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Abstract. We study a map called plactification from reduced words to words. This map takes Coxeter-Knuth
equivalence to Knuth equivalence, and has applications to the enumeration of reduced words, Schubert polynomials
and certain Specht modules.
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1. Introduction

The problem of counting the reduced words of a given permutation has received a great
deal of attention since the early 1980's [19]. A fundamental tool in this subject is the
mysterious equivalence relation on reduced words known as nilplactic equivalence [9] or
Coxeter-Knuth equivalence [2], which bears a striking resemblance to the better understood
equivalence relation on words known as plactic equivalence [ 10] or Knuth equivalence.

This paper describes a map (considered earlier in a different form by Lascoux and
Schiitzenberger [8]) called plactification. This map takes reduced words to words and maps
nilplactic equivalence to plactic equivalence, substantiating the "striking resemblance" al-
luded to above. The map has other pleasant properties, giving rise to applications to the
enumeration of reduced words, the theory of Schubert polynomials, and decompositions of
certain Specht modules.

The paper is organized as follows. Section 2 establishes terminology. Section 3 defines
the plactification map and proves its main properties. Section 4 discusses applications.

2. Definitions

It will be assumed that the reader has some familiarity with the notions of partitions A. and
their Ferrers diagrams, standard Young tableaux, column strict tableaux, and skew column
strict tableaux [18]. All tableaux will be assumed to be of Ferrers shape unless they are
specifically referred to as skew. It is also assumed that the reader is familiar with the notions
of plactic (Knuth) equivalence, the Robinson-Schensted-Knuth correspondence, and jeu-
de-taquin, which are briefly reviewed here (for more thorough discussions, see [2, 6, 18]).
The plactic or Knuth equivalence on words is the transitive closure of the relations
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if i < j < k, and

if i < j< k. The column-reading word of the skew column strict tableau T, denoted
word(T), is defined to be the concatenation u1u2u3..., where vr is the strictly decreasing
word comprising the r th column of T. By abuse of language, we will occasionally refer to the
skew tableau T when we really mean the column-reading word of T. For example, the Knuth
equivalence class of T is the Knuth class of the column-reading word of T. The row-reading
word of a skew tableau T is defined to be the concatenation ... u3u2u l , where ur is the
weakly increasing word comprising the r th row of T. It is well-known that the row-reading
and column-reading word of T are Knuth equivalent, so the Knuth class of T is given by
either reading word. Every word b is Knuth equivalent to a unique column strict tableau
which will be denoted P(b). The tableau P(b) can be computed using the algorithm known
as Robinson-Schensted-Knuth row insertion. P(b)is often called the insertion tableau of b.
Let Pr(b) = P(b1b2 • • • br). The recording tableau Q(b_) for the row insertion of the word
b is defined to be the standard tableau having the same shape as P(b) in which the entry
r is located in the cell of Pr(b) which is not in Pr-1(b). Row insertion gives a bijection
between words b and pairs of tableaux (P(b), Q ( b ) ) of the same shape where P is column
strict and Q is standard. This correspondence is written as

and hence

Given a skew tableau, one can also obtain the insertion tableau for its reading word by
sliding it into the northwest corner using the jeu-de-taquin (see [18]).

Example 1 Let b = 645436546. Then its Robinson-Schensted-Knuth row insertion is
given by
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where i < j < k. The papers [2] and [9] show that the above constructions involving Knuth
equivalence carry over to Coxeter-Knuth equivalence. For any reduced word a, there is a
unique column strict tableau P(a) whose reading word is Coxeter-Knuth equivalent to a.
Coxeter-Knuth insertion [2] is an algorithm for computing P(a). As in the definition of the
Robinson-Schensted-Knuth correspondence, let Pr(a) = P(a1a2 ... ar) and let Q(a) be
the standard tableau of the same shape as P (a) in which the letter r is located in the cell of
Pr(b) which is not in Pr-1(b). The following notation will be used for the Coxeter-Knuth
row insertion of the reduced word a.
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Since b = word(T) for the skew tableau

one can also obtain P(b) using the jeu-de-taquin:

Now the definitions regarding reduced words will be reviewed. Given a permutation w
in the symmetric group Sn, a reduced word a is a sequence a1a2 • • • a1 of minimal length
such that w = sa1sa2 • • • sa1, where si,- is the adjacent transposition (i i + 1). Here l is called
the length /(w) of w. Let Red(w) denote the set of reduced words for w. Since the adjacent
transpositions si obey the braid relations

one can define the nilplactic or Coxeter-Knuth equivalence relation on Red(w) to be the
transitive closure of the relations

Example 2 a = 645437658 is a reduced word for the permutation w = 127385496,
where the one-line notation for w means w(l) = 1, w(2) = 2, w(3) = 7, etc. Then the
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Coxeter-Knuth insertion of the reduced word a is given by

and hence

One more tool is required in order to define the plactification map, namely, the plactic
action of the symmetric group on words [10]. Given a word b and positive integer r, the
r-parenthesization of b consists of replacing each occurrence of r + 1 by a left parenthesis
"(" and each occurrence of r by a right parenthesis ")". Say that an occurrence of r + 1 and
an occurrence of r are r -paired if they are replaced by a pair of parentheses which close each
other under the usual rules of parenthesization. A letter r + 1 or r which corresponds to a
parenthesis which is unclosed will be called r-unpaired. It follows that the subsequence of
r-unpaired letters in b must be of the form rs (r +1)', where xm denotes the word consisting
of m copies of the letter x. The plactic action of the adjacent transposition sr = (r r + 1)
on b leaves all numbers other than r or r + 1 fixed and replaces the subword rs (r + 1)' by
rt (r + 1)s to form a new word denoted ar(b).

Example 3 If b = 133431312213432 then a2(b) = 122431312212432.

Remark 4 It follows immediately from the definitions that

°v(#£) = qar(b)
for any word b and letter q E. {r, r + 1}.

The following properties of r-pairing and or are not hard to check directly [10]:

Proposition 5 The word b is the column-reading word of a column strict tableau T of the
skew shape X/U if and only if Or(b) is the column-reading word of a skew column strict
tableau of the same shape A.//U.. In this case denote the latter skew tableau by O r ( T ) .

Proposition 6 The number of r-paired r's and (r + 1)'s is invariant under Knuth
transformations, and hence constant on Knuth equivalence classes.

Proposition 7 or commutes with Knuth equivalence, i.e. if b ~ b' then ar(b) ~ ar(b').

In terms of the P symbol, ar(P(b)) = P(ar(b)).



for any decomposition w = si1 • • • si 1, since it is well-known that the symmetric group has
the presentation given by the generators {si} and relations (1)-(3).

3. The plactification map

We now define the plactification map 0 from reduced words to words. Let 0(0) = 0 where
0 is the empty word. Given a nonempty reduced word a, the word o(a) is defined by the
recurrence
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Proposition 8 Q(ar(b)) = Q(b).

Proposition 9

Remark 10 Although it will not be used here, Proposition 9 allowed Lascoux and
Schutzenberger to define the plactic action of any permutation w on a word b by

where a is the word obtained from a by removing its first letter r. Thus the plactification
of the reduced word a = a1 • • • a1 is given by

Example 11

Remark 12 The plactification map is injective. The recurrence

defines the inverse of <o> for words b in the image of 0.

(f> also preserves the property that a word is the reading word of a skew tableau.



Since Ti is column strict, the letter y must be equal to r. But then the letter r + 1 in the
second column of 7} is paired with the letter y = r just above it, which contradicts the
assumption that this letter r + 1 was changed by the operator ar in passing from Ti to Ti_1.
Therefore Ti_1 is column strict. By induction on i, (1) follows. D

Remark 14 Proposition 13 still holds if the row-reading word is used, and the tableaux
resulting from plactifying the row- and column-reading words agree. This follows from
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Proposition 13

(1) Let T be a skew tableau whose column-reading word a = word(T) is reduced. Then
0(a) is the column-reading word of a skew tableau of the same shape, which will be
denoted 0(T). Furthermore, the first columns of T and o ( T ) agree.

(2) If a is a reduced word such that o(a) is the column-reading word of a skew tableau S,
then a is the column-reading word of a skew tableau T such that o ( T ) = S.

Proof: Only (1) is proven here since (2) can be established similarly. The proof proceeds
by induction on the number of columns of T. If T has one column with the decreasing
column-reading word a\ • • • am then

since aa, does not affect any of the letters comprising the subword ai+1 • • • am (which are
all smaller than a,-). So 0(T) = T and the result is trivially true in this case. Now suppose
T has more than one column. Let a1• • • am be the decreasing word comprising the first
column of T and let T be the remainder of T after its first column is removed. Of course
word(T) = a1 • • -amword(T). By induction 0(T) is a column strict tableau having the
same shape and first column as T. From the following computation of O(word(T)) ,

it is clear that word(T) and O(word(T)) both start with the decreasing sequence a1 ••-am.
By Proposition 5 the word au, • • • a a m O (word(T) ) is the column-reading word of a col-
umn strict tableau of the same shape as 0(T) (and T). The only thing remaining to be
shown is that the "first column" a\ • • • am and the skew tableau Oat • • • O0m O(T) fit together
to form a column strict tableau of the same shape as T. Let Ti be the tableau (not nec-
essarily column strict a priori) of the same shape as T whose column-reading word is
a1 • • • amaai+l • • • aam o(word(T)). It is enough to show that 7} is a column strict tableau for
all i such that 0 < i < m, since word(To) = o(word(T)). Tm, whose column-reading word
is a\ • • • am(o)(word(T)), is a column strict tableau, since the first columns of 0(T) and f
agree and the column a\ • • -am fits together with f to form the column strict tableau T.
Suppose that i is maximal such that 1 < i < m and T1 is column strict but 7J_i is not. The
only way this could happen is if in passing from T to Ti_1, the operator ar (where r = ai,)
changed a letter r + 1 in the second column of 7} into the letter r and this letter r + 1 was
located immediately to the right of a letter r + 1 in the first column of Ti. So the first two
columns of 7} contain the 2 x 2 subtableau



Remark 16 The natural class of diagrams D for which the notion of D-peelability makes
the most sense is the class of diagrams with the northwest property, that is, (i, j) e D
and (i', J') € D imply (min(i, i'), rnin(j,j')) € D. Rothe diagrams have the northwest
property. The first column of a diagram with the northwest property will always define an
initial segment in the set of indices of all its nonempty rows, and the removal of this first
column also yields a diagram with the northwest property.

It will be shown in Theorem 22 that (o(Red(w~1)) is exactly the set of D(w)-peelable
words b. But first it is convenient to take note of a few consequences of D(w)-peelability.
For any word b, the content of b is the sequence (c1 , c2,...), where c, is the number of
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Theorem 19 below, combined with the fact that the row- and column-reading words of T
are Coxeter-Knuth equivalent.

Our next goal is to characterize the image o(Red(w)) . To this end, recall [14] that the
Rothe diagram D(w) is the set of pairs of positive integers

Given any diagram D, that is, finite set of cells (pairs of positive integers, indexed matrix-
style), the row-filled diagram F(D) is the filling of D in which every cell in the r-th row is
assigned the entry r. The tableau T said to be D-peelable if the first column C of F(D) is
contained in the first column of Q as an initial segment V, and the tableau f is D = D/C-
peelable, where f = P(word(T/V)) is the tableau obtained from T by removing the
subtableau V and sliding the skew tableau T/ V into the vacated cells by the jeu-de-taquin.

Example 15 For the permutation u; = 341286597, the Rothe diagram D(w), the row-
filled diagram F(D), and an interesting D(w)-peelable tableau T are given below.

Below we exhibit the "D(w)-peeling" of T, that is, the sequence of tableaux obtained
by iterating the operation on the pair (D(w), T). The letters of the subtableaux V are
underlined.



The following proposition is an immediate consequence of the definitions, since the i-th
part ci (w) of the code of w is equal to the number of cells in the i-th row of D(w).

Proposition 17 If b is D(w)-peelable, then the content of b equals the code of w.

Peelable words for Rothe diagrams always satisfy the following property involving the
r-pairing.

Proposition 18 If b is D(w)-peelable, then

(1) allr's in b are r-paired if wr < wr+1,
(2) all (r + 1)'s in b are r-paired if wr > wr+1.

Proof: In light of Proposition 6, assume without loss that b is the column-reading word
of a tableau P (namely p(b)). Only the proof of (1) will be given here (the other case is
similar). So let wr < wr+I. Then every cell in row r of D(w) has a cell in row r + 1
directly beneath it, so D(w) is a diagram D with the following property (*): every column
of F(D) containing an r also contains an r + 1.

It suffices to prove the following general fact about peelables: If a diagram D has property
(*) and P is D-peelable, then every r in P is r-paired. The proof proceeds by induction on
the number of columns of D. Let C, V, D and P be as in the definition of the D-peelability
of the tableau P. Since D also has property (*), every r in P is r-paired by induction. Since
the reading words of P and the skew tableau P/ V are Knuth-equivalent, by Proposition 6
every r in P/V is r-paired. Since P is obtained from P/V by adding in the decreasing
subsequence V, which never contains an r without an r + 1 preceding it, every r in P is
r-paired. D

We now prove the two fundamental properties of plactification:

Theorem 19

(A) If a and a' in Red(w) satisfy a ~ a' then o(a) ~o(a_ ' ) . That is,
C K K
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occurrences of the letter i in b. For a permutation w, the (Lehtner) code of w is the sequence
(c1 (w), C2(w), . . .) where

(B) For a in R e d ( w - l ) , 0(a) is D(w)-peelable.

Proof: Both assertions are proven simultaneously by induction on l(w). Let A1 and b1

be the assertions A and B respectively, for all permutations w with l(w) = I. The theorem
immediately follows from the next two lemmas. D

Lemma 20 Bk for k < I implies At.

Lemma 21 Ak for k < I and Bk for k < I imply Bt,
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Proof of Lemma 20: Let a and a' in Red(w) satisfy a ~ a' with l(w) = I. Assume
C K

without loss of generality that a and a' have the form

The second and fourth equalities follow from Remark 4. The only application
of the hypothesis Bk for k < I is to establish the third equality. Since a is in
Red(w) for some w with wr < wr+1 < wr+2. it follows by induction that 0(a)
is D(it))-peelable, and hence by Proposition 18, that all r's are r-paired in (p(a)
and all r + 1's are (r + 1)-paired in o(a). In passing from 0(o) to or+1W>(£)),
some r + 2's are replaced by r + 1's, but this does not destroy any r-pairs. This
means that all of the r's in ar+1 (o (a ) ) are still r-paired, so that the leftmost r +1 is
r-unpaired in r + 1or+1 (o(a)). Therefore o(a)~0(a'), since rr +1Ir ~r +1Irr.

A K

Case 2. a = ikj a and a' = kij'a where i + 1 < j < k — 1. We have
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where

is a Coxeter-Knuth transformation. By Proposition 7, it suffices to show

since o (a) and o> (a') are obtained from these two words by applying the same sequence
of ro>'s. To establish the Knuth-equivalence of these words, there are a number of cases
depending upon the nature of the Coxeter-Knuth transformation involved.

Case 1. a = rr + Ira and a' = r + Irr + la. We have

The second equality holds by Remark 4, the third equality follows from the fact
that any pair of adjacent letters of the form r + Ir will be r-paired, and the fourth
equality is furnished by Proposition 9. On the other hand,

Since ikj~kij, it follows that o (a) ~ </>(«')• The case where a = jika and
K K

a' = jkia with i + 1 < j < k — 1 is similar.



where a1 > a2 > • • • > am > k + 2. This shows that C is contained in the first column of
P as an initial segment V. Since P and P have the same first column by Proposition 13, P
contains V as well.

It now remains to show that the skew tableau P/ V is D-peelable, where D is the diagram
obtained from D(w) by removing its first column.

It is now shown that the skew tableau P/V is obtained from o ( P / V) by a trivial re-
labelling, namely, by subtracting 1 to each entry which is < k + 1. Using the fact that
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Case 3. a = rqr + la and a' = qrr + la where r + 1 < q. We have

The word aqar(r + lo r + 1 o(a))) either begins with x = r or x = r + 1, but
in either case rqx ~qrx. So (o(a) ~0(a')' The case where a = qr + Ira and

Case 4. a = r + \qra and a' = r + Irqa where r + 1 < q. We have

This exhausts all the cases, and the lemma is proven. D

Proof of Lemma 21: Assume that Ak holds for k < I and Bk for k < /. To show Bk, let
a be in Red(w~ 1) with l(w) = I, and let P(a) be its Coxeter-Knuth insertion tableau. By
Proposition 13, (o (P(a) ) is a column strict tableau, which is Knuth equivalent to o(a) by
A1. Thus

since there is a unique column strict tableau which is Knuth equivalent to a given word. Let
P = P(a) and P = (o (P(a) ) = P (o (a ) ) . It is enough to show that P is D(w)-peelable.

Let k = ( w - 1 ) i — 1 and w = wsksk-1 • • • s\. One can easily check that D(w) is obtained
from D(w) by removing the first column and moving all remaining cells in rows 1,2,... ,k
down one row, and that F(D(w)) is obtained from F(D) by removing the first column C
and adding 1 to each remaining entry which is < k.

Observe that the column-reading word word(P) of P is a reduced word for w-1. In order
to have ( w - l ) 1 = k + 1, it must be of the form

a' = r + 1qra with q < r is similar.

The words z r + 1 (qrz r z q (P(a) ) ) and zr+1(rqzrzq(P(a))) are of the form xr • • •
and rx ..., where x = q or x = q — 1, but in either case r + 1xr ~ r + 1rx. Again

K

P(a) ~ P(a'). The case where a = rr + 1qa and a' = rqr + 1a with q < r is

similar.



It must now be shown that the successive applications on $(/*/ V) of ai for i going from
1 to k have the effect of replacing the 2's in o (P/V) by 1's, the 3's by 2's, etc. The word
a is a reduced word for a permutation v which fixes 1. By induction on the length of the
reduced word, o(a) is D(u)-peelable, which by Proposition 17 implies that o(a) has no
1 's. Since a1 > • • • > am > k + 1, it is clear that aai • • • aam o (a) = o (word(P/ V)) also
contains no 1's. So o(P /V) contains no 1's. In applying o1 to o ( P / V), all of the 2's are
1-unpaired and are replaced by 1's. This means that a 1 o ( P / V ) contains no 2's. Then the
application of 02 changes all the 3's to 2's, etc. Thus P/V is obtained from o ( P / V ) by
replacing the i + 1's by i's for 1 < i < k.

By induction, o ( P / V) is D(w)-peelable. If D is the diagram obtained from D(w) by
removing its first column, then the relabelling of entries indicated above shows that P/V
is D-peelable, and hence that P is D-peelable.

This completes the proof of both lemmas. Theorem 19 follows. D

Finally the image of o ( R e d ( w ) ) is characterized.

Theorem 22 The word b is the plactification of a reduced word a for the permutation
w~l if and only ifb is a D(w)-peelable word.

Proof: Assertion B of Theorem 19 gives the forward implication, so it remains to show
the converse: if b is Z)(w)-peelable, then b = 0(a) for some a e Red(w~l). The proof
proceeds by induction on l(w). Let P = P(b). It must first be shown that P is the
plactification of a tableau P whose column-reading word is a reduced word for w~l. The
same notation as in the proof of Lemma 21 will be used here. LetA = (w~l)i — 1. Since P
is D(iu)-peelable its first column contains the first column C of F(D(w)), which consists
of the numbers 1, 2, . . . , £ , as an initial segment. By definition word(P/V) is D(w)-
peelable. The skew tableau 5 obtained from P/V by relabelling each letter i by i + 1 for
1 < i < k is D(w)-peelable, where as before w = wskSk-1 • • - s 1 . By induction on l(w)
and Proposition 13 there is a skew tableau S of the same shape as S such that 0(5) = 5
and word(S) e Red(w~l). Let P be obtained from S by adding V into the empty vertical
segment in the first column. It is clear that P is a column strict tableau of the same shape as
P, such that word(P) e Red(w~l). It follows from the proof of Lemma 21 that o(p) = P.
Let a be the unique reduced word of w-1 satisfying (0 •«— a = (P, Q(b)). Proposition 23
below shows that o(a) = b. O

Interestingly, the plactification map not only takes Coxeter-Knuth to Knuth equivalence,
but also preserves recording tableaux:
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This allows the following description of the relationship between P/V and P/V:

a\ > • • • > am > k + 1, one can reorder the operators in the calculation of o(a):



since the respective recording tableaux for the row and column insertion of a word are
related by Schiitzenberger's evacuation involution Q H> Qevac (see [18]). D

4. Applications

The first application gives a new way of counting the number of reduced words of a
permutation.
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Proposition 23

for all reduced words a.

Proof: Let a be in Red(w~), The proof proceeds by induction on l(w). Write a = ra, so
that o (a) = ra ro(a). It is convenient to make use of the column insertion versions of the
Coxeter-Knuth and Robinson-Schensted-Knuth algorithms, which will be written

The Robinson-Schensted-Knuth column insertion of the word b is characterized by the
property that it shares the same insertion tableau P(b) as the row insertion of b, but its
recording tableau is the standard tableau in which the letter l + 1 —r occupies the cell of
P(brbr+\ • • • bi) which is not in P(br+1 • • • £ ; ) where / is the length of the word b. Let

so that Q is obtained from Q' by adjoining the letter / at some corner cell. Induction and
assertion A of Theorem 19 yield

Proposition 7 implies that

so that

where Q is obtained from Q' by adjoining the letter / at some corner cell. But

so Q = Q, and hence



Theorem 24 For any permutation w, the cardinality ofRed(w) is given by

where P runs over all column strict tableaux whose reading words are reduced words for
w~l, was proven by [2], [9], But o is a shape-preserving bijection between this set of
tableaux P and the set of D(w)-peelable tableaux (Theorem 22 and Proposition 13). D

Remark 25 This theorem gives a new method for computing the number of reduced words
for a permutation. The algorithm given below produces the set of D-peelable tableaux in
an efficient manner by pruning at each intermediate stage. Combined with the hook-length
formula for f [18], this algorithm calculates the number of reduced words for a given
permutation without generating the entire set of reduced words.

Let D be a diagram with the northwest property (see Remark 16). The algorithm is based
on the observation that every D-peelable tableau P gives rise to a D-peelable tableau P,
and the difference in the shapes of P and P is given by a vertical k-strip (skew partition
diagram which has k cells, with at most one cell per row), where k is the number of cells in
the first column of D. Let C be the first column of the filled diagram F(D).

If D has a single column then it has a unique peelable tableau which has one column
given by C.

If D has more than one column, suppose that the D-peelable tableaux have been con-
structed, where D is the diagram D with its first column removed. For each D-peelable
tableau Q, consider each partition A. such that the difference of the shapes X and the shape
of Q is a vertical £-strip. Let S be the skew tableau of shape A/(1K) obtained by slid-
ing the tableau Q outward into the vertical &-strip using the jeu-de-taquin. Finally, place
the letters of C into the vacated cells in the first column, forming a tableau of shape A.
If this tableau is column strict, then by construction it is D-peelable. Otherwise it is
discarded.

It is clear that this algorithm produces each D-peelable tableau exactly once.

Example 26 Let w = 251643 and let D = D(w). We have

where P runs over the set of D(w)-peelable tableaux and FA is the number of standard
Young tableaux of shape A.

Proof: Note that Red(w) and Red(w~l) have the same cardinality, since reversal of re-
duced words is a bijection between them. The fact that the cardinality of Red(w~1) is

PLACTIFICATION 343



344 REINER AND SHIMOZONO

It is easy to show that the only D-peelable tableau is

Sliding into the cells of these vertical strips in order from top to bottom yields the skew
tableaux

For each column strict tableau P there is an associated key tableau K-(P) of the same
shape called the left key of P. The y'th column of K-(P) is given as follows. Let a be any

The last two of these are not column strict tableaux and are discarded. The first three
tableaux form the set of D = D(tu)-peelable tableaux.

The next application of plactification requires a discussion of the notion of keys [12]. A
column strict tableau is called a key tableau if the ith column contains the jth for all i < j.
It is easy to see that there is a unique key tableau key(a) of content a for each it composition
a (sequence of nonnegative integers, almost all zero).

Example 27 If a = 104252 then key (a) is

Filling the vacancies in the first column with the letters 1, 2 gives

and there are five ways to place a vertical 2-strip on the frontier:



has columns of lengths 3,3,1. To obtain the columns of length 3 in K_(P), let a = 331 so
that

has columns of length 3,3,1. To obtain the columns of length 3 in AT° (P), let a = 331.
Then

Similarly if P is a column strict tableau whose reading word is reduced, one can define
its left nil key K(P) by replacing Robinson-Schensted-Knuth insertion by Coxeter-Knuth
insertion in the above definition.

Example

and b = 421542 2. The first and second columns of K-(P) are given by the word 421. To
obtain the column of length 1 in K-(P), let a = 133 so that

and b = 2 421542. The third column of K-(P) is given by the word 2. Therefore,
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composition whose nonzero parts give the lengths of the columns of P and whose first part
a\ equals the length I of the Jth column of P. Let b_ be the word satisfying

where T' means the transpose of the tableau T and std(T) is the standardization of the
column strict tableau T, defined by replacing the 1's in T by 1, 2 , . . . , s from left to right,
replacing the 2's by s +1, s + 2,..., etc. Then b1b2 • • • bt form the strictly decreasing word
which comprises the Jth column of K-(P).

Example



where P runs over all tableaux whose reading words are reduced words for w-1. Proposition
28 completes the proof. n
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and a = 421543 4. To obtain the column of length 1 in K°_(P), let a = 133. Then

and a = 2 431543. Therefore

Notice that O ( P ) = P and K- (P)) = K^(P), where P is from the previous example.

Proposition 28 If P is a tableau whose reading word is reduced, then

Proof: Let O(P) = P, To obtain the jth columns of K°_ (P) and K_(P), let a be any
composition as in the definitions above, and let a, b satisfy

The y'th columns of K^_(P) and K-(P) are given by the decreasing subwords

respectively. Then 0(a) = b_ by Theorem 19, Proposition 23, and the bijectivity of row
insertion. Since the sequence a\a-i---a\ comes at the left end of the word a and is decreas-
ing, it will be unchanged during the plactification (see the proof of Proposition 13) and
hence is identical to b\bi • • • b\. Therefore K ( P ) , K-(P) agree in every column. D

Theorem 29 For any permutation w,

where P runs over the set of D(w)-peelable tableaux, 6W is the Schubert polynomial [11]
and Ka is the key polynomial [12]

Proof: In [13],[ 16] it is shown that



Let T be the tableau obtained from Q' by replacing the letter k by the letter ik for all k.
Equivalently, T is the tableau obtained from the recording tableau of the Coxeter-Knuth
column insertion of the reverse rev(a) of a by replacing the letter k by ik for all k. It is easy
to see that T is a column strict tableau such that content(T) = content(i). Let Mw be the
multiset of column strict tableaux T obtained in this manner. It follows that

where XT = xlx^ • • • and content(T) = (c1, €2, • • •)• [1] asks the question of whether
Mw has "a simple direct description avoiding the use of [Coxeter-Knuth insertion]."

Theorem 31 Let w be a permutation.

(1)
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Remark 30 There is a refinement of the previous result which answers a question raised
in [1]. In that paper, it is proven that

where a is a reduced word for w and MS a compatible sequence for a, that is,

It is also observed that for each such pair (a, i), one can produce a column strict tableau T as
follows. Consider the recording tableau Q resulting from the Coxeter-Knuth row insertion
of the reduced word a:

where (b_,i) runs over all pairs where rev(b) is a D(w)-peelable word and i_ is a
compatible sequence for b '(the definition of compatible sequence makes sense for any
word).

(2) Mw is the multiset given by

where P runs over the set of D(w)-peelable tableaux, K+(T) is the right key of T
(which is defined below), and A •< B for two tableaux of the same shape means A is
entrywise dominated by B.

K+(T) is defined similarly to K~(T), except that the last nonzero part of a must be equal
to the length I of the jth column of T, and the last I letters of the word b_ comprise the jth
column of K+(T).



The above tableaux T are grouped according to their associated D(w)-peelable P which
satisfies K+(T) < K - ( P ) . For example, the first eight tableaux T all have right keys which
are entrywise dominated by the left key of the first D(w)-peelable tableau P listed earlier.

The last application of plactification is the decomposition of Specht modules of the
symmetric group over C into irreducible representations. Given a diagram D of cardinality
n and a field F, the Specht module SD is a representation of the symmetric group Sn over the
field F defined using the Young-symmetrizer construction (see [5] for a definition). When
D is a Ferrers diagram A. and char(F) = 0, £* is irreducible and such modules yield all
isomorphism classes of irreducible modules. If char(F) > 0, the irreducible modules can

The multiset Mw is given by

The reduced words a of in are listed horizontally, and below each word a is a list of its

Therefore Theorem 29 says
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Proof of Theorem 31: (1) follows immediately from Theorem 29 and [16, Theorem 5].
(2) may be deduced using Proposition 28 and the results and techniques of [16]. D

Example 32 Let w-1 = w = 21543. The £>(w)-peelable tableaux are

which have corresponding left keys



where P runs over the set of D(w)-peelable tableaux.

In [ 17], it is shown that there is another class of diagrams D for which the decomposition
of 5° into irreducibles over C is given by the shapes of the D-peelable tableaux, namely
the class of column convex diagrams D, that is, those D for which each column has no gaps
between its cells. Both Rothe diagrams and column convex diagrams have the property
that one can rearrange their columns (this does not change the isomorphism class of the
associated Specht module) to obtain a diagram which possesses the northwest property (see
the definition of peelable tableau). Rothe diagrams and column-convex diagrams both gen-
eralize the notion of a skew diagram (see [ 1 ]). These facts suggest the following conjecture.

Conjecture 35 If f is afield of characteristic zero and D has the northwest property,
then

as P runs over all D-peelable tableaux.

Conjecture 35 has been verified for all diagrams with at most 8 cells. The following
lemmas (whose proofs we omit) provide further evidence for this conjecture. Lemma 36
shows that the conjecture agrees with the fact that switching rows or columns in a diagram
does not change the isomorphism class of the associated Specht module.

Lemma 36 Let D and D' be diagrams which possess the northwest property and differ
by exchanging their rth and (r + 1)st

(1) columns. Then the diagrams D and D' have the same peelable tableaux.
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still be constructed using the Specht modules S\ When D is a skew partition diagram,
the Littlewood-Richardson rule gives the decomposition of SD into irreducibles [5]. It is a
natural question to ask about such decompositions for more general diagrams D.

It was known (although never published) that using results of Kraskiewicz and Pragacz
[7] and [9], [2] along with Schur-Weyl duality, one can prove the following decomposition
formula for the Specht module of the Rothe diagram of a permutation.

Theorem 33 Let ¥ be afield of characteristic zero. Then for any permutation w

where P runs over the set of tableaux whose reading words are reduced words for w '.

Plactification shows that the D(u;)-peelable tableaux may be used to index the decom-
position of the Specht module SD(w).

Corollary 34 If f is afield of characteristic zero and w is any permutation, then



(2) rows. Then the plactic transposition ar gives a shape-preserving bijection from the
D-peelable tableaux to the D'-peelable tableaux.

The next lemma shows that Conjecture 35 agrees with the well-known fact that the
multiplicity of the irreducible 5X in SD is the same as the multiplicity of the transpose
irreducible Sx' in SD'.

Lemma 37 Let D be a diagram having the northwest property. There is a shape-
transposing bijectionfrom the set of D-peelable tableaux to the set of D'-peelable tableaux.

If D is a skew diagram, this bijection agrees with a simple variant of the bijection of [3]
and [20]. If D = D(w), this bijection agrees with the map P i-»- o ( (o - 1 ( (P) ) ' ) from the
set of D(w)-peelable tableaux to the (D(w))' = D(w-1)-peelable tableaux, where' means
transpose.

Further evidence for this conjecture is provided by recent results of Magyar [15], who
gives a geometric construction for Schur modules (which are closely related to Specht
modules by Schur-Weyl duality). More precisely, he constructs a representation of GL^ (C)
on the space of global sections of a line bundle CD over a projective variety XD associated
to any diagram D, and then shows that this representation coincides with the classical Schur
module construction in the case where D has the northwest property. He also show that
several nice things happen when D has the north west property:

(1) The line bundle CD has no higher cohomology.
(2) The variety XD has only rational singularities, and can be "blown-up" to a smooth

variety XD' , where D' is another diagram with the northwest property.
(3) Using the last two properties, one can apply the Atiyah-Bott fixed point formula to

obtain a character formula for the Schur module of D.
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