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Abstract. A finite permutation group is cycle-closed if it contains all the cycles of all of its elements. It is shown 
by elementary means that the cycle-closed groups are precisely the direct products of symmetric groups and cyclic 
groups of prime order. Moreover, from any group, a cycle-closed group is reached in at most three steps, a step 
consisting of adding all cycles of all group elements. For infinite groups, there are several possible generalisations. 
Some analogues of the finite result are proved. 
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1. Introduction 

For any finite permutation group G, let C(G) be the group generated by all the cycles of 
the elements of G. We say that G is cycle-closed if C(G) = G. This concept arises in 
the work of Lenart and Ray [1] on a Hopf algebra translation of set systems with given 
automorphism groups. (I am grateful to Christian Lenart for communicating this to me.) 
I show in Theorem 1 below that the only cycle-closed finite permutation groups are direct 
products of cyclic groups of prime order and symmetric groups. Moreover, starting from 
any finite permutation group, we obtain a cycle-closed group after at most three applications 
of the function C (and this is best possible). 

Less is known about infinite groups, and indeed there are several possible generalisations 
of cycle closure. With the strongest concept, we again reach a cycle-closed group in at 
most three steps, such a group being a cartesian product of symmetric groups and cyclic 
groups of prime order as in the finite case. Even with the weakest concept, starting with 
an infinite transitive group, after at most three steps we reach a group containing all the 
finitary permutations. I conjecture that this group is in fact cycle-closed. The conjecture is 
proved in some cases. 

If G is transitive, then C(G) is a very special kind of Jordan group. A lot is known about 
Jordan groups. All finite primitive Jordan groups were determined, using the classification 
of finite simple groups, by Kantor and Neumann; and there is a structure theorem for 
infinite Jordan groups by Adeleke and Macpherson (which, however, gives no information 
in the highly transitive case). See Macpherson [2] for an up-to-date survey of this material. 
However, none of this is required here; the methods used are completely elementary. 

A general reference on permutation groups is Wielandt [4]. 
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2. The finite case  

Given a permutation group G on a finite set f~, we define Co(G) = G and Cn+I(G) = 
C(C,~(G)) for n _> O. 

Theorem 1 (a) A finite permutation group is cycle-closed if and only if it is a direct product 
of symmetric groups and cyclic groups of prime order. 

(b) For any finite permutation group G, Ca(G) is cycle-closed. 
(c) There exist finite permutation groups G such that C2(G) is not cycle-closed; such a 

group, if transitive, is a p-group, for some odd prime p. 

In the proof, we need the following simple result. (Of course, much stronger assertions 
have been proved; what we need is much less than even Jordan knew.) 

Lemma  1 Let g and h be permutations of ~, each of which is a cycle of prime order. Let 
S(9) and S(h) be the supports of g and h; suppose that neither of S(g) and S(h) contains 
the other, and that their intersection is non-empty. Then the group generated by 9 and h 
has even order. 

Proof: We may suppose that S(g) tO S(h) = f~, so that G = (g, h) is transitive. Let g 
and h have orders p and q, and suppose that p > q. It is straightforward to show that the 
conjugates of g by powers of h whose supports do not contain a particular point a ~ S(g) 
generate a transitive group on f~ \ {a}. So G is doubly transitive, and has even order. 

[] 

We also use the facts that a primitive group containing a transposition is the symmetric 
group, while a primitive group containing a 3-cycle is symmetric or alternating. 

Proof  of Theorem 1: First, suppose that G is intransitive. If its transitive constituents are 
G 1 , . . . ,  Gk, then C(G) = C(G1) x . . .  x C(Gk), since any permutation in G is a product 
of elements g, E G, (i = 1 , . . . ,  k), and all these elements are in C(G). So it suffices to 
prove all parts of the Theorem for transitive groups. 

Next, suppose that G is transitive but imprimitive. Take any system of blocks of imprimi- 
tivity. Suppose that g E G induces a cycle of length m on the blocks. Then ffm fixes all the 
blocks in the cycle and induces similar permutations on them. If h is a cycle of 9 "  on the 
block A, then h E C(G), and 9h -1 E C(G) has a cycle g '  E C2(G) of length m meeting 
every block in at most one point. We draw two conclusions: 

�9 C2(G) does not preserve the block system. Since this holds for any block system, 
C2(G) is primitive. 

�9 C(G) contains an element h'  whose support is contained in A and meets the support 
of g'  in one point. The commutator of g'  and h'  is a 3-cycle in C2(G). 

We conclude that C2(G) contains the alternating group An, where n = If~l, and Ca(G) is 
the symmetric group S,,. 
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Now suppose that G is primitive. If C(G) has even order, then C2(G) contains a trans- 
position, and is the symmetric group. So suppose that the order of C(G) is odd. If G is 
cyclic of prime order, then it is cycle-closed; so assume not. Take an element 90 of prime 
order in G which is not a single cycle on all the points, and let 9 be a cycle of 90 (in C(G)). 
Now the support of 9 is not a block of imprimitivity; so there is a conjugate h of 9 whose 
support meets that of 9. By Lemma 1, 9 and h generate a group of even order. So C2(G) 
contains a transposition, and is symmetric. 

We have shown that Ca(G) is cycle-closed for any transitive group G (and hence for any 
group G), and also that the only transitive cycle-closed groups are symmetric groups and 
cyclic groups of prime order. So parts (a) and (b) of the Theorem are proved. 

The above analysis shows that, if C2(G) is not cycle-closed, then G is imprimitive, and 
C(G) has odd order. Let 90 be an element of prime order p in G, and 9 a cycle of 90. 
By Lemma I, the support of 9 is a block of imprimitivity for C(G). If IG[ is divisible 
by another prime q, there would also be a q-cycle h E C(G) whose support is a block of 
imprimitivity. Now we could find two such blocks with non-empty intersection, and again 
the Lemma would imply that C(G) has even order. So G must be a p-group. 

The cyclic group G of order p2, where p is an odd prime, is an example. For let 9 be the 
generator. The only elements of G with non-trivial cycles are the powers of 9 p. Their orbits 
are blocks in the unique system of imprimitivity for G, which is thus preserved by C(G); 
so C(G) = Cp Wr Cp.This group has odd order, so all its cycles are even permutations, and 
C2 (G) is contained in the alternating group, and is not cycle-closed. (In fact, (72 (G) = Ap2 
and C 3 ( G )  = Sp2.) [] 

The following lemma will be needed in the next section. It follows from the proof of 
Theorem 1. 

Lemma 2 Suppose that n is even and not a power of 2, and let G be the cyclic group of 
order n acting regularly. Then C(G) : Sn. 

3. The  infinite case 

In what follows, a restriction of a permutation 9 always refers to the restriction to a fixed 
set A of 9, and is the permutation which agrees with 9 on A and fixes every point outside 
A. 

We have to modify the definition of cycle closure in the infinite case, since (for example) 
a permutation with infinitely many cycles does not lie in the group generated by its cycles. 
Accordingly, we set C - ( G )  to be the group generated the cycles of the elements of G, 
and C(G) = (G, C-(G)); we call G cycle-closed if G -- C(G). Note that G normalises 
C -  (G), so C(G) is the product C -  (G).G. Also, i fG is transitive, primitive, or k-transitive, 
then so is C - ( G ) .  

More strongly, we let R(G) be the group generated by all restrictions of elements of G, 
and call G restriction-closed if R(G) = G. Finally, we let C + (G) be the group generated 
by all permutations g with the property that every cycle of g is a cycle of an element of G, 
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and call G strongly cycle-closed if C + (G) = G. We have G <_ C(G) < R(G)  < C + (G) 
for any G, so the various closures do indeed get stronger. For example, consider the group 
G generated by an infinite set of permutations 9~, where 9~ has infinitely many cycles T~j 
each of length 2 (all these cycles disjoint). Then 

�9 G consists of all permutations which interchange the points in Tij for only finitely many 
i, and act non-trivially on Tij for all or no values o f j  for each i. 

�9 C -  (G) consists of all permutations which interchange the points in Tij for only finitely 
many i, j .  

�9 C(G) consists of all permutations which interchange the points in Tij for only finitely 
many i, and act non-trivially on Tij for finitely many or all but finitely many j for each 
i (and C(G) is cycle-closed). 

�9 R(G) consists of all permutations which interchange the points in T u for only finitely 
many i, but without further restrictions (and R(G) is restriction-closed). 

�9 C + (G) consists of permutations which interchange the points in T~j without restriction 
(and C + (G) is strongly cycle-closed). 

We define Cn(G) as before and C~ (G), Rn(G) and C+(G) analogously. 
Below, I consider the two extreme cases C -  and C +. I begin with the reduction to the 

transitive case. Given a family (G~ : i 6 I)  of groups let I-I,el Gi denote the Cartesian 
D product of the family, and ~ e I  G, the direct product (consisting of elements of the cartesian 

product which are the identity in all but finitely many coordinates). Just as in the finite case, 
we have: 

Theorem 2 Let G be a permutation group with transitive constituents Gi for i 6 I. Then 
C-(G) D = II ie l  C - (Gi ) ,  andC+(G)  = [lie* C+(G,)  �9 

For transitive groups, we have the following result. Let FS(f~) denote thefinitary sym- 
metric group on f~ (the group of permutations of finite support). 

Theorem 3 Let G be an infinite transitive permutation group on fL Then C 3 ( G) contains 
FS(f~); and C + ( G) is the full symmetric group on f~. 

Proof: If G is imprimitive, argue exactly as in the finite case, with the extra observation 
that an infinite cycle on blocks cannot revisit a block, to show that C f  (G) contains FS(f~). 

Suppose that G is primitive. If an element of G has a cycle of finite length, then C -  (G) 
contains an element g which is a finite prime cycle. As before, the support ofg is not a block 
of imprimitivity, so C -  (G) contains a finite subgroup of even order. Then C{ (G) contains 
a transposition, and hence contains the finitary symmetric group. The same conclusion 
holds for infinite cycles, in view of the next result. 

Lemma 3 I f  G is the infinite cyclic group, then C(G) = C - ( G )  is 2-transitive. 

Proof: It is clearly transitive. Identify the points permuted with the integers, so that the 
generator g of G is x ~ x + 1. Suppose we want to fix 0 and map l to m. Choose 
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two coprime integers z ,  y both greater than the larger of  Ill and Iml; then use the Chinese 
Remainder Theorem to find n such that n -- I (rood :r) and n = rn (mod y). Now 9 x 
has a cycle consisting of all integers congruent to l mod :r, and adds :r to each of these 
integers. Some power of  this cycle fixes 0 and carries I to n. Similarly, we can find a power 
of  a cycle of  9 u which fixes 0 and maps n to m.  (In fact, a similar argument shows that 
C(G) is highly transitive, that is, k-transitive for all k.) [] 

Now C+(G) contains C~-(G), which contains the alternating group in all cases. It 
follows that C+(G) contains all permutations all of  whose cycles are finite. But every 
permutation is a product of  two permutations with finite cycles. (It suffices to prove this 
for a cyclic permutation, which we can take to be the permutation :r H z + 1 of  the 
integers. This is the product of  the two involutions :r ~ - z  and z H - z  + 1.) 

[] 

Conjec tu re  For any permutation group G, Ca(G)  is cycle-closed 

The obvious strategy is to prove this conjecture first for transitive groups. If  this could be 
done, then at least the fact that C4(G) is cycle-closed for any G would follow. For suppose 
that C 4 ( G i )  = C3(Gi) for any transitive constituent G~ of G. Then C 5 (G,)  = C~- (G~); 
so  

D D 
c (a) = [ I  = H = c ; ( a )  

by Theorem 2, whence 

Ca(G) = C~ (G)C4(G) = C4(G). 

I conclude this section with a proof of the conjecture in a couple of  special cases. 

Proposi t ion 1 Let G be a transitive permutation group in which all the cycles of  all elements 
of  G are finite. Then C(G) < FS(f~) . G. Hence Ca(G)  = FS([2) . G is cycle-closed 

Proof:  The first assertion is clear since C -  (G) < FS(f~). Then C(G) also satisfies the 
hypothesis of  the Proposition, and by induction Cn(G) < FS(f~) �9 G for all n. Now the 
result follows from Theorem 3. [] 

The hypothesis holds for any torsion group, and for many other groups as well. 
The next result concerns the simplest group failing the hypothesis of  Proposition 1, the 

infinite cyclic group Z acting regularly. This was briefly considered in Lemma 3; a more 
detailed analysis follows. 

Proposition 2 Let G be the infinite cyclic group 77. acting regularly. 
(a) CI ( G) is the set of all permutations 9 of  Z for which there exist n > 0 and bo, . . . , b,~_ 1 

such that (kn + i)9 = kn + b~forO < i < n - 1. 
(b) C2(G) is the semidirect product F S ( Z )  - CI (G) .  
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(c) C3 (G) is the set o f  all permutations 9 o f T . f o r  which there exist r > 0 and h+, h_ E 

C I ( G )  such that x9  = xh+ f o r  x > r and x 9 = x h _  f o r  x < - r .  

(d) C4(G) = C3(G),  that is, C3(G) is cycle-closed. 

Proof: (a) Let z : x ~ x + 1 generate G. Any cycle of z m has the form k m +  i 
k m +  ( m  + i) for fixed i, all other points fixed. Such an element can be written in the form 
(a) of the Proposition for any n which is a multiple of ra. 

Consider now the composition of finitely many such cycles. Replacing the individual 
values of n by their least common multiple, we may assume that the same value of n occurs 
for each element. Now it is clear that the composition is also of the form (a). 

Finally, we must show that every permutation 9 of the form (a) is in C1 (G). Replacing 
n by a multiple, we may assume that n is even and not a power of 2. By Lemma 2, 
C(Z,~) = Sn, and so C ( G )  contains an element 9 t agreeing with g modulo n. Now g is 
obtained from 9 t by multiplying by a word in the cycles of z n. 

(b) C ( G )  contains elements inducing the symmetric group on { 0 , . . . ,  n - 1} for any n, so 
C2 (G) contains the finitary symmetric group. We show that any infinite cycle of an element 
of C ( G )  belongs to C(G) ,  from which the result follows. So let 9 be an infinite cycle of 
an element of the form (a). Some power 9 r acts trivially modulo n, so x 9  r = x + dn 
(where d may depend on x). Of course, d = 0 if 9 fixes x. Suppose that g moves x. Since 
x9 ~ = x (mod n), we have x9  ~+1 - x9  r = x 9  - x,  so (x9)9 ~ - xg  = xg  ~ - x.  So the 
value of d is constant on the cycle of elements moved by g. Replacing n by dn, the support 
of 9 is a union of congruence classes modulo n, so that 9 is indeed of the form (a). 

The product is semidirect because C ( G )  contains no elements of finite support. 

(c) We show first that any cycle of an element of C2(G) satisfies the specifications of 
(c). This is clear for a finite cycle, so let g be an infinite cycle. The two 'ends' of 9 agree 
with those of two cycles (possibly equal) of an element of C(G) .  Since C ( G )  contains 
all infinite cycles of all its elements, the result is true. (Note that the 'ends' of 9 may be 
contained in the same or different ends of Z.) 

It follows easily that any element of C3(G) has the form (c). 
To conclude, we must show that every permutation of the form (c) belongs to C3(G). 

So let g be such a permutation. By multiplying 9 by h -1, we may assume that h_ = 1. 
Now any cycle of h+ is either ascending, descending, or finite. (We call an infinite cycle 
ascending if some power of it translates points in its support by a positive number; see the 
argument in (b). Descending cycles are defined analogously.) If  the numbers of ascending 
and descending cycles are unequal, then no permutation 9 satisfies the specification of 
(c): for any such permutation has two 'ends',  one ascending and the other descending. 
So we may assume that these numbers are equal. Thus we may pair the ascending and 
descending cycles of h+. We can find an element of C2(G) with a cycle which agrees with 
the product of a paired pair of cycles of h+ on the positive end of 25, and fixes the negative 
end pointwise. (This element is the product of the two paired cycles and a transposition 
interchanging points in the two cycles.) 

It remains to deal with finite cycles. Now the finite cycles of h+ fall into congruence 
classes modulo n, for some n. We express the product of the positive cycles in each class 
as an element of C3(G). Take one congruence class of cycles, defining a permutation 
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g. Suppose first that some congruence class (say x mod n) is fixed. Let y mod n be 
a congruence class moved by g. There is a permutation g~ c C2(G) having a cycle gt 
satisfying (kn + x)g' = k(n - 1) + x and (kn + y)g' = k(n + 1) + y for sufficiently 
large k, all negative points being fixed. (Take g~ to be the product of two infinite cycles 
and a transposition interchanging points in the two cycles.) Then gg t has a single infinite 
cycle g" on the positive end of Z, and g" E C3(G). We conclude that g,(g~)-i belongs to 
Ca(G) and agrees with g on the positive end of Z, fixing the negative end pointwise. On 
the other hand, if g has no fixed points, we can write it as a product of two permutations 
in Ca(G) with finite cycles, each of which has fixed points; then the positive end of each 
factor belongs to C3 (G), and hence so does the positive end of g. 

(d) Finally we show that Ca(G) is cycle-closed. Clearly it contains all the finite cycles. 
Any infinite cycle of a permutation satisfying (c) itself satisfies (c), and so also belongs to 
C3 ( C). [] 

Remark An interesting example resembling the groups C(Z) and C2(Z) of the previous 
result was considered by Rudin [3]. (I am grateful to Chris Woodcock for bringing this to 
my attention.) This paper characterised the permutations of X which map Fourier series (of 
integrable periodic functions) to Fourier series. (A permutation of Z acts on the indices of 
the Fourier coefficients.) Rudin showed that the group of such permutations is the semidirect 
product F S (Z)  - G, where G consists of those permutations g of X for which there exist 
n > 0 and ai, b~ (0 < i < n -  1) such that (kn +i )g  = ka~ + b~ for 0 < i < n -  1. This 
group G contains C(Z) and a lot more besides. Rudin gave as an example the permutation 
g defined by 

(3k)g = 2k, (3k + 1)g = 4k + 1, ( 3 k -  1)g = 4 k -  1. 

Clearly C(G) > F S(Z)  �9 G; does equality hold? And can the cycle-closure of G be 
described? 

4. Applications and open problems 

The original application by Lenart and Ray to the combinatorics of "objects with group 
action" is somewhat technical; interested readers are referred to their paper [1]. Another 
application is the construction and analysis of interesting infinite groups. 

I list a few open problems. 

(a) Which finite transitive permutation groups G satisfy C2 (G) # (73 (G)? (These are all 
p-groups, for odd primes p.) 

(b) Is it true that C3(G) = Ca(G) for all permutation groups G? 

(c) The group C(Z) has an obvious homomorphism onto Z. Is the kemel simple? What 
are the normal subgroups of (73 (Z), or of Rudin's group? 

(d) What can be said about the "restriction" operator R? 
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