
Journal of Algebraic Combinatorics 4 (1995), 317-327
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Family of Antipodal Distance-Regular Graphs
Related to the Classical Preparata Codes

D. DE CAEN
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario K7L 3N6

R. MATHON
Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A1

G.E. MOORHOUSE
Department of Mathematics, University of Wyoming, Laramie, WY 82071

Received August 6, 1993; Revised November 4, 1994

Abstract. A new family of distance-regular graphs is constructed. They are antipodal 22t-1 -fold covers of the
complete graph on 22t vertices. The automorphism groups are determined, and the extended Preparata codes are
reconstructed using walks on these graphs.

There are connections to other interesting structures: the graphs are equivalent to certain generalized Hadamard
matrices; and their underlying 3-class association scheme is formally dual to the scheme of a system of linked
symmetric designs obtained from Kerdock sets of skew matrices in characteristic two.

1. Introduction

We refer to Brouwer, Cohen and Neumaier [3] for the definition and theory of distance-
regular graphs. Such a graph F, of diameter d, is said to be antipodal if all vertices at
distance d from any given vertex are at distance d from each other; cf. [3], Section 4.2.
When d equals three, P is an r-fold cover of a complete graph Kn , where n is the number
of antipodal classes (called fibres) and r is the size of each fibre. See Godsil and Hensel
[6] for an extensive study of this class of graphs. In particular, they show ([6] Lemma 3.1)
that an antipodal distance-regular graph of diameter three can be specified by the triple
of parameters (n, r, 02), where n and r are as above and c2 is the number of common
neighbours to any pair of vertices at distance two. Such a graph is called an (n, r, C2)-cover.
Our main result is the construction of (22t, 22t-1,2)-covers for every positive integer t. In
the following statement p denotes Euler's phi function.

Theorem 1.1 There exist at least 1/2p(2t - 1) pairwise nonisomorphic (22t,22t-1, 2)
covers.

The description of these graphs follows. Put q = 22t-1 and s = 2e where gcd(e,
2t - 1) = 1. The graph r(q, s) has vertex-set GF(q) x GF(2) x GF(q), and adjacency
relation determined by

where '~' means 'is adjacent or equal to'. We will show after Lemma 2.2 that F(q, s) is
distance-regular. It is clear from the definition that r(q, s) is a q-fold cover of K2q having
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as its fibres the point-sets

Note that F(2, 2) is the familiar 3-cube; the other graphs are new. We will determine the
automorphism groups of these graphs in Section 2. The result is the following.

Theorem 1.2 For any t > 3 and any e coprime to 2t — 1, the full automorphism group
of r (2 2 t - 1 , 2 e ) has order 22t(22t-1 - l)(2f - 1). It is generated by the following vertex
permutations, where q = 22t-1 and s = 2e:

(i) (a, i, a) H-> (a, i, a + u),ue GF(q);
(ii) (a, i, a) -> (kar, i, As+1at), A e GF(q)\{0}, r & Aut(GF(q));

(iii) (a, i, «)(-> (a, i + 1, a).

This group has just two orbits on vertices, one of which is V0,0 U Vb.i-

We remark that F(8,2) is indeed an exceptional graph: Marston Conder (private com-
munication) has shown that Aut F(8,2) is a vertex-transitive group isomorphic to 2 x 23.
SL(3, 2) (where the latter extension 23. SL(3, 2) is non-split), and that the Sylow 2-subgroup
acts regularly on F(8, 2).

It will be shown in Section 3 that F(q, 2e) and r(q, 2f) are isomorphic if and only if
e + f = 0 mod(2f — 1); this will complete the proof of Theorem 1.1. The argument will
exploit an interesting connection to the Preparata codes: the latter may be constructed using
certain walks in the graphs T(q, s), so that Kantor's work [9] on the automorphism groups
of the codes applies.

Observe that the group of automorphisms of type (i) in Theorem 1.2 fixes every fibre and
acts regularly on each fibre. It follows from a quotienting construction of [6], Corollary 6.3,
that there exist (22t, 22 t - i , 2i)-covers for 1 < i < 2t. Such covers were already known in
the range t < i < 2t, cf. [6], p. 220; the other parameter sets are new.

2. Automorphisms of the covers

Let Tr.GF(q) -> GF(2) denote the trace map, where as before q = 22t -1. Note that
Tr(1) = 1 since 2t — 1 is odd. Also, if s = 2e is any integer with e coprime to 2t — 1, then
Trw = Ei=0x.
Lemma 2.1 Given a e GF(q), the equation xs + x + a = 0 has 0 or 2 solutions
x e GF(q), according as Tr(a) = 1 or 0.

Proof: If x is a solution, then Tr(a) = Tr (X S + x) = 0. On the other hand, suppose that
Tr(a) = 0. Set 0 = x + Ei=0as. Then Os = xs + Ei=0as2i+1 and therefore 0s + O =
xs + x + a + Tr(a) = xs + x + a. Since the fixed field of the automorphism 0 -> 0s

is GF(2), this gives two solutions 0 to the equation Os + o = 0, and hence exactly two
solutions x to the equation xs + x + a = 0. D

Remark In what follows we will frequently make use of the fact that the maps x i->
xs-1 and x ->• xs+1 are bijections of the field GF(q). This follows from the computation
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Lemma 2.2 Let A = (a, i, a) and B = (b, j, B) be two non-adjacent vertices of
T = Y(q,s) In distinct fibres. Then A and B have exactly two common neighbours in
F. Moreover,

(i) If i = j, these two common neighbours lie in the fibres Vc* and Va+h+c,k, where
k = i + Tr((a + B ) / ( a + b)s+1), and c is one solution of

(ii) If i = j, these two common neighbours lie in the fibres Vc k+i where k = 0, I, and c
satisfies

Proof: If the vertex C = (c, k, y) is adjacent to both A and B, then

and

Consider first the case i = j. Adding (1) and (2) and rearranging terms gives the equation
for c given in (i) above. By Lemma 2.1, in order for solutions to exist, we require that

which gives the required formula for k. By Lemma 2.1, the resulting equation for c has
exactly two solutions. One may solve uniquely for y using either (1) or (2), so that there
exist exactly two vertices C satisfying A ~ C ~ B. Since A ^ B, such vertices C do not
coincide with either A or B. Therefore A and B have exactly two common neighbours, and
these lie in the fibres described in (i).

Now consider the case i ^ j. Again adding (1) and (2) and rearranging gives

Replacing k by i + k gives the equation for c given in conclusion (ii). Since x i->- jci+l

is bijective, each value of k e {0,1} gives a unique solution for c. The result follows as
before. D
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Figure 1.

Figure 2.

By Lemma 3.1 of [6], we immediately obtain that r(q, s) is a (2q, q, 2)-cover, for any
s = 2e with gcd(e, 2t — 1) = 1. This yields <j>(2t — 1) distinct graphs; but it is easy to check
that the map (a, i, a) -» (a, i, as) is an isomorphism from T(q, q/s) to T(q, s). We will
show after Theorem 3.3 that we have in fact i/2p(2t — 1) nonisomorphic graphs.

We call a set of four fibres of F = V(q, s) a quad if their union contains an isometrically
embedded copy of the 3-cube. Clearly this can only happen if opposite vertices of the cube
are in the same fibre. Figures 1 and 2 illustrate two types of quads that occur in F. There
we use the abbreviation a * b := asb + abs. Note that in these figures a, b and c are distinct
elements of GF(q).

Lemma 2.3 The quads are the sets of the form

(0 {Va,i, Vb.i, Vc.i, Va+b+c,i] where a, b, c 6 GF(q) are distinct, and i € GF(2), and
00 {Va,o, Va,i, Vfe.o, Vi.i} where a, b e GF(q) are distinct.

Proof: Figures 1 and 2 show that sets of the form (i) and (ii) are quads. We proceed to
prove the converse.

Let us say that the fibre Va,ii is of type i. If a quad consists of four fibres Va,i, Vb,i, Vc,i, Vd,i
of the same type, then it is clear from Lemma 2.2(i) that a + b + c + d = 0, and so
conclusion (i) holds.

Otherwise, it is clear from Lemma 2.2 that we have two fibres of each type, say Va,o, Vj, i,
Vc,o, Vd,i. Again by Lemma 2.2(1) we have a + b + c + d = 0. But by Lemma 2.2(ii), we
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But a = c and x -» xs-1 is bijective, so either a = b and c = d ,or b = c and a — d, so
that conclusion (ii) holds. D

The collection of fibres forms a system of imprimitivity for the action of G = Aut(F)
on the vertices, because the fibres are equivalence classes for the antipodal relation. Let
N be the elementary abelian subgroup of G consisting of all automorphisms of the form
(a, i, a) -> (a, i, a + u), u 6 GF(q). Clearly N fixes each fibre, and acts regularly on the
vertices in each fibre. By [6, Lemma 7.3], N is the full kernel of the action of G on the set
of fibres, which proves the following.

Lemma 2.4 The action of G on the set of fibres is given by G = G/N.

Corollary 2.5 Suppose q > 2. Then the permutation group G is imprimitive. Two systems
of imprimitivity are given by

Proof: If Si := {V a , i : a e GF(q)}, i e {0, 1}, then by Lemma 2.3, any three fibres in Si
are contained in a quad in Si; moreover So and S\ are the only q-sets of fibres with this
property. It follows that (i) is a system of imprimitivity for G. Similarly, the system (ii)
can be recognized via Lemma 2.3, by the property that any pair {Va,0, V a ,1] , together with
an arbitrary third fibre, is contained in a unique quad. d

Once again we use the abbreviation a * b := asb + abs = (a + b)s+1 + as+1 + bs+l,
which is an alternating GF(2)-bilinear form on GF(q).

Lemma 2.6 If q > 2, then the automorphisms of V are the transformations of the form
(a, i, a) -» (ap + c, i + k, an + c * ap + y) where c, y e GF(q), k e GF(2), and
p,n:GF(q) -> GF(q) are additive (i.e. GF(2)-linear) bijections such that (xs+1)n =
(xp + c)s+1 + cs+1 for all x e GF(q).

Proof: It is straightforward to check that all transformations of the latter form are iso-
morphisms of P, and we leave this as an exercise.

Conversely, let 6 6 G. We may suppose that 9 maps type-0 fibres to type-0 fibres;
otherwise, by Corollary 2.5(i), 6 maps type-0 fibres to type-1 fibres, and we may replace
o by 9 o 0, where p : ( a , i , a ) -> (a,i + 1 ,a) . Let Vc,o = V0,0. Then 0 induces a
permutation on the type-0 fibres given by Va

e
0 = Vap+c,0 where p: GF(q) -» GF(q) is

some permutation fixing 0. Also, there exists a bijection n: GF(q) -» GF(q) satisfying
(0,0, o)f = (c, 0, an). Since translations (a, i, a) -» (a, i, a + u) are automorphisms,
there is no loss of generality in assuming 0n = 0. It is now easy to see that the pair
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of permutations (p, n) completely determines 9. Indeed, note that (a, 0, a) ~ (0,0, a),
and therefore (a, 0, a)e = (ap + c, 0, an + c * a p ) , since this is the unique vertex in
Vap+c,o adjacent/equal to (0, 0, a)6 = (c,Q,an). Furthermore, by Corollary 2.5(ii), we
have Va

e,1 = V a p + c , 1 > and since (a, 0, a) ~ (a, 1, a), we have

for every vertex (a, i, a). Now (a, 0, a) ~ (b, 1, a + (a + b)s+1), so applying 6 gives
(ap + c, 0, a" + c * a") ~ (b" + c, 1, [a + (a + b)s+1]n + c * bp). i.e.

for all a,b,p e GF(q). The special case b = 0 gives (a + as+1)" = a" + (a" + c)s+1

+ cs'+l since Op = 0. Specializing further to the case a = b = 0 gives

since On = 0. Combining this with the previous relation, we obtain (a + as+1)" = a" +
(as+i)x However, every element of GF(q) is expressible in the form as+1, so the latter
identity implies that jt:GF(q) —» GF(q) is additive. Returning to (3), this implies that
((a + b)s+l)n = (ap + bp + c)s+l + cs+l. Applying (4) to the left side of the latter identity
yields ((a + b)p + c)s+l + cs+1 = (ap + b" + c)s+l + cs+1. Since x -> xs+1 is bijective,
this implies that (a + b)p = ap + bp for all a, be GF(q). D

At this point it is convenient to recall the Baker-van Lint-Wilson generalization [1] (see
also [4], p. 185) of the Preparata code. The extended Preparata code P(q, s) is the set of
all pairs (X, Y) such that X, Y c GF(q) satisfy the conditions

(i) |X| and \Y\ are both even;
(ii) Ewx^Eyer^and

(iii) Exex xs+(Exex)s+1 =Eyeys+1.

Note that we may identify X and Y with their characteristic vectors, so that P(q, s) is a
binary code of length 2q.

Proof of Theorem 1.2: Let 9 be any automorphism of F, with the associated permutations
r, p: GF(q) -> GF(q} in the notation of Lemma 2.6. We will prove that 0 induces an

automorphism Q of P(q, s), so that we may appeal to Kantor [9]. For 5 c GF(q), define
Sp := {xp:x e S] and S +d := {x+d:x e S}. Suppose that (X, Y) 6 P(q,s); we
will show that (X, Y)0 := (Xp, Yp + c), where c is as in the statement of Lemma 2.6, also
belongs to P(q, s). The conditions (i) and (ii) defining the codes are very easy to verify,
since \XP\ = \X\ and \Y" + c\ = \Y\ are both even and also
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the last equation holding since |y| is even. To verify the third Preparata condition, we use
the identity (xs+1)* = (xp + c)s+1 + c*+1 = (xp)s+1 + c * xp to compute that

Thus 0 is an automorphism of P(q, s). When q > 32, Theorem 3 of [9] implies that c = 0
and that xp = Yx*, X* = Ys+1xr for some X 6 GF(q)\{0] and r € Aut GF(q). D

3. Construction of the extended Preparata codes from the graphs

In this section, we construct a code C using walks on the graph F = T(q, s). Recall
that a walk is a sequence of adjacent vertices, with possibly repeated vertices. Although
it is possible to describe this code C in terms of F using our previous coordinatization by
GF(q) x GF(2) x GF(q), we instead use new notation in order to make clear that C is
an isomorphism invariant of F. Using our previous coordinatization we will show that C is
equivalent to the extended Preparata code P(q, s).

Let us start by distinguishing one vertex O as the origin of F. For q > 25, we choose O
to be any vertex in the smaller orbit of Aut(F). In view of the action of Aut(F) we may
suppose that 0 = (0,0,0). For q = 8, F is vertex transitive, so O can be chosen arbitrarily,
but again, we will suppose that O = (0,0,0). Let VQ be the fibre containing O, and let V0

be its matched fibre, as in Corollary 2.5(ii). These are the fibres previously coordinatized
as V0.0 and V0.1.

Next, we define a relation on the vertices of each fibre. For A and B in the same fibre,
we write A « B if there exist vertices Co e V0 and C1 € V'0 such that A ~ C0 ~ C1 ~ B.
The proof of the following is left as an exercise.

Lemma 3.1 We have (a, i, a) » (a, i, ft) if and only if a + ft = as+}1 Therefore the
relation « is symmetric. On the fibres VQ and Vo, the relation « means '='. On the fibres
Va,, with a *£ 0, the relation & is irrefiexive and induces a pairing of the vertices.

We will say that the vertex (a,i,a), and the fibre Va<i, are of type i. Note that the
partition of fibres (or vertices) into two types is isomorphism-invariant by Corollary 2.5,
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and by Theorem 1.2(iii), it matters not which type we call type 0. Next, consider the
matching between fibres of opposite type, given by Corollary 2.5(ii). We colour these pairs
of matched fibres using q arbitrary but distinct colours, COL = (Ca: a e GF(q)}, where
Ca is the colour of the matched pair {Vflio, Va,i }• We are going to label the edges of mixed
type (i.e. edges between type 0 and 1 vertices) using this same set of colours. Let A and
B be adjacent vertices of type 0 and 1 respectively. By Lemma 2.2, there exist unique
vertices C and D of type 0 and 1 respectively, such that C € VQ and we have a 4-cycle
A ~ B ~ C ~ D ~ A . Then we assign the colour Q to the edge (A, B), where C</ is
the colour of the fibre containing D. The next result follows easily from Lemma 2.2(i); the
details are left as an exercise.

Lemma 3.2 Each edge between Va,o and Vb,1 is coloured Ca+b. Each vertex of T shares
exactly q coloured (mixed-type) edges, one of each colour. The unique edge of colour Cx

from (a, i, a) leads to (a + x, i + 1, a + xs+1).

Given a subset X C COL (or the corresponding subset X c GF(q), X = {x e
GF(q): Cx e X}) such that \X\ is even, a walk of colour X from a vertex A, is a walk
of length | X | on F, starting at A and using one edge of colour Cx for each element Cx e X.
Note that for |^| > 2, there is more than one walk of colour X starting at any given vertex
A. However, by Lemma 3.2, any walk of colour X starting at (a, i, a) will always end up
at Wx(a, i, a) := (a + Xixex x' i,a + Exex xs+1), independent of the order of colours
chosen from X. The condition that \X\ is even, ensures that the walk ends up at a vertex of
the same type as it starts.

Now define C to be the set of all pairs (X, y) such that X, y c COL, with \X\ and \y\ both
even, such that Wx(0) & Wy(O). In particular, note that the walks of colours X and y
starting at O, are required to both end up at the same fibre of type 0. Identifying X c COL
with X c GF(q), and y c COL with Y c GF(q) similarly, we have the following.

Theorem 3.3 C = P(q, s).

Proof: Since WX(O) = (Exex x,0, Exex xs+1) and Wy(O) = (EyeY y, 0, Eyey
yS+1), the result follows from Lemma 3.1 and the definition of the generalized Preparata
codes. D

We may now easily complete the proof of Theorem 1.1. Our construction of C from
r(q, s) is isomorphism invariant. Thus if T(q, 2e) ~ T(q, 2f) then P(q, 2e) ~ P(q, 2 f ) ;
and Theorem 2 of [9] implies that e + f = 0 mod(2f - 1). Hence we have i/20(2t - 1)
nonisomorphic graphs, as desired.

4. Generalized Hadamard matrices

Since the graphs T (q, s) are regular covers in the sense of Godsil and Hensel ([6], Section 7),
they are associated to certain generalized Hadamard matrices. Recall that a GHM(n, G)
is an n x n matrix H, with entries from an additively written group G, such that the rows
of H are formally orthogonal, i.e. for any pair i, j of distinct row indices the differences
hik — h j k ( k = 1,2,... ,n) represent each element of G the same number of times, namely
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n/r where r = |G|. If H is formally skew, i.e. Ay = -hji for i = j and hli = 0 for all i,
then one can construct an (n, r, r)-cover from H, as follows. Replace each diagonal entry
by an r x r block of zeroes; and for i ^ j replace Ay = g by the r x r permutation matrix
corresponding to g in the regular representation of G. This yields the adjacency matrix of
a distance-regular cover of Kn; see [6], Sections 7-9, for more details.

Theorem 4.1 For each t > 1 there exists a formally skew GHM(22t, E4(22t-1)).

Proof: Here EA(22t-1) denotes the elementary abelian 2-group of rank 2t - 1, i.e. the
additive group of GF(22 t -1). Fix e coprime to 2t — 1, and set s = 2e. Now define a matrix
H of order 22t, with indices represented as pairs ai e GF(22t-1) x GF(2), as follows:

It is not hard to show that H has all the desired properties; indeed, from the equivalence
proven in [6], Theorem 7.4, this follows from our earlier work. D

We remark that Jungnickel [8] has constructed GHM(22r, EA(22t-1)), but his examples
are not formally skew.

5. Maximum cocliques

A simple counting argument shows that in any (22t, 22t-1,2)-cover a1 = 0, i.e. the graph
is triangle-free. Gardiner [5] has studied such graphs; in particular he showed that the only
feasible parameter sets for triangle-free («, r, 2)-covers must have n = 4k2 and r = 2k2

for some integer k. Thus our Theorem 1.1 settles the existence question when k is a power
of two.

Let a = a(r) denote the size of a largest coclique (independent set) in the graph F.
A deep theorem of Ajtai, Koml6s and Szemeredi (see e.g. [2], Ch. XII.3) implies that
there is an absolute positive constant c such that, for every r-regular triangle-free F on v
vertices, a(F) > cvr1 lnr . It is an open question whether this estimate is asymptotically
best possible. If f is a (22t, 22t-1,2)-cover, we thus have that a(P) > dt 22t for some
absolute d > 0. It appears difficult to verify this estimate for our graphs r(q,s) in a
constructive manner. We note the following upper bound.

Theorem 5.1 For any (22t, 22t-1, 2)-cover, a < 23t-1.

Proof: One can easily compute (cf. [6]) that the smallest eigenvalue is r = —2t — 1.
Hoffman's upper bound (cf. [3], Prop. 1.3.2(i)) is

Note that when t = 1, i.e. the 3-cube, this upper bound is tight. For any (16, 8, 2)-cover
we get a < 32. A computer check showed that in fact T(8, 2) has a = 29. The structure
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of cocliques of size 29 is interesting: there are exactly 128 of them, and the point-coclique
incidence matrix is a square partially balanced incomplete block design.

6. Formal duality with respect to systems of linked square designs

An (n, r, C2>-cover has four eigenvalues; in the notation of [6] they are n — 1, — 1,0 and r,
with 9 > 0 > T. The eigenmatrix of the underlying 3-class association scheme B is

and the dual eigenmatrix (satisfying PQ = nrl) is

where a is the square root of (n — 2 — rc2)2 + 4(n — 1).
It may happen that some other 3-class association scheme B* has eigenmatrix equal to Q

and dual eigenmatrix equal to P; when this happens B and B* are said to be formally dual
to each other. See [3], p. 49, for a brief introduction to this notion. One should stress that
B and B* need not be structurally related; formal duality is on the face of it just a question
of parameters.

Now in the case of (22t, 22t -1 , 2)-covers, there is a formally dual object, namely a
system of 22'"1 linked square (v, k, A)-designs with v = 22t,k = 22t-1 - 2t-1 and
A. = 22t-2 — 2t-1. See [10] and [4], p. 148, for information on linked square designs. One
may readily check (cf. the eigenmatrices on p. 133 of [10]) that the underlying 3-class
scheme of linked designs with the above parameters is indeed formally dual to the scheme
of a (22t, 22t-1, 2)-cover. Furthermore, the known construction of linked designs uses
Kerdock sets of skew matrices in even characteristic. Thus, intriguingly, there is a par-
allel between the present formal duality (between covers and linked designs) and the
formal duality, via the MacWilliams transform, between Kerdock codes and Preparata
codes; cf. [4], especially p. 144 and p. 187. In important recent work, Hammons et
al. [7] have constructed new Preparata-like codes that are dual over Z* to the classical
Kerdock codes. This prompted the use of the word "classical" in the title of the present
paper.



A FAMILY OF ANTIPODAL DISTANCE-REGULAR GRAPHS 327

Acknowledgment

The first two authors' research is supported financially by grants from the Natural Sciences
and Engineering Research Council of Canada. We thank the referees for some helpful
comments, and Andries Brouwer for suggesting a simplified proof of Corollary 2.5.

References

1. R.D. Baker, J.H. van Lint, and R.M. Wilson, "On the Preparata and Goethals codes," IEEE Trans. Info. Th.
29 (1983), 342-345.

2. B. Bollobas, Random Graphs, Academic Press, 1985.
3. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Veriag, 1989.
4. P.J. Cameron and J.H. van Lint, Designs, Graphs, Codes and their Links, Cambridge University Press, 1991.
5. A. Gardiner, "Antipodal Graphs of Diameter Three," Linear Algebra and its Applications 46 (1982), 215-219.
6. C.D. Godsil and A.D. Hensel, "Distance regular covers of the complete graph," Journal of Combin. Th. Ser.

B 56 (1992), 205-238.
7. A.R. Mammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, and P. Sote, "The Z4-linearity of Kerdock,

Preparata, Goethals and Related Codes," IEEE Trans. Inform. Theory 40 (1994), 301-319.
8. D. Jungnickel, "On difference matrices, resolvable transversal designs and generalized Hadamard matrices,"

Math. Z. 167 (1969), 49-60.
9. W.M. Kantor, "On the inequivalence of generalized Preparata codes," IEEE Trans. Info. Th. 29 (1983), 345-

348.
10. R. Mathon, "The systems of linked 2-(16,6,2) designs," Ars Combinatoria 11 (1981), 131-148.


