; be the automorphism atl? interchanginga; with
b; for alli € J and fixing the other vertices af12. We call|J| theweightof e;.

For every permutation € Sym(m), let g, be the automorphism ofl.? that mapsy
ontoa, ), andb; ontob, ), fori € I.

The element®; of even weight form an elementary abelian 2-grdaipf order 2"1,
whereasS = {0, }sesymm) iS @ copy of Synim). The Coxeter group of typBy, is E: S.
This is also the automorphism group of Ar,). IndeedA, can be recovered from TA )
(the graphA L2 uniquely determined,, the elements of TAp) are the maximal cliques
and the(m — 2)-cliques ofA%2, andAL? can be recovered from these cliques).

Comparing the conditions given in Section 11.1 of [21] for a group to define a quotient,
it is not difficult to see that a subgroup of E defines a quotient of T\, if and only if
all non-identity elements ok have weight at least four.

We shall now describe a subgrodp< E for which Tr(An,)/ X is the canonical gluing
of two copies of A%n, 2). (The subgroups with this property are pairwise conjugated in
E: S, by a well known property of universal covers.)
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Asm = 2", we cantakd = {1, 2,..., m} as the set of points of a moddlof AG(n, 2).
Let Z be the set of affine subspaces.fof dimension>2 and letX = {€;}jczup- It
is not difficult to check thatX is a linear subspace & and that all non-zero vectors
of X have weight>4. HenceX defines a quotient of TA,). FurthermoreE/X =
V(n, 2). Consequently the quotient (IX,,)/X is flat. The normalizer oK in E:Sis
E:ASL(n,2) = (2" x 2"Ln(2). By the Main Theorem of this paper (Section 4) the
quotient T(An)/ X is the canonical gluing of two copies of AS 2).

3.1.2. A special case: .= 2. Letn = 2. The center ok : Sis the unique non-trivial
subgroup oft defining a quotient. This quotient is the canonical gluing of two copies of
AS(2, 2).

Note that a model of TA4) can also be constructed as follows: given a planef
PG(3, 2) and a pointp € , remover and the star op. By a result of Levefre-Percsy and
Van Nypelseer [18], what remains is isomorphic t§A¥). The center oE is generated
by the elation of P@3, 2) of centerp and axisr.

3.1.3. Thecase of i= 3. Letn =3 and letX = {es}sezuim be the subgroup dE such
that T Am)/ X is the canonical gluing of two copies of &S 2), as in Section 3.1.1. (Note
that the elements df are the set and hyperplanes of).

The normalizer ofX in S contains a subgroub = L3(2) which is doubly-transitive on
| (see Section 2.1, Example (1)). Hence the automorphism groug &g)fH contains a
flag-transitive subgrouf® with the following properties:

(i) G=2%:L5(2);

(i) Ga = L3(2) for every element of Tr(Am)/H of type+ (or —). Furthermore, the
action of G, on the 8 elements of type (respectivelyt) incident toa is the doubly-
transitive action ot 3(2) on the 8 points of A@G3, 2).

On the other hand, TAg)/ X is the only flat quotient of TrAg) admitting a flag-transitive
automorphism group like that. Indeed, }et< E : Sdefine aflat quotient of T g)/ X with
Aut(Tr(Ag)/ X) admitting a flag-transitive subgro@with the above properties (i) and (ii).

AsTr(Ag) isflat, X hasorder 16. Its normalizétin E : ScontainsX - G =24(23. L3(2)),
flag-transitive on TtAg) becausés is flag-transitive on TrAg)/ X. LetL = SN X - G be
the stabilizer inX - G of the maximal cliqueA of Aé‘z. By (ii), L = L3(2), doubly-transitive
on A. Itis now clear thaiX must be a subgroup &. Since it defines a quotient of (kg)
its non-identity elements have weight at least 4. If one of them has weight 6, then we get
24 elements of weight 6 iX, by the doubly-transitive action df on A and becaus&
normalizesX. This is impossible, becaus¥| = 16. It is now clear thaX contains 14
elements of weight 4 and one element of weight 8. By (ii), the actidnarf A is a copy of
the doubly-transitive action df3(2) on the 8 points of AG3, 2). Thus, the 14 elements of
X of weight 4 represent the 14 planes of @32). Thatis,X = X (up to conjugacy irg).

3.2. The two JVT-geometries

Let p andx be a point and a plane of R& 4), with p ¢ 7. Let O be a hyperoval ofr.
We can define a rank 3 geomefryp, O), as follows.
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LetC be the set of line of P@, 4) joining p with points of O and letC = ( J, .. L. We
takeP = C\({p} U O) as the set of points df (p, O). As planes we take the plane®of
PG(3, 4) such thatp ¢ u andu N O = @. Two points of P not on the same line df are
said to form a line of"(p, O). The incidence relation is the natural one, inherited from
PGS, 4). Itis straightforward to check that(p, O) is a flag-transitivec.c*-geometry of
order 4.

We have Autl"(p, O)) = H - Sym(6), whereH = Z3 is the group of homologies of
PG(3, 4) of centerp and axist. (Note thatH - Alt (6) also acts flag-transively dn(p, O).)

It follows from [4] (Theorem B, (3) (ii)) thal"(p, O) is simply connected.

I'(p, O) can be factorized bid andI"(p, O)/H is flat and flag-transitive, with Adr (p,
0)) = Sym(6) (but Alt(6) also acts flag-transitively on it).

We calll" (p, O) thenon-flat JVTgeometryafter its discoverers Janko and van Trung [14]
(but they gave a different description for this geometry). The quotiépt O)/H will be
called theflat JVT-geometry

The flat JVT-geometry is not a gluing. Indeed there is a unique way of gluing two
complete graphs with six vertices, but that gluing is not flag-transitive ([6], Section 6.2.4,
p. 385).

4. The main theorem

Theorem 6 (Main theorem) LetI be a flag-transitive flat c*-geometry. Thef is one
of the following
() the flat JVT-geometry
(i) the canonical gluing of two copies of &652), n > 2;
(iii) anon-canonical gluing of two copies of &52), n > 3, with Aut(l") < (K; x Ky)-F,
where KK = K, = 2"and F < 'L, (2").

In case (i), Autl’) = Sym(6) and the universal cover df is the non-flat JVT-geometry
(see Section 3.2). In case (ii), the universal cover & the truncated Coxeter complex of
type D, with m = 2" (Theorem 5), and Agf™) = (2" x 2") - Ln(2) (see Section 2.2).

We shall prove the above theorem in the next subsection. The following corollary is
easily got by assembling Theorems 5 and 6:

Corollary 7 A flag-transitive flat c*-geometry is the canonical gluing of two copies of
AS(n, 2) if and only if its automorphism group is a quotient of the Coxeter group of type
Dm, with m=2".

4.1. Proof of Theorem 6

LetI" be a flatc.c*-geometry of ordes. Sincerl is flat, there are just+ 2 points and + 2
planes inl". Furthermore, given any two distinct points (planesandy and any plane
(point) z, there is just one line incident witk, y andz. Therefore, given any two distinct
points (planes), there afe + 2)/2 lines incident with them both. (By the way, this forces
sto be even).
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LetT be flag-transitive and l&® a flag-transitive subgroup of AUt). Given an element
x of I', we denote the stabilizer ofin G by G. If x is a point or a plane, theBy acts
faithfully on the residud’y of x, whereas, ii is a line, then the kernd{ of the action
of G, on Ty is the stabilizer of any of the four chambers containin@ndG, /Ky = 22
(by [3], Lemma 3.1).

Given two lined andm of T, if | andm are incident with the same pair of planes (points),
then we writd || m (resp.| |~ m). Clearly,||" and||~ are equivalence relations on the
set of lines of" and, ifl ||+ m (resp.l ||~ m), thenl andm have no points in common (are
not incident with any common plane).

For every plane (point}, we denote by, the equivalence relation induced [py (resp.
|| 7) on the set of lines incident te.

Lemma 8 For every plane or point xthe classes dfy are the fibers of d-factorization
of the complete graphy.

Proof: Letx be a plane, to fix ideas. If mare lines ofl’y such that ||x m, thenl andm
have no points in common. On the other hand, given a pfagiex, there are justs+ 2)/2
lines incident with bothx andy. The lemma is now obvious. o

Corollary 9 If T is not the flat JVT-geometryhen s= 2" — 2 for some n> 2 and the

following hold with x any point or plane of:

(i) Ty, equipped with|y, is a model of A8, 2);

(i) G is a doubly-transitive subgroup of A@{2) and either it contains the translation
subgroup of AGL(2), orn = 3and G, = L3(2).

Proof: By Lemma 8 and Proposition 1, either= 2" — 2 and (i), (ii) hold, or we have
one of the following:

(a) s =4 andGy = Sym(5) or Alt(5) (see Section 2.1, Example (2));
(b) s =10 andGy = L,(11) (see Section 2.1, Example (3));
(c) s =26 andGy = R(3) (see Section 2.1, Example (4)).

In case (a) the universal cover Bfis the non-flat JVT-geometry, by Theorem B of [4]. In
this casd” is the flat JVT-geometry.

Case (b) isimpossible by Theorem B of [4]. Assume we have (c)KLUa¢ the stabilizer
in G of all points ofI". By Lemma 3.1 of [3] K is semi-regular on the set of planeslaf
Thus,|K| is a divisor of 28, sincé& has 28 planes. Howevdg, = R(3) for every point
X, and R(3) does not contain any normal subgroup of order 2, 4, 7, 14 or 28. Therefore
K = 1. ConsequenthyG acts faithfully on the 28 points df. It is also doubly-transitive
on them and it has ordé6| = 28- |R(3)| = 2°3%7. However, no doubly-transitive group
of degree 28 exists with that order (see [8]). Thus, (c) is impossible. o

Lemma 10 Lets= 6and G = L3(2) for a point or a plane x. Thei is the canonical
gluing of two copies of AS, 2) (hence G= 23 . L3(2) is a proper subgroup of AdF) =
25:L3(2)).
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Proof: The universal cover df is Tr(Ag), by Theorem A of [4]. The statement follows
from what we said in Section 3.1.3. O

Henceforth we assume thait= 2" — 2. Hence (i) and (ii) of Corollary 9 hold. The case
of n = 3 with Gy = L3(2) (x a point or a plane) has been examined in Lemma 10. Thus,
whenn = 3 we also assume th&, Z L3(2), for any point or plane. Therefore, for any
point or planex, the pair(T'x, ||x) is @ model of ASn, 2) and G contains the translation
groupTy of the affine spac€l’y, ||x)-

Lemma 11l We have J = T, for any two planes or two points ¥ ofI".

Proof: Let x be a plane (a point) df'. SinceTy fixes all classes offy, it also fixes all
planes (points) of”, since those classes bijectively correspond to the planes (points) of
distinct fromx. ThereforeT, < Gy for every plane (pointy of I". Lety be any of them.
SinceTy fixes all planes (points) df, it also fixes all classes d¢ff,. HenceT, =T,. O

Given a paire = {x, y} of distinct points (planes) and a plane (a pomtyve denote byZ
the line of ", incident to bothx andy. Given two pairs of distinct points (planes), &
and a plane (poing, if 1Z || I, then we writee; ||z €.

Lemma 12 We have|x = |ljy; for any two planeg pointg x and y.

Proof:  For every plane (point}, the classes dfj, are the orbits o, on the set of points
(planes) ofl". The conclusion follows from Lemma 11. a

We write ||1 or ||, for ||;q, according to whethex is a plane or a point. (This notation is
consistent, by the previous lemma.) We also denot€ pgresp. I';) the complete graph
with the points (planes) of as vertices. Thusl'y, ||1) (resp. (I'z, ||2)) is a model of
AS(n, 2).

Given a linel of ", we denote by (1) (resp.o2(l)) the pair of points (planes) incident
tol.

Lemma 13 Given any two lines,Im of I, we havesi(l) |1 o1(m) if and only ifo, (1) |2
oo (m).

Proof: Letoi(l) = {a,a’}, o2(l) = {u,u’}, or(m) = {b, b’} andor,(m) = {v,v'}.
Assume{u, u’} |l> {v,v'}, to fix ideas. This means that|, m’, with m’ the line of
I'a joining v with v'. We haveo;(m’) = o1(l), by the definition of|;. On the other
hand, o,(M) = o2(m) = {v, v}, by the choice ofm’. Hencem' ||, m. Therefore
o1(mM) ||1 oo(mM). Thatis,{a, &'} ||1 {b, b'}. O

Lemma 14 The geometry is a gluing of two copies of AS, 2).

Proof: Fix a pointa and a planes of I'. Fori = 1,2 and for every edge of I, let
xi(e) be the linel € 'y, such thatsi (1) ||; e. Itis clear thaty; is a 1-factorization of
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[y, with the classes of; as its fibers and’, , as set of colours. By Lemma 13, we have
x1(01(1)) = x2(o2(1)) for every linel of . Itis now clear thal is the gluing G} (x1, x2)
of ("1, x1) with (g, x2) with « = 1. On the other hand, bot{t";, x1) and ("2, x2) are
isomorphic to A$n, 2). The statement follows. O

Thus,T is the gluing of two copie$;, S of AS(n, 2) via some permutation of the set
"> of the points of P@ — 1, 2). Modulo replacing” with some of its isomorphic copies
if necessary, we can assume tSa= S, = S.

Forx a point or a plane and f@ a flag-transitive automorphism grouplothe stabilizer
Gy acts doubly-transitively on the planes or points in its residugespectively. Moreover
we haveG = (Vi x Vo)X, with X = G4, a a point of ", u a plane ofl" incident toa,
Vi = 0,(G,) = Ka andVs = 0,(G,) = Ky. Note thatX = Ly(2) N aL,(2Qa~? (see
Section 2.2, (1)).

Lemma 1l5 Leta ¢ Ln(2). Thenn> 3and X< I'L,(2").

Proof: We haven > 3 becausd.»(2) = Sym(3). We can assume thatandu are the
same element 08, say pg, and we can take the elements®f := S\{pg} as points of
PG(n — 1, 2). BothV; andV; act regularly orS. Givenx, letx; (x;) be the element oV,
(V) mappingpe ontox. Giveng € X, we denote by(x) andg[x] the images ofpg by x§
andxg respectively. Thug(po) = 9[ po] andg(x) = g*[x] for everyx € S>.

Clearly, X < I'Lm(q) with g = 2"™, for some divisom of n (possibly,m = 1 or
m = n). SinceG;, is an affine doubly-transitive permutation group over(8Fby [19]
eitherm = 1 or X contains a normal subgrotpisomorphic to Sk,(q), Spn(q) (m even),
G2(q)’, As or A7, with m = 6 whenY = G,(q)’ andm = n = 4 whenY = Ag or A;.

We need to prove thah = 1. Assumem > 1, by contradiction. LeE be a natural
geometry for the action of onV,. The elements oE are linear subspaces ¥ (in fact,
they are subspaces ¥f(m, q)). Thus they can be viewed as subsets (possibly, points) of
S>, via the one-to-one correspondence we have stated belgesrdS. Givenp € S,
we will denote by(p) the point ofE containingp.

The groupY is transitive onS™. FurthermoreY® is contained inL,(2), asY < X =
Ln(2) NaL,(2)a~t. On the other hand, there is exactly one conjugacy class, () of
subgroups isomorphic tg and transitive or&> (see [1] (21.6)(1) and [15]). This means
that there exists an elemepte Aut(V,) = Ly (2) such thaty*? = Y. The permutation
¥ = ag of S* induces an automorphism of. As X is transitive onS™, by multiplying
by some element oX if necessary we can also assume tfrastabilizes some element
p e S*.

We claim that there is g € Aut(V,), such that/g centralizesy. Assume the contrary.
If Y = SLn(q), Spn(@) (M, ) # (4,2), S = Ags or G»(q)’, theny induces
some graph automorphism ah On the other hangr, stabilizing p, also normalizes the
stabilizerY, of p in'Y and maps stabilizers of points & onto stabilizers of maximal
subspaces dE, since it acts as a graph automorphismsrorTherefore )Y, stabilizes(p)
and some maximal subspace®f However, this is impossible. (Note théZ(GLm(q))
contains the stabilizer dfp) in Y.) This contradiction force¥ = A;, (Y, ¢¥) = S and
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Yp = L3(2). This gives again a contradiction Bls, (L3(2)) = L3(2), [10]. Hence there is
someg € Aut(V,), such that)g centralizesy.

Thus we are able to chooges Aut(V,) so that the permutatioft (= a¢) centralizesy'.
On the other hand, the stabilizerYnof a point of & does not fix any other point &. This
forcesy to stabilize all subsets &> corresponding to points &. Let p; € S®. As ¢
stabilizes{p;), we havey (p1) = 11 p; for somer; € GF(q)\{0}. On the other hand, for
everya € GF(q)\{0} there is some elemegte Y such thag(p) = Apforeveryp € (p1).
As ¢ andg commute, we have

Y(AP1) = ¥ (9(P1) = 9 (P1) =AY (P1) = AA1Pr = A1-AP1

Consequently, the action gf on (p;) is the multiplication byx;. We claim thati; does
not depend on the choice pf. Given another elemen, € S® with (py) collinear with
(p1) in E, let A, € GF(g) \{0} be such thaty(p) = r,p for everyp € (py). Letge Y
map{p1) onto(p,). Asy commutes withy, we have

Az - 9(p1) = ¥ (9(pw) = 9 (P1)) = g(A1P1) = A1 - 9(P1)

(the last equality holds by linearity). Therefore= 1,. By the connectedness&f 11 does
not depend on the choice pf, as claimed. Consequently, acts by scalar multiplication
onV(m,q). Thatis,yv € Z(GLn(q)). Thereforex = Yo~ € Ln(2); a contradiction.
Hencem = 1. m]

Lemma 15 finishes the proof of Theorem 6.

5.  On non-canonical gluings

It is quite natural to ask how many examples exist for case (iii) of Theorem 6, for a given
n > 3. (We recall that the canonical gluing is the only possibility whea 2, as stated in
Theorem 6). Two questions ask for an answer:

(1) Which possibilities foiX = Aut(I') /(K1 x Ky) < I'L1(2") really occur?
(2) Chosen a feasible isomorphism type for Aut(I')/(K; x K3), how many non-
isomorphic examples exist with A(it) /(K x Ky) = X?

In Section 5.1 we shall describe a family of examples Witk= T'L1(2"). In Section 5.2
we shall count the number of non-isomorphic examples Xits I'L1(2"). More detailed
information on the cases of = 3, 4, 5, 6 will be given in Section 5.3. As a by-product,
we will see that whem = 6 there is at least one example with< I'L1(2"). Perhaps, the
same is true whenevef 2- 1 andn are not relatively prime (compare Corollary 17).

5.1. A family of examples with % I'L;(2")

Non-canonical gluings of two copies of A§ 2) with X = I'L1(2") can be obtained as
quotients of the elation semi-biplane associated witi&'). We shall describe these
quotients in Section 5.1.2, after recalling the definition of elation semi-biplanes.
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5.1.1. Elation semi-biplanes. Homology, elation and Baer semi-biplanes have been in-
troduced by Hughes [12]. We will only consider elations semi-biplanes here.

Given a linel of PG2,q) (g = 2", n > 1) and a pointp € I, let ¢ be an elation of
PG(2, q) of centerp and axid. We denote byP the set of points of P@, ) not onl and
by L the set of lines of P@, q) that do not pass through the poimt

Let I, be the incidence structure defined as follows. The orbitsasf P are the points
of IT,. As blocks we take the setsU v, with {u, v} an orbit ofe on L. The incidence
relation is defined as symmetrized inclusion. This incidence structure is a semi-biplane. It
is called arelation semi-biplane

Itis well known that ac.c*-geometnyi” can be obtained from every semi-bipldrie The
elements of" are the points and the blocks Bf and the unordered pairs of points [af
contained in a common block. We call these pairs of pdinesand the blockglanes to
be consistent with the terminology we have chosertfoi-geometries. According to [21],
we callT” theenrichmenbf I1.

Returning tall,, letI", be its enrichmentl’, is ac.c*-geometry of ordeq — 2 = 2" — 2.
The centralize of ¢ in PI"L3(q) has the following structure

G=H- ((Kl X Kz) ' FLl(q))

with H the group of elations of centgrand axid andK; = K, = 2", Itis not difficult to
check thatG acts flag-transitively oir, with kernel(e). ThereforeG/(¢) is a flag-transitive
automorphism group df, (compare [4], Example 6).

Let us write H, for H/(e) and G, for G/(g), for short. Whem = 2, a theorem of
Levefre-Percsy and Van Nypelseer [18] implies thais isomorphic to the truncateld,
Coxeter complex. In this case it is clear tiaat = Aut(T",).

Assumen > 2. We shall prove in Section 5.1.2 that/H, is a non-canonical gluing.
HenceG/H = Aut(T"y/H,) by Theorem 6(iii) and becaust. is normal inG,. Therefore
G, is the normalizer oH, in Aut(I";). On the other hand;l, is normal in AutT’,), as we
shall prove in a few lines. Therefore,

G, = Aut(T,)

Thus, let us prove thatl, is normal inA = Aut(l",). “Being non-collinear” is an equiv-
alence relation on the set of pointsIBf with 2" classes of size™*. The groupH, acts
regularly on each of these classes and the stabiliz€, iaf a pointa of I" acts as a cyclic
group on the clas¥X, containinga, with at least one orbit of size. Consequently, the
stabilizer A; of a in A has at least one orbit of size n on X,;. On the other hand, it
acts faithfully on the residue @f ([2], Lemma 2.1) and it is doubly-transitive on the set of
planes incident witla. Thus, A, is a doubly-transitive group of degre8. 2t also has at
least one orbit of size- n on X,. Exploiting this information and comparing the list of
[8], by easy calculations one can see thatis almost simple only if it is placed between
Lo(3") and PT'L,(3"), for some positive integer. If this is the case, then4 3 = 2",
However, 2 = 0 (mod 8) (because we have assumesd 2), whereas + 3" = 2 or 4 (mod
8), according to whethar is even or odd. This contradiction forcég to be affine. The
same forA,, with u a plane. Hencé\, = O2(Ax) Aqu andO2(Ay) < G, for x = a or u.
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In G, we see thaH is the center 0f O2(As), O2(Ay)). As Az normalizes botlD,(A,)
andO,(Ay), H is normal both inA; and inA,, whence it is normal irA = (Aa, Ay).

5.1.2. Aflat quotient ofl'..  Let us keep the notation of the previous paragraki(c)
defines a quotierit, of I',, which is flat. The group

G/H = (Kl X K2)FL1(Q)

acts flag-transitively ofr,. By Theorem 6, this forceE, to be a gluing of two copies of
AS(n, 2). Del Fra [11] has proved that when> 3 this gluing is non-canonical (hence
Aut(T,) = G/H, by Theorem 6).

The argument by Del Fra runs as follows. Gigehe coordinateg0, 0, 1) andl the
Pliicker coordinated), 1, 0), and lets be represented by the following matrix:

1 00
010
011

We need some notation. Denoting the additive groups df®&nd GK2) by GF(q) and
GF(2), we set [GKQ)]. = GF(q)/GF"(2) and, giverx € GF(q), by [x]> me mean the
image ofx by the projection of GE(q) onto [GH()]>.

It is not difficult to see that the points and the planed ofare represented by pairs
(X, X) € GHQ) x [GF(Q)]2, a point(a, &) being incident with a planéu, u’) precisely
when fau]; +a +u = 0.

An unordered pair of pair§(a, &), (b, b’)} with a # b represents a pair of coplanar
points ofl";, namely a line of",. The two planes on that lines are represented by the two
solutions in GKq) x [GF(q)]. of the following system of equations:

[ax]+a +x =0
[bx], + b +X =0

Note that the two solution@i, u’), (v, v") of this system satisfy the relatiqn + v)(a + b)
=1

The projection of, onto ', maps a pointa, a') ontoa € GF(q) and a plandu, u’)
ontou € GF(Q).

Let the pointga, &), (b, b") form a line and letu, u’), (v, v) be the two planes on that
line. The image of that line iff, can be represented as a p@, b}, {u, v}), wherea # b,
u # v and(a + b)(u + v) = 1. On the other hand, every such pair represents a lifie.of

Note that GF (g) can also be viewed as a copy of theimensional vector spad&(n, 2)
over GK2). The non-zero elements of @B are the non-zero vectors ¥f(n, 2). Hence
they correspond to the points of BG— 1, 2). Thus, the above description Bf amounts
to the following. The vectors 0¥ (n, 2) give us both the points and the planedpf The
lines of I", are obtained by pairing two lines = {a, b} ande, = {u, v} of AS(n, 2), in
such a way thata + b)(u + v) = 1 in GKq). However,a + b andu + v represent the
points at infinityoo(e;) andoo(e;) of e ande,. Thus, two linese, e of AG(n, 2) are
paired to form a line of', whenevero(e,) = co(er) 1 in GF(Q).
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Thereford, is a gluing of two copies of A, 2) and the permutatiomof PG(n—1, 2) =
GF(qg)\{0} we use for this gluing maps every element of @G {0} onto its inverse in Gf).
Whenn > 3, no element of_,(2) behaves like that. Therefore, where 3 this gluing is
non-canonical.

(The same conclusion cannot be drawn whea 2, asL,(2) = Sym(3). In fact, as we
noticed at the beginning of Section 2.3, there is only one gluing of two copies (&3
namely the canonical one.)

Remark We noticed in Section 2.3 that there is only one flag-transitive non-canonical
gluing of two copies of A3, 2). That gluing isI".. Here is another way to construct it.

Let P be the set of points of P@, 2). It is well known that P@2, 2) admits a sharply
flag-transitive automorphism group = Frob(21) and that, for every poinp € P, the
stabilizer of p in F has two orbits of size 3 o\ {p}. One of them is a line. The other
one is a non-degenerate conic, $y. It is not difficult to check thatP, {Cp}pep) is a
model of PG2, 2). Therefore, there is a permutatigrof P that maps the lines of R@, 2)
onto the conicCp, (p € P). Clearly,L3(2) N BL3(2)8~ = F, which is transitive on
P. Therefore, the gluing of AS, 2) with itself via g is flag-transitive, by Proposition 2.
Clearly, 8 ¢ L3(2). Hence that gluing is not the canonical one. Thus, it is isomorphic to
r,.

Leta be the permutation d® mapping every element ¢f = GF(8) \ {0} onto its inverse
in GF(8). Theng = fag for suitablef, g € L3(2), by Proposition 3.

5.1.3. Aconjecture. Whenn = 2the elation semi-biplarié, isisomorphicto the truncated
D, Coxeter complex, which is simply connected. It will turn out from the results of
Section 5.3.2 thaK, is simply connected when < 6. Furthermore, the first author has
obtained the following partial resulf’, is simply connected wher'2- 1 is prime. Thus,

it is quite natural to conjecture that is always simply connected.

5.2.  The number of examples with=XT"L(2")

Theorem 16 The number of non-canonical gluings as in (iii) of Theorem6 with
Aut(l) /(K1 x Kp) = T'Ly(2") is equal to

p2 -1
n

1

with ¢ the Eulerian functior(i.e., ¢(2" — 1) is the number of positive integers less then
2" — 1 and relatively prime witt2" — 1).

Proof: The isomorphism classes of gluings of two copies of &) bijectively corre-
spond to the double cosef§®a A of A* = L(2) in Sym(2" — 1) (Proposition 3). Given
a permutationt € Sym(2" — 1), the automorphism group of the gluing obtaineddbis
(K1 x Ko)X with X = A® N A%« (Proposition 2).
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Given any two permutations g € Sym2" — 1), if A°a A® = A®BA™ thena Ao 1
and B A~ g1 are conjugated by an elementAf°. On the other hand>, being a copy
of Ln(2), is its own normalizer in Sy2" — 1). Therefore, ifac A%ata~t = pA®B~1
for somea € A%, thenglaa € A®, whenceA*aA® = A®BA>. Consequently,
A A® = A®BA> if and only if « A%~ and B A B! are conjugated by an element
of A%,

By the above, the gluings of two copies of &52) bijectively correspond to the orbits
of A% on the set of conjugates @& in Sym(2" — 1). In particular, the orbitOy =
{ A>} corresponds to the canonical gluing, whereas the gluings wittTANK, x Ky) =
I'L1(2") correspond to the orbits whose members intergétin a subgroup isomorphic
to 'L1(2"). Denoted the family of these orbits By let us setCy = C U {Op}.

Given a copyX of I'L1(2") in A%, let S be its cyclic subgroup of ordef"2- 1. The
subgroupSx is generated by a Singer cycle 87 = L,(2) and X is its normalizer inA*,
HenceX is its own normalizer ilA>. Moreover, the subgroups generated by Singer cycles
form one conjugacy class I, (2). Therefore, all subgroups @ isomorphic tol"L 1 (2")
are conjugated witkX in A*. Consequently, give® € C, some members dD intersect
A%* in X. Leta A®a~! be one of them. ThegaXa~1g~! = X for someg € a A®a 1.
Let f = o~ 'ga. Thenga = of andX = of Xf~1a~. Thus, by replacing with of if
necessary, we can assume X1 = X.

Assume thaaa Xo~ta—talsointersect&™ in X, forsomea € A>®. Thenao A%« ta—!
contains botX andaXat. On the other hand, botk anda Xa~* are contained i\> and
acA®ala~t N A® = X. ThereforeX = aXa 1. However,X is its own normalizer in
A®. Hencea € X. Consequenthaae Ao~ ta™! = ¢ Ae~?, becausa € X € a A®a L.

Thus, there is precisely one element®intersectingA™ in X and, ifa A%« is that
element, we can assume thaXa~! = X. The permutationy, acting by conjugation
on X, determines an automorphispp of X. Let 8 be another permutation such that
BA®B1 = e A%t and XSt = X. Thenp = ax for somea € A® becauseA™
is its own normalizer in Syi2" — 1). FurthermoreaXa ! = X because boti$ anda
stabilizeX. Hencea € X, sinceX is its own normalizer inA*°. Consequentlyy, andys
represent the same element of the outer automorphism groyXDaft X. Let us denote
that element by (O). Thus, we have defined a mappipg C — Out(X). We extend it
to Co by stating that/ (Qp) is the identity of OutX).

Clearly, every automorphism of is induced by some permutatiene Sym(2" — 1)
normalizing X. This implies that the above mappingis surjective. As|Out(X)| =
@(2" — 1)/n, in order to finish the proof we only need to prove thdas injective.

Leta Ao, BA®B~1 be conjugates oA® with « Xa~! = X1 = X and assume
that (y5) 1y, is an inner automorphism of. Theng'8~l« centralizesX, for some
g € X. In particular,g~1p 1o centralizes the cyclic subgrougx of X of order 2 — 1.
Thereforeg™8 1o € S, thatisa = Bf for somef e Sx. Hencex A*a~t = BA®BL,
Thus,y is injective. =]

Remark The first author has proved that thel + ¢(2" — 1)/n non-canonical gluings
mentioned in Theorem 16 have non-isomorphic universal covers. We are not going to prove
this result here.
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5.3. Areportonthe casesofa3,4,5,6

The possibilities for (iii) of Theorem 6 can be checked case-by-case by writing feasible
sets of relations and computing the size of the amalgams by CAYLEY. We have done this
work forn = 3, 4, 5 and (partially) fom = 6. We shall now report on the results we have
obtained.

5.3.1. Preliminaries. LetG = (K3 x K1) X be a flag-transitive subgroup of Alit), with
I" a gluing of two copies of A, 2), X < T'L1(2"), K; = K, = V(n, 2) andn > 3. (Note
that we are not assuming th@t= Aut(I'). In particular, if the gluing" is the canonical
one, therG is a proper subgroup of A(f) = (K; x K2)L,(2).)

The flag-transitivity ofG amounts to the transitivity ok on the non-zero vectors of each
of the two copieK; andK, of V(n, 2). Thus, letX be such a subgroup &fL,(2") and
let v, w be non-zero vectors d€; andK, respectively.

Then(v, X) is the stabilizeiGy in G of a planex of I and(w, X) is the stabilizer inG
of a point p incident withx. The subgrougX is the stabilizer of the flagp, x}. If | is a
line of I" incident with p andx, its stabilizerG, is generated by a non-zero vectore Ki,

a non-zero vectow’ € K, and a suitable subgroupof index 2' — 1 in X. We can assume
to have chosehin such a way that’ = v andw = w’. Thus,G, = (v, w, Y).

In order to search for examples we need to cha¥sndY and to fix their actions on
K, andK,. We get a set of relations, we search for the grupresented by it and, in the
non-collapsing cases, we determine the geomiémgsociated witlds.

By Theorem 6, we hav€ = Tr(Ax) whenG is a subgroup ofK; x K)La(2). As
we saw in Section 5.1.2, flat quotients of elation semi-biplanes are non-canonical gluings
and their automorphism group(k; x Ko)I'L1(2"). Thus, we also get universal covers of
elation semi-biplanes fok = I'L1(2") and for a suitable choice of its actionsknandK .
Furthermore, we also know in advance how many flat examples existvthl"L; (2"),
by Theorem 16. Let us consider these, to begin with.

5.3.2. The case of X= T'L;(2"). Let X = I'L1(2"). This group is generated by two
elementx and f of order 2 — 1 andn, respectively. Thus,

Gp=<wac7f>a GXZ(U?C9f>’ G|=(U,w,f)

andY = (f). The generators, w, c, f satisfy the following relations:
V=w?=c1=f"=1
[v,0°]=1 (=12....,n-1
[w,u®]=1 (=12....,n-1)
[v, fl=[w, f]=1
cl=c
VPO — 9O — 1

[v,w]=1

2
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with p(t) andq(t) polynomials of degrea irreducible over GR2) and not dividingt® —

for any proper divisom of 2" — 1. As we said above, the group presented by these
relations, if it does not collapse, defines the universal cbwafiT". The groupG < Aut(I")
which we started from is obtained fro by factorizing over the subgroup generated by
the following commutators

[ w'], G,j=12..,n-1

The polynomialgp(t) andq(t) depend on the choice of Thus, we can fix one of them as
we like, compatibly with the above conditions. Lgdt) be the one we fix. Then we try all
possibilities forq(t). Note that whem(t) = p(t) we getG < (K1 x Kz)L,(2). That is,
the canonical gluing corresponds to the choicg@j = p(t).

Whenn = 3 we can choosp(t) = t3+t+1. Thenq(t) = t3+t2+ 1 is the only choice
for q(t) # p(t). Inthis casd is the flat quotient of the elation semi-biplane of order 6 and
[ is its universal cover. Coset enumeration shows [Bat= 2821 = 4|G|. Hencel is a
4-fold cover ofl". Thus,I" is the elation semi-biplane of order 6.

Whenn = 4 we can tak@(t) = t*+t+1. Then eitheq(t) = p(t) orq(t) = t*+t3+1.
Chosert*+t2 4+ 1 asq(t), the geometry is the flat quotient of the elation semi-biplane of
order 14 and” is its universal cover. We now hayé| = 8|G|. Thereforel" is the elation
semi-biplane of order 14 (as above).

Whenn = 5 we can takep(t) = t° +t? 4+ 1. Then the following are the only choices

for q(t) # p(t):

t°+t34+1

St +t3 41241
o Htr+t2 4+t 41
S+t +t24+t+1
P+ttt +1

In the first casd’" is the flat quotient of the elation semi-biplane of order 30 (the action of
c on K is the inverse of that oK1). Again, the elation semibiplane of order 30 is the
universal cover of".

In the remaining four casds has 2° points (thus, it is a 32-fold cover df). Theorem
16 says that the four flat geometries corresponding to these four cases are pairwise nor
isomorphic.

Letn = 6. We now takep(t) = t® 4+t + 1 and the following are the possibilities for
q(t) # p(0):

t64+t54+1

o+ttt +t3 4+t 41
o+ttt +1
o+t +t3+t2 41
o Ft5+t2 4+t 41



24 BAUMEISTER AND PASINI

In the first caséa" is the flat quotient of the elation semi-biplane of order 62 (the actions of
con Ky andK; are mutually inverse). It turns out that the elation semibiplane of order 62
is the universal cover df (a 32-fold cover, in fact).

In two of the remaining four casds has 22 points, whereas it has'®points in the
other two cases. The four flat geometries corresponding to these four cases are pairwis
non-isomorphic, by Theorem 16.

5.3.3. An example with X< T'L;(2"). In order to get examples of gluings different from
those considered in the previous subsection we need a subgrolpL ; (2") transitive on
the 2' — 1 non-zero vectors 0¥ (n, 2) but not containing the cyclic subgroup Bt ;(2")

of order 2 — 1. No subgroup exists with these properties wher-2 andn are relatively
prime. Thus, by Theorem 16 we get the following.

Corollary 17 Let2" — 1 and n be relatively prime. Then

p2"'-1)
n

1

is the total number of flag-transitive non-canonical gluings of two copies ¢i,2%. If I'
is any of themthen Autl’) = (Ky x Ko)I'L1(2").

In particular, whenn < 5 no flag-transitive non-canonical gluings exist besides those
considered in the previous subsection. This is no more true wheit, as we shall show
now.

Letn = 6. Given elements and f of I'L1(2°) of order 63 and 6 respectively and such
thatct = ¢, leta = ¢3, b = cf2and X = (a, b). Thena andb have order 21 and 9
respectivelya® = a* andb® = a’. Thus,c ¢ X andX = Z,,Z3.

Letv € Ky andw € Ky so that p, f] = [w, f] = 1 and letG be the group presented
by the following relations:

e=uwl=alop®=1
[v,0¥] =1  (=12345
[w.w?]=1 (=12345)

pP@ — yP@ — 1

Ur(a)vb r@,, b =1

=w w

[v,w¥ =1
with

pt) =t +t>+t* +t24+1
r) =t*+t3+1
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Let us consider the following subgroups®f

Gy = (v,a,b) = K1 X, whereK; = (vX), X = (a, b),
Gp = (w,a,b) = KX, whereK, = (w*) and
G = (v, w?).

Clearly, G, and Gy are subgroups oAI'L,(2") = 2"T'L1(2"), G| = 22 and the coset
geometnf (G, (G p, Gi, Gy) defines a simply connectect*-geometnyi” of order 62 with
G as a flag-transitive automorphism group.

The size ofG can be computed by coset enumeration. It turns out|that= 218327.
Thereforel™ has 22 points. So in particulaF is not theDgs-truncation. (This can also be
seen using [3], Corollary (3.5)). On the other hand, the subghvap G generated by the
commutators§? , w?] (i, j = 1, 2, 3, 4, 5) is normal inG and it has trivial intersections
with each ofG,, Gx andG;. Thus it defines a flag-transitive quotiefit = [ of T.
Furthermore|G: N| = 25. Hencel has 2 points. Thatis[ is flat. By Theorem 6[" is a
gluing of two copies of A%, 2).

DenotedG/N by G, we have Autl’) > G = (K1 x Kp)X.

Statement 18 We have AUT’) = G and Autl’) = G.

Proof: We show Autl’) = G. As each automorphism &f can be lifted to an automor-
phism ofl", we then obtain Auf") = G as well.

AssumeA = Aut() > G. Since forp a point andc a planeA, = A are doubly-
transitive permutation groups, we hawg = A. = Ass, Sa, 26L4(2) or Ay = Acis
isomorphic to a subgroup of2L1(64), see [8] and [19]. Ag" is not theDgs-truncation,
A, = A are not isomorphic té\es Or S4, Se€ [4].

Let B be the Borel subgroup @t and letF be a flagin™. Then for the stabilizer§ ¢, Ar
of Fin G andA, respectively, we havAg = Gr B. HenceB normalizek; andK 5, which
gives B, v] = [B, w?] = 1 andNg(X) # 1. Leth € Ng(X)\{1}. Then on one hand
h € Nawk,)({c, f)) = X, i = 1,2, and on the other hand,[h] = [w?, h] = 1. Since
Cx((v)) = (f) andCx ((w?)) = (f2) we obtain K;,h~*f'] = Land Ko, h™1(f1)3] =1
forsomd, j € {1, ..., 6}. The Three-subgroup Lemma, [1] (8.7), yields [f), h~1f'] =
landfc, f),h=%(f1)3] = 1. Sof' and(f1)? are inducing the same automorphismXn

Thusf-1(f1)2 = fi-la-?+! centralizesX. SinceC 1)(X) = (a’), we obtain = j = 3
andB = Z,.

Onthe other hand X, f3) = (c, f)yieldsB = Zg, in contradiction to the above. Hence
A= Aut(l) = G. O

Added in proof. Conjecture 5.1.3 has been answered in the affirmative by the first author
and by D. Pasechnik [22].
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