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1. Introduction 

Several representations of the symmetric group, arising from different combinatorial, alge- 
braic and geometric constructions, have lead to the same character, up to multiplication by 
the sign character: the homology of partition lattice (cf. [5, 7, 13]), the top component of 
a special quotient of the Stanley-Reisner ring of this same lattice [4], the top component of 
the cohomology algebra of the variety {x ~ C n [ x~ ~ x j  if i # j } computed by Arnold [9], 
the free Lie algebra [7, 8]. Barcelo [1] and Bergeron and Barcelo [2] have also proved this 
equality of characters by showing that the matrices of these representations in the classical 
bases (Lyndon basis of the free Lie algebra, Garsia-Stanton basis, NBC basis of Bj6rner 
[3]) are equal, up to sign-character and transposition. The latter work has been the starting 
motivation of the present paper. 

It turns out that the character of Sn acting on the (multilinear part of the) free Lie algebra 
is the product by the sign character by its character on the (oddly generated) free Lie 
superalgebra R(X).  This fact is already implicit in Ree's paper [12]. In the present paper, 
we give several combinatorial/algebraic constructions (analytic functors [7], or polynomial 
functors [10]) which are variant of the classical construction of T~(X) by trees (representing 
the brackets) or of its dual; these different functors coincide in their multilinear part with the 
previously mentioned constructions on the partition lattice, so that the equality of characters 
and matrices becomes natural. 

A striking fact in all these constructions is that they are obtained by introducing relations 
which in all cases are of two kinds: one of length 2, and one of length 3 (antisymmetry and 
Jacobi identity for the free Lie superalgebra, cohomology or Garsia-Stanton relations in the 
Stanley-Reisner ring, antisymmetry and cyclicity in the Arnold algebra). At first glance, 
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there should be strict correspondence between these relations in all these constructions, 
since they provide the same character. This is however not the case, and our work shows 
how one passes from one to another set of relations. 

The different constructions of 7~(X) (or its dual) that we give rest all on several kinds 
of trees, familiar to combinatorialists and computer scientists, and mappings among them. 
They are all labelled (nodes, leafs, edges) in X and 1, 2, 3 . . . . .  One example are the spatial 
rooted complete binary trees, with X-labelled leafs and nodes labelled 1, 2, 3 . . . .  ; in the 
multilinear case, they are in bijection with maximal chains of partitions of X (cf. [14]). 

This paper extends and corrects [11], and an earlier version, for which we gratefully ac- 
knowledge the two referees. We thank also Claudia Malvenuto, for preliminary discussions, 
and Sheila Sundaram for explaining us the links between homology and Garsia-Stanton re- 
lations of the partition lattice. During the time of preparation of this article, starting 1991, 
through [ 11 ] and the previous version entitled "The Free Lie Superalgebra and Representa- 
tions of the Symmetric Group", there has been some overlap with a work of Michelle Wachs 
([14] and her talk at the Jerusalem Combinatorics Conference in May, 1993). Especially, 
Corollary 3.2 has been found independently by her, and she also uses the previously men- 
tioned bijection. We think however that our approach is justified, among others because we 
consider the non multilinear case, construct combinatorially the free Lie superalgebra and 
its dual, thereby relating the whole thing to the work of [9]. A related work is also [6]. 

Recall that the (oddly generated) free Lie superalgebra on X over Q is the quotient of the 
free (nonassociative, noncommutative) algebra .A(X) by the relations (called antisymmetry 
and Jacobi relations) 

[P, Q] + (-1)pq[Q, P] = o, (1.1) 

[P, [Q, R]] = [[P, Q], R] + (-1)Pq[Q, [P, R]], (1.2) 

where the product is denoted by brackets, and where P, Q, R are homogeneous elements 
with degrees p, q, r. By a result of Ree [12], ~ (X)  may be identified with the sub Lie 
superalgebra of the free associative algebra Q(X) generated by X, where the bracket is 
[P, Q] = PQ - ( - l )  pq QP for any homogeneous polynomials P, Q in Q(X). We call 
an element of R(X)  a Ree polynomial. 

2. Planar rooted binary trees 

An element of T (X) will be a planar, rooted, binary and complete tree t, with leaves labelled 
in X, with internal nodes having distinct labels in {1, 2 . . . . .  Itl - 1}, where Itl is the X- 
degree of t (number of leaves), and where these labels increase from leaves to the root. The 
space 7-(X) is the Q-vector space with basis T(X). 

Let L(X) denote the set of words of the form Xlilx2i2... in-lxn, where n > 1, xj 6 X 
and {il . . . . .  in-l } = { 1, 2 . . . . .  n - 1 }. There is a natural bijection between L (X) and T (X), 
described in figure 1, and obtained by projecting the tree onto an horizontal line. This allows 
to associate to each tree t in T(X) a permutation cr, by forgetting in the corresponding word 
the letters in X; then we define a natural surjective linear mapping f '  : T(X) ~ T~(X) 
recursively by f ( x )  = x i fx ~ X, f ' ( t)  = [ f ' ( h ) ,  f '(t2)] iftl (tz) is the left (right) subtree 
of t; that is, f ' ( t )  is the element of ~ (X)  corresponding to the bracketting determined by 
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Figure 1. 

the tree t; in figure 1, f ' ( t)  is [Ix, [[y, x], x]], [x, z]]. Then we define the surjective linear 
mapping f :  T(X)  ~ R(X)  by f ( t )  = ( - 1 ) ~ f ' ( t ) ,  where cr is the permutation of t, and 
( -  1)" its signature. 

Define a subspace T'(X) of T(X),  spanned by the elements shown in figure 2, where 
dots indicate that the trees are otherwise equal. We define a product [, ] on T(X) by the 
following rule. Let tl, t2 ~ T(X)  and denote by/2 the tree obtained by shifting the internal 
labels of  t2 from { 1 . . . . .  It2l - 1 } to {Iql . . . . .  It~l + It21 - 2}; then the product [tl, t2] of  tj 
and t2 is ( -  1)It21-~ t, where the tree t has tl as left subtree,/'2 as right subtree and It1 [ + It2 [ - 1 
as root label. See figure 3. 

T h e o r e m  2.1 The product in T ( X) defines a structure of super Lie algebra on T ( X ) /T '  
(X), which is isomorphic with R(X),  the free super Lie algebra. 

At a first glance, this result seems trivial, since R ( X )  is defined as a quotient of  the space 
spanned by trees (not internally labelled) by the super antisymmetry and Jacobi relations, 
and since the product in T(X)  is close to that of 7E(X). However, there is a technical 
difficulty, solved by the next lemma, whose proof is deferred at the end of  the paper. 

L e m m a  2.2 The product in T(X)  satisfies, rood. T'(X), the super antisymmetry and 
Jacobi relations. 

Proo f  of  T h e o r e m  2.1: If  tl ~ t~ mod. T/ (X) ,  then clearly [q, t2] - [t I, t2] mod. 7-I(X), 
and similarly on the other side. This shows that the product is well-defined in T(X) /T ' (X)  
and L e m m a  2.2 implies that T(X)/T~(X) is a super Lie algebra, which is clearly generated 
by X. 

We verify that f :  T(X)  --~ TO(X) is a homomorphism. Indeed, we have f ([q,  t2]) -- 
f((--1)lt21-1t) = (--1)lt21-1(--1)"f(t) on one hand, and on the other [ f ( t l ) ,  f ( t2)]  = 
[(-1)~r~f'(tl),(-1)~2f'(tz)] = ( - 1 ) ~ ' ( - 1 ) ~ 2 [ f ( t l ) ,  f ( t 2 ) ]  = ( - 1 ) ~ ( - 1 ) ~ 2 f ' ( t ) ,  and 
we conclude, in view of  the following fact: 

The permutation ~r associated with t is a l (n  - 1)6"2, where n = Itl and 6"2 is obtained 
from or2 by adding n 1 - 1 to its digits. Moreover, we have ( -  1)~ = ( -  1)~2-1 ( _  1 )~ ( -  I )~2. 
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We verify now that Ker f D T ' (X) .  This will imply that f defines a super Lie algebra 
homomorphism T ( X ) / T ' ( X )  ~ 7~(X); since T ( X ) / T ' ( X )  is generated by X and since 
7~(X) is free, it must be an isomorphism. 

Clearly, element (2.3) is in Ker f ,  since the two trees are identical when they lose their 
internal labels, and have permutations of  opposite sign. For (2.4), let al ,  a2, a3 be the 
corresponding degrees; the permutations associated to the three trees are uoq iot2(i + 1) 
t~3 v, Uotzi~3 (i + 1) oq v and u~3it~l (i + 1)or2 v, where or l, ~2, a3 are the permutations of 
A 1, A2, A3, of  lengths al - 1, a2 - 1, a3 - 1, and where i, i + 1 are greater than the digits in 
oq, c~2, or3. A simple verification, left to the reader, shows that their signatures are e ( -  1 )a~a,, 
~(--1)  aza2, ~(--1)  a2as with e = 4-1. Denoting A I = f t (A i )  , we must therefore show that 
(-1)a~a'[[Atl  , A'2], A'3] + (--1)ata2[[A~2 , A'3], Atl] + (-1)a2a~[[A~3, At1 ], A[] = 0 in 7~(X). 
But this is a consequence of (1.1) and (1.2). For (2.5), a similar argument shows that this 
element is in Ker f ,  as a consequence of (1.1). 

For two trees t ' ,  t in T(X)  we write t '  "-- t if t '  is obtained from t by iteratively twisting t 
around some of  its internal nodes. This is clearly an equivalence relation. We denote w(t) 
the word of  t in X*, obtained by forgetting in the corresponding word the digits 1, 2 . . . . .  
In figure 1, it is xyxxxz .  [] 

Coro l la ry  2.3 Let ~ ( X )  be embedded in Q(X).  Then the isomorphism of Theorem 2.1 
sends each tree t onto Y~t,~t(-  1)~'w(t ') ,  where or' is the permutation oft'. 

Proof: I f  t '  is obtained from t by twisting around the node labelled i its subtrees A and B, 
then the signature of  the corresponding permutations changes by ( -  1)ab-1 (a = I A[, b = 
IBI). Thus, by the super antisymmetry relation, we have f ( t ' )  = f ( t ) .  Thus, t '  ~ t =r 
f (t') = f (t). But in f (t), w(t) appears with sign ( - 1 )  ~. Since f (t) = Y~t,~t +w(t ' ) ,  the 
corollary follows. [] 

3. Spatial rooted binary trees and chains of partitions 

An element of  S(X) will be a spatial (nonplanar), rooted, binary and complete tree t, with 
leaves labelled in X and nodes distinctly labelled in { 1 . . . . .  [tl - 1 }, increasing from leaves 
to the root. Denote by S ( X )  the Q-vector space with basis S(X).  There is a natural 
surjective linear mapping g : T ( X )  -+ S(X) ,  such that g(t) is, for t in T(X) ,  the nonplanar 
tree associated to t. 

Let S ' (X)  denote the subspace of S ( X )  spanned by the elements of the form (2.3) and 
(2.4) in figure 2, considered as nonplanar trees. Define a product in S(X) ,  similarly to that 
in 7"(X) : [h, t2] = (-1)l t~l- l t ,  where t has the two immediate subtrees tl, t2. 

Theorem 3.1 The product in S ( X )  defines a structure of super Lie algebra on S ( X ) / S '  
(X), which is isomorphic with R (X) ,  the free Lie superalgebra. 

Proof: The subspace Ker g of  7"(X) is generated by the elements (2.5) in figure 2, so 
that Ker g _c 7".  Moreover, S '  = g(7"), hence g- l (S ' )  = 7" + Kerg  = 7-'. Thus 
7-/7-, = 7",/g-1 (S') ~- S /S ' .  Since the product is well-defined on S /S ' ,  the theorem 
follows. [] 
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Figure 4. 

s i t lu l v lw lx ly l z  
s t l u l v l w l x l y l z  
s t l u v l w l x l y l z  
s t l u v l w l x y l z  
s t l u v l w l x y z  
s t u v l w l x y z  
s t u v l w x y z  
s t u v w x y z  

Remark Note that in [11], we have given a theorem analogue to Theorem 3.1, with S / S  t 
replaced by a space constructed on maximal chains of partitions of multisets over X, subject 
to relations (3.1) and (3.2). This result is however not correct (although we obtain a strange 
Lie superalgebra which should be studied elsewhere); the reason is that the latter functor is 
not analytic in the sense of Joyal [7]. This can be seen for example on the chain xy, xy I xy, 
xyy I xy which can be obtained by specialization from the two multilinear chains 12, 12 [ 34, 
125 ] 34 and 34, 12134, 125 134. These two chains are clearly not of the same type. The 
fact that the functor X -+ set of maximal chains of multisets over X, is not analytic, but has 
the desired multilinear component, brought us to find the analytic functor corresponding 
to this multilinear component, knowing by [7] that it exists and is unique (more precisely, 
each analytic functor is obtained by specialization of its multilinear component, another 
way of expressing Weyl duality). It turned out quickly that the correct functor had to 
distinguish between blocks of the partition of the multiset, in order to record the history 
of their formation through joins, starting from the atoms (cf. the previous example); in 
other words, one was lead naturally to increasing trees, where the label of each internal 
node records the history of the block under it. In particular, this record is not necessary 
for multilinear chains, implying the bijection between maximal chains of partitions of a set 
and increasing trees (see below). 

A multilinear tree is a tree such that each element of X appears exactly once as label. 
To each multilinear tree t in S(X), of degree n, we associate a maximal chain of partitions 
of X. This mapping h(t) is described in figure 4, and the reader will convice himself that 
it is a bijection. 

Denote by C(X) the Q-vector space spanned by the (maximal) chains of partitions of X, 
and by Smult(X) (resp. S~nult (X)) the multilinear part of (= span of multilinear trees) S(X) 
(resp. S'(X)). Then h extends to a vector space isomorphism Smult(X) ~ C(X). 

Corollary 3.2 7"C-mutt(X) is naturally isomorphic with the quotient of C(X) by the coho- 
motogy (or Garsia-Stanton) relations, i.e., the subspace C'( X) generated by the elements 
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o f  the f o r m  

( . . . . . . .  A I B I C I D  . . . . . . .  A U B I C I D  . . . . . . .  A U B I C U D  . . . . . . .  ) 

+ (  . . . . . . .  A I B I C I D  . . . . . . .  A I B I C U D  . . . . . . .  A U B I C U D  . . . . . . .  ), 

(3.1) 
( . . . . . . .  A I  B I C  . . . . . . .  A U B I C  . . . . . . .  A U B U C  . . . . . . .  ) 

+ (  . . . . . . .  A I B I C  . . . . . . .  B t ) C  I A . . . . . . .  A U B U C  . . . . . . .  ) 

+ (  . . . . . . .  A I B I C  . . . . . . .  C U A ) B  . . . . . . .  A U B U C  . . . . . . .  ). (3.2) 

This result has also been obtained independently by Michelle Wachs [ 14]. 

Proof :  The corollary is simply a translation of  Theorem 3.1, via the bijection h; indeed, 

it implies that T~mult(X ) ~ Smult(X)/Stult(X). [] 

We now show how to compute directly the previous isomorphism. For this, recall that 
the lattice ~r(X) of  partitions of  X is generated by its atoms; such an atom will be denoted 
by a = (xy) ,  for x, y in X. Furthermore, each chain may be written c = (0, a l ,  al  

Aa2 . . . . .  al  A as A . . .  A a~- i  = 1), where 0 (1) is the partition with n blocks (one 
block) and n = IXI. We write a = (al . . . . .  a , - l )  and ca(if) = c. For such an a and 
o" 6 Sn-1, let a .  cr = (a~ . . . . .  a,,(,-1)).  For a multilinear word w on X, w = xl . . . . .  x , ,  

let a ( w )  = ( (x lx2) ,  (XzX3) . . . . .  ( xn_ lx , ) ) .  

Corollary 3.3 Let  ~ ( X )  be embedded in Q(X).  The isomorphism P : C ( X ) / C ' ( X )  --> 

7Bmutt(X) o f  Corollary 3.2 is given by 

P(c) = ~---~(-1)~/ 
1/),0t 

where  the summat ion  is over all mult i l inear words w on X, n = IX I, and all at in S~_ 1 such 

that c = c( a ( w )  �9 or). 

This formula has been given in [1 l].  

Proof: Let c be a fixed chain on X. There is a bijection between the set {t ~ T ( X )  I 

h g ( t )  = c} and {(w, t~) I w ~ X*,1 t, a c Sn-l ,  c = c ( a ( w ) ,  t~)} given by: w = w( t ) ,  ot = 

~r (t) -~ , where cr (t) is the permutation of t. By looking at figure 5, the reader will convince 
himself  that it is indeed a bijection, and that ot ----- cr -1. Since the previous set of trees is 
by definition of  a spatial tree a single class mod. ---, this implies the corollary, in view of  
Corollaries 2.3 and 3.2. [] 

4. Spatial trees 

An element  of  V ( X )  will be a spatial tree r with vertices labelled in X, and edges having 
distinct labels in { 1, 2 . . . . .  n - 1 }, where r has n vertices. There is a natural mapping from 
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V(X) into S(X), described in figure 6. The recursive definition of  k goes as follows: if 
z has one vertex labelled x, then k( r )  is the tree reduced to a leaf labelled x; if ~ has n 
vertices, then the edge with the maximal label n - 1 has two subtrees ~1 and ~2, and k(z)  
has a root labelled n - 1 with the two immediate subtrees k0:l)  and k0:2). 

Denote by W(X) the Q-linear span of V(X). For z as before and ot e Sn-t, denote by 
�9 t~ the tree in V(X) obtained by replacing each edge label i by t~-l(i);  this is a right 

action of  Sn-l on V(X). 
Define a pairing between V(X) and S(X) by 

(r, t) = ~ ( - 1 )  a, (4.1) 

where the sum is over the t~ such that k ( r  �9 or) = t. 
Define a subspace Vt(X) of V(X), generated by elements of the form shown in figure 7, 

where dots indicate that the trees are otherwise equal. 



FREE LIE SUPERALGEBRAS, TREES AND CHAINS OF PARTITIONS 345 

(4.2) / + / 
,.. 

~149 

X3 ~ 1 . .  X 3 ... x ~  

(4.3) 1 "'" 

x2 
x 2 x2 

xl 

Figure 7. 

Xl I X2 2 X3 ... Xn 
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Theo rem 4.1 Thepairing (4.1) induces a duality between )/(X)/V'(X) andS(X)/S'(X).  
Hence, the first space is naturally isomorphic with the dual of the free Lie super algebra 
1Z( X ). 

The proof of  Theorem 4.1 is a consequence of  several lemmas, which will be proved in 
the last section. 

L e m m a  4.2 If T is in )) '(X) and t in S, then (T, t) = 0. If r is in V and T in S ' (X) ,  then 
( r , T )  = 0 .  

If  w = x~ .. �9 xn is a word of  length n in X*, let rw denote the element of  V(X) shown 
in figure 8. Denote by (P,  w) t he coefficient of  w in P 6 Q(X).  Denote by P(t) the Ree 
polynomial associated to t ~ S(X) through the mapping of  Theorem 3.1. 

L e m m a  4.3 Forany w in X* andt in S(X), one has (rw, t) = (P(t), w). 

L e m m a  4.4 Let xo E X. Then each element of V ( X) involving xo is equal mod. V'( X) 
to a linear combination Of rxow, w ~ X*. 
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Proof of T h e o r e m  4.1: Lemma 4.2 shows that the pairing (4.1) induces a pairing between 
V / V '  and S / S ' .  We know by Theorem 3.1 that S / S '  is isomorphic with ~ ( X ) .  Moreover, 
this space is embedded in Q(X) ,  so the linear functions on ~ ( X )  of the form P 
(P,  w), w �9 X*, span the dual of  ~ ( X ) .  Thus, Lemma 4.3 implies that the pairing is 
nondegenerate on the right, i.e., if for T in S, one has (r, T) = 0 for any r in V, then T �9 $ ' .  

Restricting to multilinear elements, we see that each linear form on T~,mult(X ) : Smult 
(X)/S[nult(X) is in "l)mult/}J:nult; since TC-mult(X) is of  dimension (IXI - 1)!, we deduce 
that ~)mult/~)~nul t is of  dimension > (IXl - 1)!. Lemma 4.4 shows that its dimension is 
_< (IXI - 1)!. Thus  the pairing between Smult/S/nul t and Vmult/'l)/nul t is a duality. 

From this, we deduce that if ~0 is a linear form on })mult which vanishes on V'uU, then it is of  
the form q)(T) = (T, T ')  for some T '  in Smult- Let Q : Q(X)  ---> l : ( x )  be the linear mapping 
sending w on rw. Then, by Lemma  4.3, for u, v in X + such that their signed shuffle product 
u x v (cf. [12]) is multilinear, we have ~o (Q(u  x v)) = (Q (u x v), T')  = (P (T ' ) ,  u x v) = 0, 
since P ( T ' )  is a Ree polynomial. 

Thus, each linear form on )2mult which vanishes on V~nuu, vanishes on the multilinear 
Q(u x v). We deduce that each such element is in V~uJt. By specialization, we have also 
in general Q(u x v) �9 "~'(X). 

Now, let ~o be a linear form on 12 which vanishes on V'. Let P = Y'~w~x* ~0(rw)w. 
Then(P ,  u x v) = ~ w ~ x .  ~o0:to)(w, u x v) = ~0(~w(u x v, W)rw) = ~o(Q(u x v)) = O. 

Hence, by [12], P is a Ree polynomial, and we find T '  �9 S such that P ( T ' )  = P. 
By L e m m a  4.3, ~o(rw) = (P, w) = (P(T ' ) ,  w) = (rw, T'); since the rw span 12 mod. 

12' by Lemma  4.4, we deduce that each linear form on I ) /V  ~ is of the form (, T'),  and the 
pairing is also nondegenerate on the left. [] 

Let  L be the set of  Lyndon words in X*. 

Coro l l a ry  4.5 The rt, for  s in L, and the tee for  e in L,  lel odd,  form a basis o f  
V ( X ) / V ' ( X ) .  

Proof: This follows, because the functions P ~ (P, l), with g Lyndon word, and P 
(P,  ee), e �9 L, lel odd, form a basis of TC.(X)*. [] 

In the course of  the proof of  Theorem 4.1, we have also proved the following result. 

Corollary 4.6 The elements ru • are in I)' (X) ,  for  any non empty words u, v. 

Direct proofs Corollaries 4.5 and 4.6 would be interesting. 
Recall f rom [9] that the Arnold algebra A = A(e) is generated by the elements aij = 

aji, 1 < i, j < e, i ~ j ,  subject to the relations 

aijakm :- --akmaij , 

aijajk -q- ajkaki q- akiaij : O. 

(4.4) 

(4.5) 

It is shown in [9] p. 415, that A has a highest homogeneous component A e-l , spanned by 
the elements m( r ) ,  which is the product a, tj~ .. "ait_~jt_~, z" a tree with vertices {1 . . . . .  s 
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and edges {(il, j l )  . . . . .  ( i t-z,  j t - 0 } .  The similarity between (4.2), (4.3) and (4.4), (4.5) 
implies the following result, proved by Lehrer and Solomon [9]. 

Corollary 4.7 As an St-module, A t - l  is naturally isomorphic with the multilinear part 
of  the dual of  TO(X), X = {1, 2 . . . . .  e}. 

5. Proof of the lemmas 

Proof of Lemma 2.2 We prove first a claim. For t in T(X),  let f~(t) denote the tree 
obtained from t by forgetting the internal labels. 

I f  f l  (s) = f l  (t) and if or, tr are the permutations of  s, t 

then ( -1 )~s  = ( - 1 ) ~ t  mod. 7"(X).  (5.1) 

Indeed, let L(s) ,  R(s)  denote the set of  internal labels of  the left, right subtree of s, with 

IL(s)l = i. 
Suppose that L(s)  = {1 . . . . .  i}, R(s)  = {i + 1 . . . . .  i + j}. If  moreover L(s)  = L(t) ,  

R(s)  = R(t) ,  then s = ( -1 ) J [ s ' ,  s"], t = ( -1)J[ t ' ,  t '] for some s', s ' ,  t', t" in T(X) .  
Then, we have f l ( s ' )  = f l ( t ' ) ,  f l ( s" )  = f l ( t " )  and by induction ( -1 )~ ' s  ' = ( - 1 ) ~ ' t  ', 
( -1 )~"s  " ---- ( - l ) ~ " t  " mod. 7"(X),  where or', or", tr', tr" are the permutations of  s' ,  s", 
t ' , t". Since the product in T ( X )  is compatible with the quotient mod. 7"(X) ,  and since 
the permutations of  s and t are ot = ot'(i + j + 1)t~", r = tr'(i + j + 1)6" of signature 
( - 1 ) ~ ' ( -  1)~"(-1) j and ( - 1 ) ~ ' ( - 1 ) ~ " ( - 1 )  j, we obtain ( - 1 ) a s  - ( -1 )~ t ,  in this case. 

If  L (t) is not the interval { 1 . . . . .  i }, we show by induction on the sum of  the elements in 
L(t) ,  that the claim holds for t. If  this sum is i(i + 1)/2, L(t)  = {1 . . . . .  i} and the claim 
holds. Otherwise, this sum is > i(i + 1)/2 and we can find k ~ L(t) ,  k + 1 ~ L(t);  then 
k + 1 (resp. k) is in the left (resp. right) subtree of  t, and if we exchange them, we obtain 
by (2.3) a tree tl = - t .  Then k ~ L(tO and the sum for tl is smaller than the sum for t, 
and their permutations have opposite sign, which concludes this case. 

Suppose now that s is not of  the form indicated previously. Then the latter argument 
shows that we can find Sl of  this form, such that sl, s satisfy the claim; since s~, t also do, 
so do t and s. 

The claim being proved, we can now deduce that the product satisfies the super antisym- 
metry relation. Let h,  t2 be two trees of  degree nl, n 2. Then [h, t2] = ( -  1)n2-1t, [t2, t l]  = 
(--1)n~-lt ', where t = (h, t-2), t t = (t2, il), with il, i2 the trees whose internal labels have 
been appropriately shifted. Let s = (il, t2); by (2.5) we have t ~ --- s and s and t only differ by 
their permutations, which are obtained one from the other by multiplying it by the permuta- 
tion nl . . .  (nl + n 2  - 1)1 . . .  (nl - 1), of  signature ( - 1 )  (n~-l)(n2-1). Thus, the claim shows 
that t --= s ( - 1 )  (n'-l)(n2-1), which implies [tl, t2] = ( -1 ) ( " : -1 ) ( -1 ) ( " ' -1 ) ( " : -1 ) ( -1 )  r 
[t2, tl] = ( - 1 )  "'n:-~ [t2, tl], what was to be shown. 

Let P ,  Q, R be three trees in T ( X )  coded as words in L(X) ,  according to the bijection 
of  Section 2. We have to show that [P,  [Q, R]] - [[P, Q], R] - ( -1)Pq[Q,  [P,  R]] is in 
T ' ( X ) .  We denote by Pij the tree P where the internal labels have been shifted to the 
interval [i, j ]  (with j - i + 1 -- I PI - 1 equal to the number of  internal nodes of P).  Then, 
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by the definition of  the product, the above element is 

( - 1 )  r - I  ( - 1 )  q+r-I P ( p  + q + r - 1 )ap ,p+q-2(p  -t- q + r - 2)Rp+q-l,p+q+r-3 

- -  ( - - 1 )  q - I  ( - - 1 )  r - I  P ( p  + q - 1 ) Q p , p + q - 2 ( p  + q + r - -  l ) R p + q , p + q + r - 2  

- ( - 1 ) e q ( - 1 ) r - l ( - - 1 )  p+r-I Q ( p  + q q- r - 1)Pq,p+q-2 

x (p  + q + r - 2 ) g p + q - l , p + q + r - 3 .  

We know that the element 

P ( p  + q + r - l )Qp ,p+q-2 (p  + q + r - 2 ) g p + q - l , p + q + r - 3  

+ P ( p  + q + r - 2 )Qp,p+q-2(p  + q + r - 1 ) R p + q _ l , p + q + r _  3 

-]- Q p , p + q - 2 ( p  -t- q + r -- 1)P(p  + q + r - 2 ) R p + q - l , p + q + r - 3  

is in 7- '(X): indeed, it is obtained with i = p + q + r - 2 in (2.4), by using (2.5). So, by the 
claim, all we have to show is that the permutation which sends p + q - 1 onto p + q + r - 2 
and sends the interval [p + q, p + q + r - 2] onto [p -t- q - 1, p + q + r - 3] (resp. sends the 
interval [1, q - 1] onto [p, p + q  - 2 ]  and the interval [q, p + q  - 2 ]  onto [1, p - 1]), leaving 
fixed the other digits, has signature ( - 1 ) r -1  (resp. (-1)Pq+P+q-1 ). This verification is left 
to the reader. [] 

Proof of Lemma 4.2: 

1. We have to show that for T = (4.2) or (4.3), (T, t) = 0. 

This is clear for (4.2), since the transposition (i, i + 1) is of  signature - 1 ,  and 3i. 
(i, i + 1) = 32, where rl, 32 are the two trees in (4.2). 

Let 31, 32, 33 be the three trees in (4.3) and let t ~ S ( X ) .  We have to show that 
l C t - -  )--~l~j ~3 )--~k~rj .~)=/(-- ) - -0 .  Suppose that k(3j  .or) = t ,  and let r = ot-l(i) ,  s =or - l  

(i + 1). Suppose that r < s. We take the indices j mod. 3. Then 3j, 3j �9 or, 3j+1, 3j+i �9 (i, 
i + Dot and t are shown in figure 9. Hence t = k(3j  �9 or) = k(3j+l �9 (i, i + 1)or). Similarly, if 
r > s, then t = k(3j- l  �9 (i, i + 1)or). This implies the vanishing of  the previous sum. 

2. Let 3 ~ V ( X ) .  I fk (3  �9 t~) is equal to the tree tl at the left in (2.3), then k(3 - (i, i + 1)or) 
is equal to the tree t2 on the right. Hence (3, tl + t2) = 0. 

For (2.4), denote by tl, 82, t3 the three trees. We have to show that )-~l<j<3 ~k(r.ct)=tj 
(--1)" = 0. Suppose that k ( r  �9 or) = tj. We take the indices mod 3. Then, by construction 
of  the mapping k, the subtree of  3 corresponding to  A j +  2 is connected by the edge labelled 
t~(i + 1) either to the subtree corresponding to  Aj+I or the one corresponding to A j .  

Figure 10 shows r ,  3 �9 ct, 3 .  a o(  i, i + 1). In that case, we have k(3 �9 oto( i, i + 1)) = t j + l . 

In the second case, similarly, k(z �9 t~(i, i + 1) = t j -1 .  This proves that the previous sum 
vanishes. [] 
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t / i + 1  
xJ +l J9 +1 xJ +l xi +1 

'l~j 'I~j. Ot ' ~ j + l  'l~j+ 1 . ( i ,  i+1~ 

Figure 9. 

$ 

( ~  Ix(i+ 1) 

X X �9 t~ X ' e t  O (i, i + I )  

Figure 10. 

Proo f  of  L e m m a  4.3: Let w be a fixed word of length n in X*, w = x l  . . . xn ;  there 
is a bijection ~o from Sn-1 onto { t ' e  T ( X )  l w ( t ' ) =  w}, such that t '  =tp(ot) implies that 
g( t ' )  = k ( r , o .  or) and ot = a ( t ' )  -1. Suppose that the existence of q9 is proved. Then the 
condition: t ' ~ T ( X ) ,  w( t ' )  = w, g( t ' )  = t implies that there exists ~ e S~-1 with ~0(ot) = t ' ,  
t = g ( t ' ) = k ( r w  . a )  and a and a ( t ' )  have the same signature; conversely, c~ ~ Sn-1 and 
k(zw �9 a )  = t implies that t '  = ~o(a) satisfies g( t ' )  = t and w( t ' )  = w. Hence (rw, t) = 
)--~.(- 1) ~ (sum over t~ ~ Sn-1 with k ( z w .  or) = t) = )--~.(- 1) "(t') (sum over t ' ~ T ( X )  with 
g( t ' )  = t and w(t ' )  = w) = (P( t ) ,  w), the latter equality by Corollary 2.3. 
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W = X  X y X 

1 2 3 4 
"c w = x - x - y - x - y  

Y 

cx - - 3  1 4 2 
2 4 1 3 

"fw " O~ = X - - X - - y - - x - - y  

Figure 11. 

t~(t ')  = 2 4 1 3 

4 

X X 

Y x 

r =  ~(o0 

The construction of  ~o is a variant of  that of  k, illustrated in figure 11. The fact that it is 
a bijection is left to the reader. [] 

P roo f  of  Lemma 4.4: First, we show that if r involves x0, then r is a linear combination 
of  r '  involving x0 as an end-point. If  x0 is not an end-point in r ,  then Xo is a point of  order 
n >_ 2, and we take xl = x0 in figure 7. Hence ~ is mod. V' a linear combination of  r ' ,  
involving xo at order n - 1, and we conclude by induction. 

Now, we modify slightly an argument of  [9] p. 415. 
Now ~ involves xo as an end-point. Call tail of  r the maximal subtree containing xo ,  

which has no vertex of order >_ 3. If  r is not a chain, let xt he the vertex not in the tail, 
neighbour of  the end-point of  the tail distinct from xo. Then, using repeatedly (4.2), we 
may suppose that r is the left tree (4.3), with x2, x3 not in the tail, and xl of  order n >_ 3. 
In the two other trees, either xl is still of  order >_ 3, but smaller, or they have a longer tail. 
Hence, we conclude by induction that we may suppose that r is a chain. 

Then, using (4.2), we can arrange the labels in increasing order, starting from x0, which 
concludes the proof. [] 
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