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Abstract. Translation planes of order q are constructed whose full collineation groups have order q2.
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1. Introduction

The most interesting finite projective planes are those having reasonably large collineation
groups; such planes are the most amenable to characterizations. The present note concerns
planes that are uninteresting according to the preceding criterion: ones with small groups.
If a translation plane has order q = pn, where p is prime, then its full collineation group
has order at least q2(p – 1): translations and homologies must be present. This minimal
possible order can occur, even when p = 2:

Theorem 1.1 If q = 2" with n is odd, composite and greater than 9, then there are
translation planes of order q whose full collineation groups have order q2. Ifn is neither
27 nor the product of 3 and a prime, then there are more than 9(2Vn/4n2) pairwise
nonisomorphic planes of this sort.

In particular, every point of each of these "boring" affine planes has the property that its
stabilizer in the full collineation group is the trivial group. There does not appear to be
any published example of a finite projective plane having a point whose stabilizer in the
full collineation group is trivial. Moreover, it appears that the only published examples
of translation planes of order q = pn whose full collineation groups have order exactly
Q2(p - 1) are two planes of order q = 172 studied in [2].

How can one calculate the full collineation group of a plane? This is, in general, a difficult
and apparently tedious task—and one that is especially hard when the plane has very large
order. It is sometimes possible to replace calculations with group-theoretic considerations
when the group is known to be relatively large (e.g., due to transitivity properties). Here
we are dealing with the opposite situation: we want a (very!) small group. However, [6]
provides a framework that allows us to have things both ways: the fact that a certain group
related to the collineation group is somewhat large allows us to get enough information to
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show that the collineation group is small. On the other hand, the required group theory is
that of the late-1960's: it does not involve information concerning simple groups.

Section 2 reviews the background needed from [6, 7]: orthogonal and symplectic spreads.
Section 3 contains remarks concerning a more computational version of orthogonal spreads:
"Kerdock sets". Section 4 constructs some translation planes and eliminates homologies.
This appears to be a highly computational question; dealing with it is dull and tedious, some-
what resembling parts of [7] but noticeably more complicated. It would be very desirable to
have a general framework in which the kernel of a translation plane could be calculated with
much less pain. Section 5 identifies the planes in Section 4 with some of those in Section
2. The pleasant, noncomputational part of the proof of the Theorem appears in Section 6,
where projective geometry and group theory are used (together with computational results
from earlier sections) in order to limit and then determine the automorphism groups of some
orthogonal spreads. Finally, Section 7 glues together the results of the previous sections in
order to complete the proof of the Theorem.

The techniques in [6, 7] are very flexible. There they were used in order to obtain the
only known nondesarguesian affine planes of even order admitting solvable flag-transitive
groups, as well as translation planes of even order q whose collineation groups contain
elements having a q - 1-cycle on the line at infinity (cf. Example 2 in Section 2). In
the present paper the same techniques are employed in the opposite direction, producing
minimal groups. The possibility of achieving this minimality was mentioned in [9, p. 154],
The examples studied in [6-8], as well as those in the Theorem, indicate an inherent difficulty
in classifying all translation planes.

2. Orthogonal spreads

Throughout this paper, F, K and K' will be fields satisfying
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Note that each integer q appearing in (1.1) occurs as \F\ for some fields satisfying (2.1).
Let L denote either K or K'.

In this section we will review some of the required background from [6, 7]. Let V be a
vector space of dimension 4m over L, m > 2, equipped with a quadratic form Q of Witt
index 2m; the associated bilinear form is (u, v) = Q(u + v) – Q(u) – Q(v). A spread in
the orthogonal space V is a family S of I-LI2m-1 + 1 totally singular 2m-spaces such that
every nonzero singular vector is in a unique member of E. If y is any nonsingular point of
V, write

Then y^/y is a symplectic space (with respect to the alternating form (u+y, v+y) = (u, v)
for u,v e j/1), and Ey is a spread in the usual sense [3, p. 219]—but it is even a symplectic
spread: each of its members is a totally isotropic 2m - 1-space. Let A(Ey) denote the
translation plane determined by E and y; it has y^/y as its set of points, the lines being the
cosets of the members of Ey.
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Conversely, any symplectic spread in y^/y arises as Ey for an orthogonal spread E in V
- and E is essentially unique [6].

A crucial property of these planes is as follows:

Proposition 2.2 [6, (3.5), (3.6), (3.7)]. Let E4 be a spread in the orthogonal space Vi
over L (with associated quadratic form Qi) for i = 1, 2,andletyi be a nonsingular point of
V^ Ifg is any isomorphism A(£Vl) -> «/t(E,,2), then there is a semilinear transformation
h: Vi —> V-2 such that the following hold:

(0 yf = y2;
(ii) E^ = E2;

(iii) Qi(vh) = aQi(v)T for some a e L, some T e AutL, and all v € V; and

(iv) Ifh denotes the map yi~/y\ —> y^/yi induced by h, then ~h also induces an isomor-
phism A(£y1} —> A(Ey2), and gh-1 is an automorphism of the plane A(Ey1) thatisthe
identity on the line at infinity; in particular, it is a homology if 09 = 0.

In other words, two of these planes are isomorphic if and only if there is an isomorphism
of the orthogonal spaces inducing an isomorphism of the planes; and every collineation of
one of these planes is the product of a translation, a homology and a semilinear transforma-
tion preserving the symplectic structure of y1 / y 1 . In particular, the determination of the
collineation group of a plane A(Ey) can be achieved in three stages:

• determine the group G(£) of all semilinear transformations of V that "preserve" Q as
in (2.2iii) and send E to itself;

• determine the stabilizer G(S)y; and
• determine the group of homologies of -A(E)y fixing 0.

This is essentially how Theorem 1.1 will be proved.
First we need to provide examples leading to the orthogonal spreads needed in Theorem

1.1.

Examples Let F, AT and AT' be as in (2.1). Let T: F -> K and T': F -» K' be the
corresponding trace maps.

Example 1 "Desarguesian spreads". Consider the .ftT-space F x K x F x K, equipped
with the quadratic form Q defined by

Q(a,a,/3,6) = r(a/3) + a6;

the corresponding bilinearform is ((a, a, /?, 6), (a', a', f3', &')) = T(a/3'+a'/9)+ab'+a'b.
The desarguesian spread inFxF "lifts" to the orthogonal spread E consisting of the totally
singular subspaces
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Here, "lifts" refers to the fact that S(o,i,o,i> consists of the subspaces O x O x F x O +
(0,1,0,1} and {(a, 0, s2a, 0) + (0,1,0,1) | a e F}, s e F, and these evidently constitute
the usual desarguesian spread in (0,1,0, l)-1/^, 1,0,1), producing the desarguesian plane
•4(11(0,1,0,1}) of order \F\. The orthogonal spread (2.3) is called the desarguesian spread
in [6]. Note that the \F\ - 1 isometries

Example 2 (called in [6, 7] the "third cousins of the desarguesian spread"). Fix k €
K -K', and consider the point yk = (0, k +1,0,1} in the space F~x.Ky.FxK appearing
inExamplel. Thisisnonsingular(sinceQ(0, fc+1,0,1) = fc+l)andproducesasymplectic
spread EUfc in the symplectic space y^ / y k , consisting of the following subspaces:

Example 2' The symplectic space y^/yk over K can also be viewed as a symplectic
space over K' by using the bilinear form (u, v)' — T'((u, v)) for u, v € y^/Uk- Then (2.5)
also is a symplectic spread of this K'-space.
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of F x K x F x K fix (0,1,0,1), preserve S, and hence act on the plane ̂ .(E(0,i,o,i>)- The
points fixed by all of these isometries are just those of the 2-space {(0,1,0,0), (0,0,0,1)}.

Namely, (a, a, s2a + sT(sa) + sa, T(sa)) is perpendicular to (0, k + 1,0,1) if and only
if a = (k + l)T(sa), in which case (a,a, s2a + sT(sa) + sa,T(sa)) = (a,0,s2a +
ksT(sa), 0) + T(sa)(0, k + 1,0,1).

Since yk = (0, k + 1,0,1} is fixed by the automorphisms g^ defined in (2.4), each g$
induces an automorphism of the translation plane A(£,yk).

Example 3 Now consider the /(T'-space V = F x K' x F x K', equipped with the
quadratic form Q' defined by

the corresponding bilinear form is again

The subspaces F x K' x 0 x 0 and 0 x 0 x F x K' are totally singular. The spread (2.5),
viewed as in Example 2', lifts to the following orthogonal spread Efc (where we have written
fc* = 1 + v/fc):
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Namely, the members of Efc are totally singular subspaces intersecting pairwise only in 0,
and the spread (Sfc)(o,i,o,i> consists of the subspaces

as in (2.5). (Note that (a, a, s2a+fcsT(sa)+fc*sT'(fc*sa)+A:*sa, T'(k*sa)) is perpendic-
ular to (0,1,0,1) if and only if (a, a, s*a + ksT(sa) + k*sT'(k*sa) + k*sa,T'(k*sa)) =
(a, 0, s2a + sT(sa) + sa, 0) + T'(fc*sa)(0,1,0,1).)

Define linear transformations g',- as in (2.4), but this time using the present orthogonal
space. Then each g', is in G(£k), and these isometrics form a cyclic group fixing the two
members F x K' x 0 x 0 and 0 x 0 x F x K1 of Efc while permuting the remainder of
Efc in a single cycle. Note that 0 x K' x 0 x K' is the set of vectors fixed by all of the
transformations g',, and that (0,1,0,1) is the only nonsingular point fixed by all of these
isometries since K' = GF(2). We will determine G(Ek) in Section 3. For now, we note
only that

Example 4 Let* € FwithT'(*) = 1, so that the point (*,0,1,0) of Vis nonsingular:
Q'^, 0,1,0) = 1. If £* is as in Example 3, then (Efc)<*,o,i,o) is a symplectic spread in
the symplectic /f'-space (*,0, l,0)J-/(*, 0,1,0). The planes occurring in (1.1) are just
those of the form .A((£fc)(<i/,o,i,o)) such that \P generates F.

3. Kerdock sets

Assume that F, K, K',T, T', k\ k = k*2 + 1, V = F x K' x F x K' and Q' are as in
Section 2. Note that

[7, (9.1)]. (In (iii) we have r'(fc7r(7)) = T'(T(/c7T(7))) = T'(fcT(7)T(7)) =
T'(fcT(7)2) = T'(T(A:72)) - T'(fc72).)

Fix a basis e\,..., en+i of F x K' x 0 x 0, and let /i,..., /n+1 be the corresponding
dual basis of 0 x 0 x F x A'' (so (ej, fj) = 6ij for all i, j). Temporarily use the basis
ei , . . . , en+i,/i, . . . ,/n+i of Fx K1 x F x K' in order to write vectors and matrices. If a
subspace X of V satisfies OxOxFxA''nX = 0, then X has the form {(a, a, 0,0) (^) |
(a, a) £ F x K'} for an (n + 1) x (n + 1) matrix M. Here, X is totally singular if
and only if M is skew-symmetric (i.e., symmetric with 0 diagonal). Letting X range over
Y.k - {0 x 0 x F x K'} produces a binary Kerdock set OC of matrices M: a set of 2n

binary skew-symmetric (n + 1) x (n + 1) matrices such that the difference of any two is
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Then Efc consists of 0 x 0 x F x K' and {(x,xM3) \ x € F x K'} for s 6 F; or,
alternatively, of 0 x 0 x F x K',F x AT' x 0 x 0 and {(xM~l,x) \ x & F x K1} for
s 6 F*. It is clear from (3.2) that Ms "depends quadratically" on s, in the sense that the
map Ms+t + M3 + Mt is additive in both s and t (we will use this sort of observation often
in the next section). We will also need a similar formula for M~l:

Lemma 3.3 Ifs^O then

Proof: If the right side of (3.3) is (a, a) then calculate as follows, using (3.1) and the fact
t\\atk* + kk*-1 + k"-1 =0:

nonsingular (cf. [6, 8]). We will not actually need to use matrices: linear transformations
will suffice for our computational requirements.

For each s 6 F define (for all a 6 F, a € K')

Let NQ = 0 and Na = (Ms-1)-1 if s e F*.
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Corollary 3.4 Efc consists ofFxK'xQxQand {(xN3, x) \xzFx K'}for s e F. If
t = k/(k+l) then Efe and E* are orthogonally equivalent by an orthogonal transformation
interchanging 0 x 0 x F x K' and F x K' x 0 x 0.

Proof: The first statement was noted above. Letf = Vt + 1, so t* = k*~l. By (3.3),

for all s e F, which is the same as (3.2) with k replaced by t. Thus, the orthogonal
transformation (a, a, /3, &) i-» (/3, b, a, a) produces the desired equivalence. D

Proposition 3.6
(i) {Ms | s € F} is not closed under addition.

(ii) {0, M~l \0 ^ s € F} is not closed under addition.

Proof: (i) Assume that this set is closed under addition. Let r, s, t e F with Mr + Ma —
Mt. Since (0, a)Ma = (fc'so, 0), it follows that r + s = t. By (3.2), for all a € F,

so that

and hence T(y)T'(6) = T(6)T'(i) for all 7, S e F. When 6 = 1 this states that T(i) =
T'(7) for all 7 € F, which is ridiculous,

(ii) This follows from (i) and (3.5). DD

More generally:

Proposition 3.7 No binary Keraock set is closed under addition.

Proof: If a binary Kerdock set closed under addition, then the corresponding binary
Kerdock code Q also is closed under addition (cf. [6, §5, or 8]), and the weight distribution
of the linear code 6 is uniquely determined. Then so is the weight distribution of the dual
code Cx. The latter weight distribution is that of a Preparata code [ 11, p. 466], However,
there is no linear code G1 having the weight distribution of a Preparata code [4, 7.2].

D

Much more generally:

Theorem 3.8 (P. J. Cameron). If U is a subspace of the space of all skew-symmetric
2m x 2m matrices over any finite field, and if all nonzero elements ofU are nonsingular,
then dim U < m.

D
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Proof: If (oy) e U then det(ay) = Pf(oi:/-)2, where Pf(ay) is the Pfaffian of (aw) and
is a polynomial of degree m in the oy [10, p. 373]. Let AI, . . . , Ad be a basis of U. If
A = Y^XiAi for scalars Xj, then Pf(.A) = f(x\,..., £<*) for a polynomial / of degree m.
By the Chevalley-Warning Theorem [10, p. 140], / has more than one zero if d > m.

a

4. Quasiflelds

In this section we will study a class of translation planes defined using a horrible-looking
quasifield. In the next section we will see that these planes are exactly the same as some of
those arising from the orthogonal spreads Ek.

Let F, K, K' = GF(2), T and T' be as in Section 2. Choose k, k* and * follows:

Define the following binary operation # on F:

where

for all 7, s 6 F. It is difficult to motivate these bizarre formulas: they are precisely what
are needed in Section 7. However, recall that we are trying to prove Theorem 1.1, and hence
the unpleasant appearance of (4.2,4.3) may perhaps be forgiven. By (3.1ii, 4.1),

Proposition 4.5
(i) (F, #) determines a translation plane as follows: the points are the elements ofF x F,

and the lines are the subsets with equations x — cory = m#x + bfor some c, m, b € F.

(ii) This plane has no nontrivial homologies with center (0,0).

In other words, these translation planes have kernel GF(2) [3, pp. 132-133].

Proof: (i) (A second proof of this is implicit in the next section. The present proof is
included both for completeness and because some parts of it will be needed later in this
section.) The binary operation # is right distributive, so we only need to show that, for all
distinct s, t € F, the map 7 i-> s#7 - £#7 is bijective. In other words, we must show that
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By (4.2), we are assuming that

If we write

then this becomes

Multiply by * and apply T':

Since T'(*) = 1 it follows that

By (4.3, 4.7),

By (3.1iii, 4.4,4.7), if 6 := 7 + T(^) then a = 6 + J7)i* and

since

Again by (3.1iii, 4.11),

Next, T'(a) = J7,, by (4.4,4.7), so that by (4.7,4.9) we have
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Thus,

By (4.9, 4.10), it follows that 3T'(a)2 = 3T'(a')2, and hence a = a'by (4.10). Then
T'(j3^} = T'(a) = T(/3'*) by symmetry, so that 0 = ff by (4.9).

Write x := sa and y := ta. Since J3a = /3'a', (4.11) yields

Apply T:

where T'(k*x) = T'(k"y) by (4.9). Since 1 + k = fe*2,

If T(x) ^ T(y) then k*T(x + y) + T'(k*x) + T'fr) = 0. Then

by (3.1ii), so that k*T(x + y) + 0 = 0.
Thus, T(x) = T(y), and (4.12) becomes

If x ^ y then x + y + kT(x) + k*T'(k*x) + k*T'(f) = 0. Apply T and subtract in order
to obtain x + y = T(x + y) - 0.

Thus, x = y, which says that sa = ta. Now a = 0, and hence 0 = k*sT'(j) by (4.11).
By symmetry, /?' = fc'tT'fr). Thenfc*sT'(7) = k*tT'(-y),sothatT'(j) = 0. Now (4.10)
implies that 7 = 0, as required.

Remark It should now be clear that methods using orthogonal spreads can not only make
the discovery of unusual planes easier, they can also make it far simpler to prove that a
given geometry is a plane.
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(ii) We need two more consequences of definitions (4.2) and (4.3). By (3.1i),

By(4.2),r((s#i)*) = r(Bi,s*)+r(Bi,^)r(*)+r'(fc*sJi,J,*)r(*) = T'(A;*S
*)T"(fc*s*), so that, since K1 = GF(2),

Next, we need a quasifield for the plane in (i). Define a new operation o on F by

Then (F, +, o) is a quasifield with identity element 1#1. The kernel of this quasifield is
contained in

[3, p. 132]. Let x •-> x denote the permutation of F defined by the equation

By (4.14),

Moreover, x o (1#7) = £#7 by (4.15), and D consists of those elements 1#7 such that

We will show that (4.18) implies that 7 € K', and hence 1 #7 6 {1 #0,1 # 1} = {0,1 # 1},
so the kernel has size 2, as required in part (ii) of the proposition.

Since (4.18) asserts that x + y = x + yin case 7 = 1 (cf. (4.16)), (4.18) holds when 7
is replaced by T"(7); and then by adding the two equations we find that

We may assume that T'(^) = 0; we must show that 7 = 0. (4.19)

Let

so that dimK>U = d\mK>F - 1. If x e U then Ji,s = 0 by (4.13), so that BI^ = k*x
by (4.3, 3.1i) and hence x#l = B^ + T'(B1|S*) + 0 = k'x + T'(fc*x#) by (4.2).
Consequently, by (4.16,4.20),

Equations (4.17) and (4.21) produce a significant simplification of (4.18): i f x , y 6 U then
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by (4.17), which means that x + y e U by (4.20), so that k*x + y = x + y = k*x + k*y
by (4.21). Hence, if s = x and t = y then (4.18) implies that

From now on, s and t will always denote elements ofU.
Next, by (4.3, 4.19, 4.20),

By (4.20),

By(3.1iii,4.1,4.20),

sothatT'(B7lS*) =T'(s27*) + T'(fes*r(n))- Then, by (4.2,4.19,4.20, 4.23),

Three of the terms on the right side of (4.24) are visibly additive in s. By (4.22),

This apparently unwieldy identity yields, for all s, t e U, an inclusion relationship of the
form

By(4.20)and(2.1),|li'nf7| > \\K\ > 2. If we choose s, t e K n U then (4.26) states
that
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with J7]H_t+J7,s, J7,s+t+.77,t € K' = {0,1}. Fixs e (Kr\U)-{0}.Since* £ KJor
each of the |/sTnC/| -2 choices of £ in (K<~\U) -{0,s} we see that J7,a = J7,a+t = J7,t-
Sinces e K, (4.23) implies that J7, s = T'(s27*) + T'(fcssT(7)*) is additive in s. Thus,

More generally:

Lemma 4.28 J7, s = 0/or a// set / .

Proof: Let 0 ^ t 6 K n t/, so that J7,t = 0 by (4.27). Whenever set/-/!', (4.26)
states that

where J7,s+t + J7,s,J7)S+t € {0,1}.
Let B := (x € U\ J7,3 = 1}. Then 5 n (AT n U) = 0 by (4.27). Consider an arbitrary

s € B. Then {J7,,+t + J7,3, J7,,+J = {0,1}
Suppose that J7,3+t + J7, a = 1 and J7, s+t = 0. Then (4.29) becomes a quadratic

equation of the form s2* + as + /3 = 0 with a,0 £ K not both 0. There are fewer than
|-K"|2 equations of this sort, with fewer than 2|/f|2 possibilities for roots s.

On the other hand, if J7| s+t + J-t,a =0 and J7, s+t = 1 then (4.29) states that \I>, 1 and s
are linearly dependent over K. This occurs for fewer than \K + K$>\ = \K\2 choices of s.

This shows that \B\ < 3\K\2.
Now fix s eU -B. There are at most \B\ elements u € U - B such that K's + K'u -

{0, s,u,s+u} meets B, and so at least |C/|-|S| elements u e U-B such that s+u € U-B.
In view of the definition of B, since s, u, s + u € B we have J7, s = J7, „ = J7,3+u = 0.
By (4.23), the equation J7,s+« + J7)S + J7,u = 0 simplifies to

This identity holds for at least \U\-\B\ > ±\F\-3\K\2 = \U\-Z\K\1 > \\U\ elements
u of [/ (since |F| > 8|^|2 by (2.1)), and hence these must span the /('-space U\ Thus,
(4.30) holds for all u € U. Similarly, for each u € U we now know that (4.30) holds for at
least |£7| - \B\ choices ofseU and hence (4.30) holds for all s,u e U.

Now consider any b e B. There are at most \B\ - 1 possible /f'-subspaces of U
of the form K'b + K'c = {0,6, c, b + c} with c € B - K'b. Then there are at most
|5| — 1 elements s € U - B such that b + s e B. Consequently, there are at least
|C/|-|B|-(|J5|-1) > 8|tf|2-3|/s:|2-3|A:|2elementss 6 C/-Bsuchthat6+s e U-B.
In particular, there is at least one such element s e U - B. Write u = b + s. In view of
(4.30) and the definition of S, (4.23) implies that

This contradiction shows that B = 0. n
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We now return to the proof of (4.5ii). In view of (4.28), (4.25) states that

for all s,t e U. Then

Let t € U - {0}, and then choose any s € U - (Kt + K) (there is such an s by (2.1))
in order to deduce that

Again let t 6 U-{0}. Since \Ur\ Kt \ >\\Kt\> 2, there is some a e K - K' such that
at e U. By two applications of (4.31), T'(fc*at7) = (fc/fc*)T(afry) = (k/k')aT(t^} =
aT'(k*tj). Since a £ K1 it follows that T'(k*tf) =0 = T(fry) for all t € U. However, U
has index 2 as a subgroup of F, and hence is not a vector space over K, so that F — KU.
Consequently, T(Fj) = T(KU^) = KT(Uf) = 0, so that 7 = 0, as required in (4.19).
This completes the proof of (4.5). D

We need one additional equally dull computation:

Lemma 4.32 If |F| > 25|K|3, then the affine plane in (4.5) has no nontrivial elation with
axis x = 0.

Proof: Suppose that there is such an elation. If the line y = 0 is sent to the line y = a#z,
then a = 0 and (x, 0) >-> (x, a#x) for all x & F. Also (0, y) -> (0, y}, so that (x, y) ->
(x, y + a#x) for all x, y € F. Since the line y = m#x must be sent to a line, it follows
that m#x + a#x = m'#x for a permutation m -> m' of F. We will change notation
slightly in order to conform to (4.2) and (4.3):

D

From now on, choose 7 so that T'(7) = 0. Then (4.2) and (4.3) imply that

Then (s + a + s')27 6 s^K' + a^K' + s'^K1 + sK + aK + s'K + K'. The K'-
subspace on the right has size < 23|AT|32, and this is less than \F\/2, by hypothesis. Since
there are \F\/1 choices for 7, it follows that s' = s + a.
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Now (4.33) states that

This can be viewed as a polynomial equation in s of the form o^s2* + ais + ^a2* +
/?ia + A) = Owitha2,/32,A) 6 K'andai,/3i e K. There are at most 23|Ar|2-l nonzero
equations of this form, and each has at most 2 roots. Since \F\ > 2 • 23 |/f |2 by hypothesis,
there is an element s of F that satisfies no nonzero equation of this sort, and hence such
that

whenever T'(*f) = 0. In particular, 3$J~f< „ + s'^J^, s/ = a^J7i a, and hence

The right side of (4.34) lies in the tf'-space T(a$)K' + (k*/k)K' of size at most 4,
while the left side ranges over a AT-subspace of F. It follows that T(a~f) = 0 whenever
T"(7) = 0. Then a hyperplane of the K'-space F is contained in a hyperplane of the
K-spacs F, which is ridiculous. DD

Remark The restriction on |F| in (4.32) is unfortunate and unnecessary: it can be re-
moved, but at the expense of a great deal more computation which we omit.

5. Identification

Now we consider some of the planes ^t((S/!)(*,o,i,o>) arising in Example 4 of Section 2.
Choose k and * as in (4.1). The point y = ($, 6,1,0} of V is nonsingular: <9'(*, 0,1,0)
= 1.

Lemma 5.1 ^t((Sfc)(*,o,i,o)) IJ one of the planes in (4.5), and hence has kernel K' =
GF(2).

Proof: By (2.6), y1 consists of the vectors (a, a, /?, b) such that T'(a) = T'(/3#). Define
a linear transformation TT : y±/y —> F x F by

this is well-defined since, for all k € K',
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We claim that TT is a bisection. For this it suffices to show that its kernel is 0, so suppose
that ((a, a, /?, 6) + j/)7r = 0. Then (3 = T'(/3*) + 6 € K1, so that (a, a, /3, b) + y = (a +
/?*, a, 0,6) + y and hence we may assume that /3 = 0. Now 6 = 0, T'(a) = T"(/3*) = 0
and a + a = 0. It follows that a = T'(a + a) = 0 and hence that a = 0, which proves
the claim.

Thus, by (2.7), •A((Sfc)(*,o,i,o))'r consists of the following n-dimensional subspaces of
F x F:

The preceding two subspaces ofFxF have the same .^'-dimension and hence coincide.
Thus, (5.2) is the set of lines through (0,0) of the plane appearing in (4.5). D

6. Groups

We now return to the study of the orthogonal spreads Efc appearing in Example 3 of Section
2. In this section we will determine the group G(Efc). Since V is a vector space over
K' = GF(2), in (2.2iii) we have a = 1 and T = 1; moreover, we can identify a point with
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where /? := s2a + ksT(sa) + k*sT'(k*sa] + k*sa depends on s, a and a.
In order to identify these subspaces, we will construct a subspace of each of the second

type of subspace in (6.2) that has ̂ '-dimension equal to that of F. Fix s, 7 € F, and define
elements of F as follows:

in the notation of (4.3). By (3.1ii), T'(a) = T'(7) + T'(T'(j)) + J^,aT'(^) = J7,a.
If we write /3 = s2a + ksT(sot) + k*sT'(k*sot) + k*sa as above then /3 = B7|S in
the notation of (4.3), and then the exact same calculation as that following (3.11) yields
T'(/3t) = J7,s=7».

Moreover,

by (4.2). Then, for each a 6 F, we have

D



where W is one member of {F x K' x 0 x 0,0 x 0 x F x K'} and X is the other one.
In particular, (?(£*% has no element interchanging W and X. Write \F\ = 2n, so that
dim V = In + 2.

Theorem 6.2 If\F\ > 25\K\3, then G(£fc) = G(Efc)z < A x AutF.

Proof: Write G = G(Zk),z = w + x with w e W,x € X, W = W n z1- and
X' = A" n 2-1-. Then iw 0 W since 0 ^ <?'(*) = KZ) = (w,z). Similarly, x <£ X'.
Moreover, W, X', w and x are fixed by A, and A cyclically permutes the 2" - 1 points of
W (or of X') as well as the 2n - 1 points ^wofW-W (and the points ^xofX-X').
(Note that {W',X'} = { F x O x O x O , O x O x F x 0}.)

The next three lemmas gradually restrict G.

Lemma 6.3 GWX = Gz, and z is the unique nonsingular point fixed by GWX-

Proof: Assume that GWX moves z. Then it moves w or x, and we may assume that it
moves w. The known orbits of the subgroup A of Gz and GWX show that Gz fixes only
one nonsingular point, and also that the orbit 0 := wGwx of GWX is one of the following
subsets of W: (i) w together with the points of W; (ii) all points of W - W; or (iii) all
points of W.

(i) This is impossible since W would be the only subspace of its size inside 0.
(ii) Here GWX is 2-transitive on the set W -W of size 2™. Moreover, GWX fixes W

and hence fixes W'-1 n X = x. Then the stabilizer (Gwx)w = (Gwxx)w of the point
w fixes z and hence is a group of odd order having a cyclic normal subgroup A = F* of
composite order that is transitive on 0 — {w}. By [1], it follows that the group induced
by GWX on W - W has an elementary abelian regular normal subgroup. Also, since
(Gwx)w fixes z we can use the known behavior of GWXZ (cf. (2.4, 2.8)) in order to
conclude that that GWX acts faithfully on W - W1 and hence on W. Thus, GWX has an
elementary abelian normal subgroup E of order 2™, and A acts transitively on E — {1}.

Since EA also acts on Sk - {W, X} and E fixes a member of this set, E must act
trivially: E fixes each member of Ek. If 1 = e £ E then e is an involution, so that
dimCV (e) > (dim V)/2 = (n + l)/2 for each of the 2n + 1 members Y of Efc. Then
dimCV(e) > n + 1, so that Cy(e) contains at least two nonsingular points y. It follows
that e induces a collineation of A((Ek)y) that fixes 0 while acting trivially on the line
(£*)v at infinity, and hence induces the identity on this plane of even order. Then e is a
transvection of V with center y for at least two choices of y, which is ridiculous.

(iii) Since A is transitive on the lines of W through iu, GWX is line-transitive on W. By
[5], it follows that GWX is 2-transitive on W. Then (Gwx)w — GWXX is transitive on
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Write z = (0,1,0,1), so that (£*% is the symplectic spread appearing in (2.5); see the
discussion following (2.7). By (2.8), G(£*% has a normal subgroup A = F*. Moreover,
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W — W (by an orbit count [3, p.78]), and this leads to the same contradiction as in (ii).
D

Lemma 6.4 G fixes W or X.

Proof: First assume that some element g € G interchanges W and X. Then g normalizes
GWX and hence fixes the unique nonsingular point z fixed by GWX (cf. (6.3)). This
contradicts (6.1) since Gz fixes X and W.

Thus, G moves {W,X}. Since A is transitive on Sfe - {W,X} it follows that G is
2-transitive on Efc, which contradicts the preceding paragraph. O

Lemma 6.5 W and X.

Proof: Suppose that G fixes W and moves X. By (3.3) and (3.4), if i = k/(k + 1) then
Ef is orthogonally equivalent to Efc by an orthogonal transformation interchanging W and
X. Hence, we can replace k by £ if necessary in order to have W = QxOxFxK'. Then
w = (0,0,0,1).

The transitivity of A on Efc - {W, X} implies that G is 2-transitive on Efe - {W}. Since
G is faithful on £fc (by (6.3) and (6.1)), and since the stabilizer of X has odd order, we can
again apply [1] in order to conclude that G has an elementary abelian normal subgroup E
that is regular on Efc — {W}.

Case 1 E = 1 on W. In the notation introduced following (3,1), E consists of matrices
of the form (^) with M skew-symmetric. The set X of these matrices M is closed under
addition, since E is a group. This contradicts (3.6) (or (3.7), or (3.8)).

Case 2 E fixes W. Then E fixes some point of W, while A is transitive on the points
of W, so that E = 1 on W. If 1 ^ e € E then e fixes only one member W of E*. and
hence fixes no singular point outside of W.

Since e is an involution, dimCV(e) > n + 1; and CV(e) ^ W by Case 1. Thus, CV(e)
contains a nonsingular point. Since all singular points in Cy (e) lie in the totally singular
subspace W, the radical of CV(e) must contain W. Consequently Cv(e)/W contains
the unique nonsingular point {W, z)/W of W'-1/ W, so that e lies in Gz. This contradicts
the fact that Gz has odd order, by (6.1).

Case 3 E moves W. Since E fixes some point of W, and A acts on the set 5 of such
fixed points, S is a union of orbits of A. By Case 2,5 is not contained in W. If S contains
a point ^ w of W — W then it contains a spanning subset of W, whereas E is nontrivial
on W. Thus, 5 = {w}. Now £ fixes some hyperplane on w, while A is transitive on the

D

D
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hyperplanes on w, so that E fixes every hyperplane on w. Consequently, E induces on W
the group of all elations with center w.

If 1 7^ e € E then e induces an elation of W whose axis Cw(e) contains w. As in
Case 2, Cy(e) must contain a nonsingular point in CV(e)-1-. If T'(^l) = 1 then the point
y = {*, 0,1,0) is perpendicular to w = (0,0,0,1) by (2.6). In view of the transitivity of
A on the hyperplanes of W we can conjugate e by an element of A in order to assume that
CW(e) = yLnW. Then e acts on A((Ek)y) as an elation with axis (yL n W, y)/y. This
contradicts (4.32). D
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Completion of the proof of (6.2) By (6.3) and (6.5), G = GZ. Now use (6.1). O

Theorem 6.2 produces a proof of a weak version of the main result in [8]:

Theorem 6.6 Suppose that n = ab> 9 for odd integers a, b > 1.

(i) Ifn > 5 + 36 then there are at least (2b — 2)/2n pairwise inequivalent orthogonal
spreads Sfc in an fi+(2n + 2,2)-space.

(ii) Ifn is neither 27 nor the product of 3 and a prime, then there are at least (2 ̂  — 2) /2n
such spreads.

Proof: (i) Let k, i e K- K', and suppose that Efc and E* are equivalent by an orthogonal
transformation g of V. By (6.2), z is the only nonsingular point fixed by G(Efc), and g
sends z to the nonsingular point z fixed by G(Ef). Then g sends ^.((Efc)z) to ,A((Ef)z).
In the notation of Examples 1 and 2 of Section 2, (S*% = E^. By (2.2), g lifts to an
isometry g*ofFxKx.FxK fixing E and sending yk to j#. Then g* conjugates G(E)Vfc
to G(E)y<, and hence normalizes the group C consisting of the transformations g$ defined
in (2.4).

By [6, (4.1)], G(E) S PrL(2,2n), so that |^G(S)(C')I = 2n|C|. Since C fixes yk it
follows that j/fc has at most 2n images under NG(Z)(C). There are |/f| — 2 choices for A;
in K — K', so this proves (i).

(ii) Let o be the smallest factor of n greater than 3, let K = GF(2b), and observe that
n = ab > 5 + 36 and 2b > 2^". D

7. Proof of Theorem 1.1

Let F — GF(2n) with n odd, composite and > 9. Then there is always a choice for a
factor m of n such that the subfield K = GF(2m) of F behaves as in (2.1) and (6.2). Fix
such a choice of m.

LetkinK-K'. We will use the planes ̂ ((S*:)(*ioil)o)) arising in Example 4 of Section
2, with * restricted as follows.

The number N of generators of F satisfies

n
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If * is a generator then so is * + 1, and either T'(l') = 1 or T'(* + 1) = 1. Thus, N/2
of the generators * satisfy T'(\P) = 1; and these are the elements * we will use in order to
obtain the planes >t((Sfc)(*,o,i,o))-

As in Section 6, let 2 = (0,1,0,1} and {W,X} = {F x K' x 0 x 0,0 x 0 x F x K'}.
As in Section 5, let y = {*, 0,1,0). By (2.8), G(Zk)yz = 1 since no nontrivial element of
AutF fixes the generator *. Then G(E*% = 1 by (6.2).

By (2.2iv), every collineation of A((Ek)y) induces the identity on the line at infinity. By
(5.1) and (4.5), the kernel of this plane is GF(2), so every collineation of A((Ek)y) must
be a translation. This proves the main part of (1.1).

In order to count the number of planes obtained in this manner, recall from (6.2) that
different choices, *, *' can yield isomorphic planes only if there is an element of G(Efc) =
G(Efc)z sending {*, 0, 1, 0) to {*', 0, 1, 0). By (6.1) this occurs only if *' 6 *AutF. Thus,
each choice of k produces at least (JV/2)/n different planes behaving as required in (1.1).

While this already proves that we have constructed many nonisomorphic planes, (6.6)
provides a slightly improved lower bound on their number. Namely, while different choices
of k in K — K' can produce orthogonally equivalent spreads Efc, by (2.2) and (6.6) the total
number of different planes obtained is at least [N/1n}{(\K\ — 2)/n}.

Now assume that n is neither 27 nor the product of 3 and a prime. Then we may assume
that K has been chosen so that K > 2^ in addition to the condition in (6.2). By (7.1), we
haveobtainedmorethan(2n~12"/3)(|/i:|-2)/n2 > 2n+^"~2/n2 planes. This completes
the proof of (1.1). a

The number of planes is as stated in Theorem 1.1 even when the additional restriction on
n is dropped, but then the analogue of (6.2) is significantly messier to prove.

The proof of the theorem begs an obvious question: Are there orthogonal spreads E such
that G(E) = 1? The answer undoubdtedly is "Yes, and in great numbers". It is likely that
such spreads can be constructed by another iteration of the field change method seen in
Examples 2' and 3 (cf. [7, Section 2]). However, proving that G(£) = 1 would require
new ideas.
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