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Introduction

The study of Newton polytopes of resultants and discriminants has its orgin in
the work of Gelfand, Kapranov, and Zelevinsky on generalized hypergeometric
functions (see e.g., [8]). Central to this theory is the notion of the A-discriminant
AA, which is the discriminant of a Laurent polynomial with specified support
set A (see [6, 7]). Two main results of Gelfand, Kapranov, and Zelevinsky
are concerned with their secondary polytope £(A). First, the vertices of this
polytope are in bijection with the coherent triangulations of A, and, secondly,
the secondary polytope H(A) approximates the Newton polytope of the A-
discriminant A^. It was observed in [6, Proposition 1.3.1] that resultants are
special instances of A-discriminants, and this observation was used in [9] to give
an explicit combinatorial description of the Newton polytope of the classical
Sylvester resultant.

Subsequent papers extended the theory of Gelfand, Kapranov and Zelevinsky
into several different directions. In [11] the A-resultant was introduced, and its
interpretation as the Chow form of an associated toric variety leads to a refined
geometric understanding of the relationship between triangulations of A and
monomials in AA. In [3] the concept of secondary polytopes was extended to
the more geometric construction of fiber polytopes. Product formulas of Poisson
type, first given for the A-discriminant in [6, §2F], were proved in [14] for general
Chow forms, for the A-resultant, and for the sparse mixed resultant,

The present paper continues this line of research, but it is self-contained. Our
main result is a combinatorial construction of the Newton polytope N(R) of the
sparse mixed resultant R. To define these terms, we let A0, A1, ... An C Zn be
subsets which jointly span the affine lattice Zn, and card(Ai) =: mi. Then R. is
the unique (up to scaling) irreducible polynomial in m := m0 + m1 + • • • + mn

variables ci,a, which vanishes whenever the Laurent polynomials
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have a common zero in (C*)n. The Newton polytope N(R) is the convex hull in
Rm of the exponent vectors of all monomials appearing with nonzero coefficient
in R.

This paper is organized as follows. In Section 1 we collect some basics,
including the precise definition of the sparse mixed resultant, and a dimension
formula for the variety of solvable systems (Theorem 1.1). Section 2 deals with
the monomials corresponding to vertices of N(R), which are called the extreme
monomials. Let Qi := conv(Ai) denote the Newton polytopes of the Laurent
polynomials in (1), and let Q := Q0 + Q1 + • • • + Qn be their Minkowski sum.
We present a combinatorial construction for the extreme monomials of H using
mixed polyhedral decompositions of Q (Theorem 2.1).

Canny and Emiris [5] recently gave an efficient algorithm, based on a deter-
minantal formula, for computing the sparse mixed resultant. In Section 3 we
generalize the Canny-Emiris formula by showing that for each extreme monomial
m of R there exists a determinant as in [5], for which m appears as a factor of
the main diagonal product.

We say that a polytope P is a resultant polytope if P = N(R) for some
A0,. . . , An. In Section 4 we prove that all faces of resultant polytopes are
Minkowski sums of resultant polytopes. We express each initial form initw(R) of
the sparse mixed resultant as a product of resultants corresponding to subsets
of the Ai (Theorem 4.1). For each extreme monomial of H we determine the
exact coefficient, which is either -1 or +1 (Proposition 4.2).

In Section 5 we examine the relationship between the sparse mixed resultants
and the A-discriminant. We give a bijection between the coherent triangulations
of the auxiliary set A = Ui=0 Ai x {ei} and the tight coherent mixed decompositions
of A0, A1,. . ., An. Theorem 5.4 states that the secondary polytope S(A) is
strongly isomorphic to a certain fiber polytope, which, in the notation of [3], can
be expressed as

We show that the resultant polytope N(R) is a Minkowski summand of (2).
In Section 6 we explore combinatorial properties of resultant polytopes. We

characterize the edges of N(R.) in terms of mixed circuits, and we use this to
show that the resultant polytope has the same dimension as the fiber polytope
(2), namely dim(N(R)) = m-2n- 1. We characterize all resultant polytopes of
dimensions 2 and 3 (Corollary 6.3).

For readers familiar with the theory of A-discriminants [6], we summarize our
progress:

(a) Our theorems do not require the smoothness hypothesis on the toric variety
XA. This restrictive hypothesis makes it impossible to derive our results
directly from [6].



ON THE NEWTON POLYTOPE OF THE RESULTANT

(b) The new polyhedral interpretation of the extreme terms of the sparse mixed
resultant is in dimension n, while the polyhedral interpretation derived from
[6] is in dimension 2n. In the interesting cases n = 2, 3 this increases the
practical applicability a lot.

(c) Our proofs are elementary and constructive. Techniques such as intersection
cohomology sheaves, determinants of Cayley-Koszul complexes, etc. are
not needed.

(d) We give a combinatorial rule for the D-equivalence of coherent triangulation
[6, Remark 3D.21] in the special case of supports arising from the Cayley
trick (see (5.41)).

Let rank(J) denote the rank of Cj. A subcollection of supports {Ai}jeI is said
to be essential if

rank(I) = card(I) - 1 and rank(J) > card(J)
for each proper subset J of J.

The vector of coefficients ci,a of a system (1) defines a point in the product
of complex projective spaces pme-1 x ••• x Pmn-1. Let Z denote the subset of
those system (1) which have a solution x in (C*)n, and let Z be its closure in
pm0-l

 X . . .X P
mn-1.

LEMMA 1.1 [14]. The projective variety Z is irreducible and defined over Q.

Proof. Let W denote the incidence correspondence in (C*)n x(Pm 0 - 1 x . . . xPmn-1)
defined by the equations (1). It is defined over Q and has codimension n+1. Also,
since W is a vector bundle over the irreducible variety (C*)n, it is irreducible. Let
TT denote the projection onto the second factor. Then ir(W) = ~Z is irreducible
and defined over Q.

We now define the sparse mixed resultant. If codim(Z) = 1 then R is the
unique (up to sign) irreducible polynomial in Z[..., ci,a,...] which vanishes on
the hypersurface Z. If codim(Z) > 2 then n is defined to be the constant 1.
Using Bernstein's Theorem [1], the following result was derived in [14].

209

1. Preliminaries on the sparse mixed resultant

Let A0,. . . , An be subsets of Zn and Qi = conv(Ai) their convex hulls in Rn. For
any subset J c {0,..., n}, we consider the affine lattice generated by £j€j Aj,
that is,
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LEMMA 1.2. Suppose that {A0, A1,. . . An} is essential. For all i e {0, 1,. . . , n}
the degree of R in the ith group of variables {ci,a, a e Ai} is a positive integer, equal
to the mixed volume

We next determine the codimension of the variety Z of solvable systems (1).

THEOREM 1.1. The codimension of Z in Pm0-1 x • • • x Pmn-1 equals the maximum
of the numbers card(I)-rank(I), where I runs over all subsets of {0, 1,. . . , n}.

Proof. We first show that codim(Z) is bounded below by card(I)-rank(I), for
each I. Let W and ir be as in the proof of Lemma 1.1, and let r\ be a generic
point of Z. Then

and hence codim(~Z) = dim(ir-1 (n))) + 1. Therefore we need to show that

After relabeling we may assume J = {0, 1,. . . , c- 1} and rank(I) = r. By a
multiplicative change of coordinates Xi -> Hj=1 zf on (C*)n, our system (1)
transforms into

Now, fixing 77 amounts to fixing coefficients Ci,a such that (4) is solvable in (C*)n.
We need to determine the dimension of T1^(n), which is the solution variety of
(4). For any choice of (z1,. . ., zr) r (C*)r satisfying the first c equations, we are
left with n + 1 - c equations in n - r indeterminates z r+1,. . . , zn. This defines
a subvariety of p -1(r}), having dimension > (n - r) - (n + 1 - c) = c- r -1.
Therefore d im( ir - 1 (r j ) ) > c - r + 1.

To show the reverse inequality, we continue to assume that the maximum of
card(I)-rank(I) is attained for I = {0, 1,. . ., c - 1} and r = rank(I). After
relabeling if necessary, we can assume that rank({c — r, c — r + 1,. . . , K}) >
k - c + r + 1 for all k = c - r,. . . , n. This implies that rank(J) > card(J) for
each subset J of {c - r,. . . , n}. By Bernstein's theorem [1], the generic system
of equations fc_r = • • • = fn = 0 has a solution x in (C*)n. For each of the
remaining r - c equations f0 = • • • = f c _ r - 1 = 0 we can arbitrarily select all
but one of the coefficients, while maintaining x as a common root of all n + 1
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equations. This shows that all but c - r of the coefficients ci,a in (1) can be
chosen arbitrarily, while maintaining solvability. Hence codim(Z) <c-r.

Here is a combinatorial criterion for the existence of a nontrivial resultant.
Note that if each Qi is n-dimensional then the criterion in Corollary 1.1 holds
for I= {0,1, . .., n}.

COROLLARY 1.1. The variety ~Z has codimension 1 if and only if there exists a
unique subset {Ai}ieI which is essential. In this case the sparse mixed resultant R
coincides with the resultant of the equations {fi: i e I}, considered with respect to
the lattice £I.

Example 1.1. For the linear system

the variety Z has codimension 1 in P1 x P1 x P2. The unique essential subset
consists of the first two equations. Hence the sparse mixed resultant of (5) is
not the 3 x 3-determinant (which would be reducible), but it equals its cofactor

This phenomenon has nothing to do with the equations (5) being linear. For
instance, let f(x, y) be any polynomial with at least three terms, and consider
the nonlinear system:

Then the sparse mixed resultant of (7) is also equal to (6).

Proof of Corollary 1.1. If codim(Z) = 1 then, by Theorem 1.1, there exists an
index set I with card(I) = rank(I) + 1, for instance I = {0, 1,. . . , n}. Choose I
to be minimal with respect to inclusion. Then I is essential. Tb show uniqueness,
suppose that I and J are distinct essential index sets. Then I n J is a proper
subset of J, hence

which means that codim(Z) > 2, by Theorem 1.1
This argument is reversible: if there is a unique minimal essential index set J,

then / attains the maximum in Theorem 1.1 and we have codim(Z) = 1.
Let RI denote the resultant of the equations {fi: i e I}, which we consider

with respect to the lattice £i. By Lemma 1.2, fi is a nonconstant polynomial,
which involves coefficients from each of the card(I) groups of variables. It
is irreducible and vanishes on ~Z, so it defines the irreducible hypersurface Z.
Hence R = ±RI.
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Many of the statements in this paper require the hypothesis that the family
of supports {A0, . . ., An} is essential. Corollary 1.1 guarantees that this is no
loss in generality. The following simple class of resultants will become important
later on.

PROPOSITION 1.1. Suppose that Ai = {ai1, ai2}cMn for i = 0, . . . , n, and rank
(Ei=0Ai) = n.

(i) There is unique (up to sign) primitive vector A = (A0, A1 . . ., An) in Zn+1

satisfying

(ii) The sparse mixed resultant equals

Proof. The map Zn+1 -> Zn, U -> Eiui(ai1 - ai2) is onto a sublattice of rank n.
In part (i) we take A to be a generator of the kernel, which is a rank 1 lattice.
If the system

has a solution x e (C*)n, then

which means the polynomial in (8) vanishes. Since A is primitive, it is irreducible.
To show that_it coincides with the sparse mixed resultant R, it suffices to show
that codim(Z) = 1. But this follows easily from Theorem 1.1, in view of
ranfc(E"-o Ai) = n.

In the situation of Proposition 1.1, the unique essential index set equals
I = {i: AJ ̂  0}, the support of A.

2. The extreme monomials

Each monomial H CM m the coefficients of our system (1) is identified with a
nonnegative integer vector (..., v i , a , • • • ) in Rm. Let w by any linear functional on
Rm. We represent u by a collection of functions wi: Ai -» R, i = 0, 1,..., n. The
value of the linear functional w at the point (..., vi,a, ...) equals ^w,-(a) .vi,a.
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This number is the weight of the monomial f] <%'» with respect to u>. The initial
form initu(R.) is the sum of all terms of maximum weight in the sparse mixed
resultant U.

We consider the lifted polytopes

The upper envelope of Qi,w defines a coherent polyhedral subdivision Ai,w of Qi

with vertices in Ai, for each i = 0, 1, ..., n. The cells of Ai,U are the projections
of precisely those faces of Qj,u on which a linear functional with negative last
coordinate is minimized (see [3, 6, 12] for details).

Similarly, we get a coherent polyhedral subdivision AU of the Minkowski sum
Q = Q0 + Q1 + • • • + Qn by taking the upper envelope of Q0,U + Q1,w +. . .+ Qn,w.
Any such subdivision of Q is called a coherent mixed decomposition, or CMD, for
short. Each facet (= cell of codimension 1) in Au is of the form

where Ft is a cell in Ai<u. We have

If the linear functional u is sufficiently generic, then equality holds in (11) for
all facets F of 4., (cf. [2]). In this case the CMD Au is called a tight mixed
coherent decomposition, or TCMD, for short. A facet F of a TCMD Au is said
to be mixed of type i if dim(Fi) = 0, and dim(Fj) = 1 for all j= i. In this case
the face Ft is just a point in Ai, say Fi = {a}, and we write ciFI :=Cj,a for the
corresponding coefficient.

Our first main theorem describes a natural surjection from the set of TCMDs of
Q onto the set of extreme monomials of the sparse mixed resultant R.. The exact
coefficient of each extreme monomial will be determined later (Corollaries 3.1
and Proposition 4.2)

THEOREM 2.1. Suppose that {A0,. . ., An} is essential. Then the initial form of the
sparse mixed resultant ft with respect to a generic w equals the monomial

where vol (•) denotes ordinary Euclidean volume, and the second product is over all
mixed facets of type i of the TCMDAW.

Proof. Let t denote a new variable. The resultant of the deformed system
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equals K' = K(..., C i ,at~Ul^, ...). If we expand R' as a Laurent polynomial in
t then the coefficient of the lowest term equals initu(Tt). We will show that this
lowest coefficient equals p • Yip C0,f0 , where p is a rational function in the Cj,a

for i > 1. By symmetry, this implies that initu(Ti) equals the right-hand side of
(12), as desired.

The product formula for the sparse mixed resultant [14, Theorem 1.1] states that

where p is a certain rational function in {ci,a:i = 1, ..., n}, and j(t) runs over
all roots of f1 = ••• = f' = 0 in (C(tf)n. By Bernstein's Theorem [1], the
number of roots 7(4) equals the mixed volume M(Q 1 , . . . , Qn ).

We view each root 7(t) of f1 = ••• = f'n = 0 as an algebraic function C* —> (C*)n

in t, and we consider the Puiseux series of this algebraic curve for t close to
the origin:

Here A = (A1, . . ., An) runs over a finite subset of Qn which is to be determined.
We substitute (15) in to the equation (13) for i = 1, ..., n:

Here 7 = (71, ..., 7n). Consider the face of Qi,u on which the linear functional
(A, -1) = (A1, ..., An, -1) attains its minimum, and let Ft denote its projection
into Qi c Rn, for i = 0, 1, ..., n. The Minkowski sum F = F0 + F1 + • • • + Fn

is a face (possibly of lower dimension) of the TCMD Au. Equating the lowest
degree coefficient in (16) to zero, we get the identity

In order for A to contribute a branch (15), it is necessary that (17) has a solution
7 in (C*)n. This implies dim(Fj) > 1 for i = 1, ..., n. Since w is generic, we
have equality in (11), and F is a mixed facet of type 0 of Au. In other words,
dim(Fi) = 1 for i = 1, ..., n, and dim(F0) = 0, say F0 = {a}.

We now consider the factor of (14) indexed by our specific branch j(t) =
7 • tx + . . . This factor equals (16) for i = 0. Its lowest coefficient with respect
to t is c0i;7* = c0,f07'Fo. The product of the expressions CO:FO^FO over all roots 7

of (17) equals c™^ times a rational function p in {ci<a:i > 1}. Here we are
using the fact that
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Figure 1. The Newton polytopes of the system (19).

To get the lowest t-coefficient of R' in (14) we now take the product over the
expressions c^F), where F runs over all type 0 mixed faces F = F0 + F1+. . . + Fn

of Aa. This completes the proof of Theorem 2.1. a

Remark 2.1. The analysis is steps (15) to (18) of the above proof is used in [10]
to give a numerical homotopy algorithm for solving semimixed sparse systems.

We illustrate Theorem 2.1 and our results in the later sections for an easy
example of a sparse bivariate system.

Example 2.1. Let A0 = {(0, 0), (2, 2), (1, 3)}, .4, = {(0, 0), (2, 0), (1, 2)}, and
A2 = {(3, 0), (1, 1)}, and consider the system (Figure 1)

Here the sparse mixed resultant equals

Note that the degree in each group of variables agrees with the mixed volumes:



Figure 2. The Newton polytope N(K).

Figure 3. A tight coherent mixed decomposition (TCMD).

The extreme terms of the resultant are precisely the six underlined monomials.
The Newton polytope of "R is a 3-dimensional polytope, which looks like Figure 2
(cf. [9, Figure 1]).

The vertices of M(Ti) are in one-to-many correspondence with the TCMD's
Au of the octagon Q = Q0 + Q1 + Q2. For instance, for w =(1, 0, 0; 7, 13, 0; 0,
0) we get the initial monomial initu(R) = a1a3b2c1c2 and the TCMD shown in
Figure 3.

216 STURMFELS



ON THE NEWTON POLYTOPE OF THE RESULTANT 217

The initial systems (17) corresponding to the five mixed facets in Figure 3 are

3. Determinantal formulas of Canny-Emiris type

In [10] a restricted class of coarse mixed decompositions of the Minkowski sum
Q = Q0 + Q1 + • • • + Qn was introduced, and it was applied to give a numerical
algorithm for finding all roots of a system of polynomial equations. We say that
a CMD Aw is coarse if its defining linear functional w satisfies following system
of linear constraints: (*) For each i, wi: Ai —> R is the restriction of an affine-linear
function on Rn. If a; is generic relative to these constraints, then we call Au a
coarse TCMD.

Canny and Emiris [5] applied these coarse decompositions to give an efficient
algorithm for computing the sparse mixed resultant. More precisely, for each
coarse TCMD Aw they constructed a square matrix Mu of size roughly card(Qn
Zn) and having entries ci,a and 0, whose determinant is a nonzero multiple of
K. A key point of their construction is that the extreme term initu(R) appears
on the main diagonal of the matrix Mu.

In what follows we generalize this construction by removing the hypothesis (*).
In the light of Theorem 2.1, our new result can be stated as follows: for every
extreme term of the sparse mixed resultant there exists a determinantal formula of
Canny-Emiris type.

Let w be any linear functional on Rm such that Au is a TCMD of Q. Proceeding
as in [5, §2], we fix a generic vector 6 e Qn and we set £:= Zn n (6 + Q). The
row content of an element p € £ is a pair [i, a], which is defined as follows: Let
F = F0 + F1 + • • • + Fn be the unique facet of Au which contains p - 6 in its
interior, let i be the largest index such that dim(Fi) = 0, and let Fi = {a}. Note
that if F is a mixed face, then i is its type.
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We define a square matrix Mu,D with both rows and columns indexed by £ as
follows: The entry indexed (p, p') equals the coefficient of xp in the expansion
of the polynomial xp-a • fi(x), where [i, a] is the row content of p. The following
theorem is a direct generalization of the main result in [5, §3].

THEOREM 3.1. The determinant of Mu,d equals the sparse mixed resultant R times
a nonzero polynomial Pu,D in the variables ci,a for i >1.

Proof. If the system (1) has a root x in (C*)n, then the matrix Mu,d has the
nonzero vector (xp: p e £) in its kernel. Here we are using the fact that each
monomial appearing in xp-a . fi(x) does lie in £. Therefore the zero set of
det(Mu,t) in the space of coefficients cjia contains the zero set of Ti. Since the
sparse mixed resultant R is irreducible (Lemma 1.1), we conclude that R divides
det(Mu,S ).

We next show that det(Mu,d(c i ,a)) is not the zero polynomial. To this end
we replace (1) by the deformed system (13) and consider the deformed matrix
M^te.a*"""00)- F°r each p € £, we multiply the row indexed p by th(p)-wi(a),
where h(p) is defined to be the smallest rational number such that (p —d, h(p)) €
Q0,w + Qn,u + • • • + Qn,u. Call the resulting matrix M'(t). Its entry indexed
(p, p') e £ x £ equals

and 0 otherwise. Here [i, a] is the row content of p.
By a convexity argument as in [5, Lemma 3.4] we see that, for p' ^ p,

Hence among the nonzero entries in each column the unique lowest power in t
occurs on the main diagonal. The product over all main diagonal terms is the
lowest term of the determinant:

This proves that det(M'(1)) = det(Mu,f) is not the zero polynomial in Ci,a.
It remains to be shown that the polynomial Pw,d = det(Mu ,d(c i , a))/R- contains

none of the variables C0,a. Both the denominator and the numerator are
homogeneous with respect to each group of variables {ci,a:a € Ai}, and hence
so is their quotient. It therefore suffices to consider the initial monomial. By
Theorem 2.1 and (21), we have

where the product is over those p e £ such that the facet F = F0 + F1 + • • • + Fn

of Aw which contains p - 6 is not mixed. In each such case there are at least two
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indices i' < i satisfying dim(Fy) = dim(Fi ) = 0, and therefore the row content
[i, a] of p satisfies i > 1. This completes the proof.

Since det(Mw,d) has integer coefficients and its factor R is irreducible over
Z, we can apply Gauss' lemma to conclude that their quotient Pu,D has integer
coefficients. The formula (21) implies the following result of Gelfand, Kapranov,
and Zelevinsky.

COROLLARY 3.1. (cf. [6, Theorem 3A.2.b]) All extreme monomials of the sparse
mixed resultant have coefficient -1 or +1.

A classical formula for the resultant of n + 1 forms in n + 1 variables is due to
Macaulay [13]. It can be shown that Macaulay's matrix is a special case of the
above matrix Mu,D, for suitable choice of 6 and w. What is remarkable about
Macaulay's paper is that he succeeds in giving an explicit irreducible factorization
of the extraneous factor Pu,D in terms of smaller determinants of the same type
as Mu,D.

It is an important open problem to find a more explicit formula for Pu,S in
the general sparse case. Does there exist such a formula in terms of some
smaller resultants?

This problem is closely related to the following empirical observation. For
suitable choice of 6 and e, the matrix Mi,f seems to have a block structure
which allows to extract the resultant from a proper submatrix. This leads to
faster algorithms for computing the sparse mixed resultant. J. Canny (personal
communication) has reported some progress in this direction. We illustrate this
phenomenon for our bivariate example.

Example 2.1 (continued). Let w as before and 6 - (0, 1/3). Then the set £
contains 23 elements. Nineteen of these lie in the mixed cells of Aw + 6. The
four remaining points are (2, 5), (2, 6), (1, 3), (1, 4). If we order the set £ such
that these four extraneous points come first, then our matrix has the structure

where I4, denotes the 4 x 4-unit matrix and 0 denotes the 19 x 4-zero matrix.
Here the extraneous factor equals simply Pw,e = c2, and the resultant R can be
computed exactly as the determinant of the 19 x 19-matrix N.

4. The initial forms

In this section we describe all initial forms of the sparse mixed resultant, that is,
we consider the more general case when w need not be generic. Our main result,
Theorem 4.1, is a direct generalization of Theorem 2.1. We first need to recall
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some fine print of polytope theory. A polyhedral subdivision (such as a mixed
decomposition, or a triangulation) is always a collection of labeled subsets of the
given labeled multiset of points [3, 12]. Thus each facet F = F0 + F1 + • • • + Fn

of a CMD Au is equipped with additional combinatorial data, consisting in
a sequence of subsets (A0 , A1, ..., An), where Ai C Ai and Ff = conv(A').
Obviously, different subsets A' might have the same convex hull, so one has to
be cautious.

Keeping this in mind, we now return to the usual (more sloppy) notation. For
any facet F = F0 + • • • + Fn of a CMD Au, where F< = conv(A'), we define
the restrictions:

With F we associate an integer dp as follows. If {A': i = 0, 1, ..., n} has the
unique essential subset {A'}ieI, then

Otherwise dp :=0. In this formula Me, is defined as follows. Let £I denote the
affine lattice spanned by £,eI Ft n Ai, and consider the induced volume form
on its real span, that is, an elementary simplex with vertices in £I has volume
1. Then Me, denotes the mixed volume associated with the normalized volume
on £I.

By Corollary 1.1, dF equals the unique integer such that R(f0|F0, f1|F1, • • • ,
/nk)*' has total degree E",0M(FQ Fl-1, Fl+1, . . . , Fn ).

THEOREM 4.1. Let {A 0 , . . . , An} be essential, and let u be any linear functional on
Rm. The initial form of the sparse mixed resultant equals

where F runs over all facets of Au.

Each factor on the right-hand side of (24) is a sparse mixed resultant with
respect to a different choice of supports, which are proper subsets of A0, . .., An

respectively. At this point we recall that the sparse mixed resultant equals the
constant 1 if the corresponding variety ~Z of solvable systems has codimension >
2 in the coefficient space.

Let us illustrate the formula (24) in the case when w is generic:

Alternative proof of Theorem 2.1, using Theorem 4.1. Since u is generic, we have
equality in (11) for each facet F of Au. Let F be any facet which is not mixed.
There are at least two indices i' < i' such that dim(Fi) = dim(Fi) = 0. The
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Figure 4. CMD corresponding to a facet of the Newton polytope N(R).

corresponding equations (23) are simply monomials cjjxfi and c^x^', which have
no zeros in the torus (C*)n, unless CFi = cfi' = 0. This amounts to a condition
of codimension > 2. The corresponding factor on the right-hand side of (24) is
simply 1. Hence the nonmixed facets do not contribute anything to the product
in (24).

Now, let F be a mixed facet, say of type 0. Then (24) equals the system
(17) augmented by the monomial equation CFO\CF° = 0. The resultant of that
system equals the irreducible polynomial cfo, and the index dF coincides with the
determinant in (18). Thus each mixed facet of type 0 contributes c£°'*F) to the
right-hand product in (23).

Before proving Theorem 4.1 let us first return to our example.

Example 2.1 (continued). To illustrate our formula (24), we consider the specific
vector u = (69, 0, 0; 11,-12, 0; 0, 0). This vector supports a facet of the 3-
dimensional polytope N(R). The corresponding CMD Au looks like Figure 4.

Each of the five facets supports an initial system (24):

The systems (1) and (2) each have the resultant 1, while the systems (3), (4),
and (5) each contribute a nontrivial factor to the product
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The multiplicities 2, 2, and 1 can be read off as lattice indices from Figure 4.
Note that the monomial a1a3b2c1c2 in Figure 3 appears as an extreme monomial
in (25).

Proof of Theorem 4.1. We first consider the following special case:

In other words, we assume that the system (1) is unmixed and all lifting functions
are equal. In this case the sparse mixed resultant is called the A-resultant and
denoted RA.

By the results of [11] (see also [15]), the .A-resultant coincides with the Chow
form of the projective toric variety XA C Pn, and the initial form inita(A)
coincides with the Chow form of the algebraic cycle inil^X^). This cycle has
the irreducible decomposition

where the sum is over all facets F of the coherent polyhedral subdivision AO
of A. By the multiplicativity of Chow forms, the initial term of the .A-resultant
factors as

where F runs over all facets of An. A proof of (28) via the Cayley-Koszul
complex will appear in [7].

We observe that the CMD Aw of Q is simply n + 1 times the subdivision Ax
of 1Q = conv(A). Each facet of the former equals F = (n + 1) • F for some
facet F of the latter. It is easy to check that dF = [Zn : An F], the index of the
affine lattice generated by An F in Zn. This proves the formula (24) under the
assumption (26).

In the second part of our proof of Theorem 4.1 we reduce the general case
to (26), using the factorization technique in [14, §7], We form n + 1 duplicates
of each given form using new indeterminate coefficients, and we multiply these
together as follows:



where

Note that (32) is well defined because A is considered as a multiset.
The coherent polyhedral subdivision of (Q, A) defined by 53 equals the CMD

defined by w — (u0, ... , wn). As before, each facet F of Au = AS has the form
F = F0 + F1 +. . . + Fn, where Fi is a subpolytope of Qi. From our above special
case (28) we derive

Applying the product formula (31) to the factors on the right-hand side of (33)
we get

We now pass to w-initial terms in (31), and we collect all diagonal factors, using
(33) and (35). The result is the desired formula

We now consider the given linear functional w = (W0, W1, . . ., wn), and we
replace each polynomial f i j(x) by the corresponding deformation fij(x, t) defined
by Uj as in (13). Then the deformation of the product u' = fi0fi1 • • • fin is given
similarly by the lifting

Here we consider A as a multiset, having cardinality m0m1 • • • mn.
According to [14, Proposition 7.1], the sparse mixed resultant of (29) factors

into expressions R(f0,T(0), • • •, fn,s(n))°°, where o- runs over all functions a :
{0, 1, ..., n} —> {0, 1,..., n}. Here the diagonal term appears with exponent
Dia = 1:

Each polynomial fij, 0 < i < n, appearing in the jth column has the support Aj.
Therefore each row product Ui has the same support
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To see that the identification of the diagonal factors is unique, we use a
degree count and induction on the cardinality of the occurring multisubsets
{Ar(0), . .. , Aa(n)}. This completes the proof of Theorem 4.1.

COROLLARY 4.1. Each face of a resultant pofytope is a Minkowski sum of resul-
tant polytopes.

Proof. This follows immediately from (24) since the Newton polytope of initu(R,)
equals the face of N(R) supported by w.

Each resultant obtained by restriction of supports appears on a suitable face
of N(R).

COROLLARY 4.2. Let A0 c A0, • • •, An C An, having resultants R' and R, and let
u : UiAi -> {0, 1} be the indicator function 0/U,v4;. Then n' is a factor of initu(R).

Proof. Consider the CMD Au defined by the 0-1-vector u. Let Fi := conv(A'i)
for i = 0, 1, . . . , n. It is easy to see that F = F0 + F1 + • • • + Fn appears as a
cell in Au. If R' is not a constant, then (by Theorem 1.1) the cell F is a facet
of Au, and dF is a positive integer. By Theorem 4.1, the restricted resultant
R' = R ( f 0 \ F 0 , f1 |f1, . . ., fn\pn) appears as a factor in the initial form initu(R).

In the remainder of this section we study the initial forms initu(R), which are
supported on the edges of the resultant polytope N(R). To this end we first
characterize one-dimensional resultant polytopes, in analogy to the approach in
[11, §2.C].

PROPOSITION 4.1. Let {A0, Ai, • • •, An } be an essential family of subsets of Zn.
The resultant pofytope N(R) has dimension 1 if and only if card(A0) = • • • =
card(An) = 2.

Proof. The if direction was proved in Proposition 1.1. For the only-if-direction,
we assume that N(R) has dimension 1. By Theorem 1.1, each of the sets Ai has
cardinality at least 2. Suppose that one of them, say A0, as cardinality > 3. Then
we can select a proper subset A0 of A0 such that the family {A0, A1, ..., An}
is still essential. Let R' be the corresponding resultant. By Corollary 1.1,
K' is a nonconstant irreducible polynomial in more than one variable, hence
dim(N(R))) > 1. Corollary 4.2 implies that the polytope M(R') is a Minkowski
summand of a proper face of N(R). Therefore dim(N(R)) > dim(N(R')),
which contradicts our hypothesis dim(N(R)) = 1.

Let E be any edge of the resultant polytope N(R). Let v1 and v2 be the two
vertices connected by E, with corresponding extreme monomials initU1(R) and
initw2(R). Let 6(E) denote the ratio of the coefficient of initW1(R) in R and the
coefficient of initw2(R) in (R). By Corollary 3.1 we know that 6(E) e {-1, +1}.
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It is our objective to give a combinatorial formula for 6(E), the parity of the
edge E. Since the 1-skeleton (edge graph) of N(R-) is connected, this will
imply a combinatorial formula for the exact extreme monomials of the sparse
mixed resultant.

Fix a support vector u> for the edge E, for instance

and consider the CMD Aa is corresponding to the edge E. We say that a facet
F = F0 + F1 + • • • + Fn of Au is nontrivial of dtm(fi) > 1 for i = 0, 1, ..., n.

PROPOSITION 4.2. The parity of an edge E of the resultant polytope N(R) equals

where the sum is over all nontrivial facets of Au.

This formula was proved in [6, Theorem 3A.11] for the principal A-determinant.
The resultant version, Proposition 4.2, can easily be derived from that theorem
of Gelfand, Kapranov, and Zelevinsky. In what follows we give an alternative,
self-contained proof.

Proof. The initial form initu(R) has a unique irreducible factor R' which is
not a monomial. This factor is the resultant of an essential family {A(}i^i with
J C {0, 1, ..., n} and A' Ai for all i € I. By Proposition 4.1, each of the sets
A' has cardinality 2, and the resultant R' equals (8) with I = {i: AI ^ 0}. To
see that R' must be unique, it suffices to note that two irreducible polynomials
of the form (8) cannot have parallel Newton segments unless they are identical.

Each nontrivial facet F of Au contributes a factor of (R')dF to the product
(24). All other factors are monomials, hence initu(R) equals HF(R')DF times
a monomial.

The ratio of the coefficients of the two monomials of R'equals (-1)1+EI|Ai|.
The expression (R')dr is a polynomial of degree df.Ei=1 |L i |=vol(F). Therefore
the ratio of coefficients of the two extreme monomials of K'dr equals

We now take the product over all nontrivial facets F to get the ratio of the
coefficients of the two extreme monomials in initw(R').

5. The Cayley trick, fiber polytopes, and R-equivalence

We recall the definition of the A-discriminant due to Gelfand, Kapranov, and
Zelevinsky [6, 7, 9]. Fix a set A C ZN of cardinality m. For any choice of
complex coefficients c,, a e A, the Laurent polynomial
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defines a hypersurface {f = 0} in the torus (C*)N. Consider the set Z c Pm-1

of all coefficient vectors (ca) for which {f = 0} fails to be smooth. In other
words, Z is the set of all (ca) for which the system of equations

has a solution z in (C*)n. In analogy to Lemma 1.1, the closure Z is an irreducible
subvariety of Pm-1 defined over the rationals. But in contrast to Theorem 1.1,
there is no easy combinatorial rule for its codimension. The A-discriminant AA

is the unique (up to sign) irreducible polynomial in Z[ca, a € A] which vanishes
on Z, provided codim(Z) = 1, and Aa := 1 otherwise.

It seems as if the .A-discriminant can be computed by means of a sparse
mixed resultant. Fix A0 := A, and Ai := A\{0} - ei for i = 1, ..., N, and let
R be the corresponding resultant. Substitute the coefficients of (39) into R.
The resulting polynomial in Z[ca, a e A] is denoted £4 and called the principal
A-determinant. For the experts we note that this definition of £4 is equivalent
to the one given in [6] by [11, Theorem 5.10]. The following observation is an
immediate consequence of the definitions.

Observation 5.1. The .A-discriminant AA divides the principal A.-determinant £A.

Unfortunately, the .A-discriminant is almost always a proper factor of the
principal A-determinant, usually of much smaller degree. Under a certain
smoothness hypothesis it is possible to explicitly express the quotient EA/AA as a
product of other A-discriminants supported on the faces of P = conv(A). This
reduces the computation of A-discriminants to the computation of resultants.

However, one can also express the sparse mixed resultant as a suitable A-
discriminant. The following construction is sometimes called the Cayley trick of
elimination theory.

Let f0(x), ..., fn(x) be polynomials in (1), having supports A0, ..., An C Zn,
and let R denote their resultant. We introduce n+1 new variables y = (y0, . . . , yn)
and we form the auxiliary polynomial

Its support is the 2n-dimensional set

We identify z = (x, y), N = 2n + 1, m = m0 + • • • + mn, and we consider the AA.
discriminant AA. Both AA and the principal A-determinant £A are polynomials
in Z[. . . ,C i , a , ....].
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LEMMA 5.1 [6, Proposition 1.3.1]. The sparse mixed resultant R equals the AA.
discriminant AA.

Our first theorem in this section is a purely combinatorial result about secondary
polytopes and fiber polytopes (cf. [3, 6]). It might be of interest independently
from its algebraic motivation. Let Am-1 denote the regular (m - 1)-simplex,
consisting of all nonnegative vectors (Ai,a) with coordinate sum 1. Consider the
canonical projection

The secondary polytope of A equals the fiber polytope

Gelfand, Kapranov, and Zelevinsky have shown that the polytope S(A) coincides
with the Newton polytope of the principal A-determinant £4 [6, §3A; 7; 11,
Theorem 5.1]. The faces of H(A) are in natural bijection with the coherent
polyhedral subdivisions of (P, A). The vertices of S(A) correspond to the
coherent triangulations of A

Maintaining the notation from the previous sections, we set Qi: = conv(Ai) and
Q = Q0 + ... + Qn. Let A denote the product of simplices Am0-1 x • • • x Amn-1.
Its points are the nonnegative vectors (Aj,a) satisfying EaeAi Li,a

 = 1 for each
i = 0, 1,..., n (separately). Consider the canonical projections of polytopes

and

The composition a := a1 0 a2 maps A onto Q in a canonical fashion. Each of
the three maps a, a1, a2 defines a class of coherent polyhedral subdivision. The
following lemma relates these to the polyhedral subdivisions introduced earlier.
Part (b) concerns coarse decompositions as defined in (*) at the beginning of
Section 3. The proof of Lemma 5.2 is straightforward using the methods in [3].

LEMMA 5.2
(a) The a-coherent subdivisions of Q are the coherent mixed decompositions (CMDs).
(b) The s1-coherent subdivisions of Q are the coarse CMDs.

Part (a) shows that the face lattice of the fiber polytope E(A, Q) is isomorphic
to the poset of ail CMDs, ordered by refinement. Under this isomorphism the
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vertices of E(A, Q) correspond to the TCMDs of Q. The subposet of coarse
CMDs is isomorphic to the poset of the face lattice of E(Q0 x • • • x Qn, Q). The
inclusion of posets is realized geometrically by the fact that S(Q0 x • • • x Qn, Q)
equals the projection of £(A, Q) under a2 (cf. [3, Lemma 2.3]).

We now come to the first main theorem in this section. Two polytopes are
called strongly isomorphic if they lie in the same affine space and they have the
same normal fan. (In [3] we used the term normally equivalent). This implies
that they have the same face lattice, but it is stronger.

THEOREM 5.1. The fiber polytope £(A, Q) is strongly isomorphic to the secondary
polytope S(A).

Theorem 5.1 implies that the poset of CMDs is isomorphic to the poset of
coherent subdivisions (A, P). In particular, the TCMDs are in natural bijection
with the coherent triangulations of (A, P).

First note that the strong isomorphism in Theorem 5.1 has the potential
to make sense because both polytopes lie in the same ambient affine space:
S(A, Q)cAcRm and £(A) c Am-1 c Rm. Note also the both polytopes have
the same dimension:

Proof of Theorem 5.1. Fix an arbitrary vector A = (A0, A1, . . ., An) in the interior
of the unit simplex An. Let Dmi-1 denote the regular (mi — l)-simplex consisting
of nonnegative vectors with coordinate sum Ai. We get the canonical projection

which is isomorphic to the projection a defined above. In particular, the fiber
polytope of (44) is strongly isomorphic of E(A, Q).

Consider the following commutative diagram of polytopes:

The horizontal maps are the obvious inclusions and surjections, while the vertical
maps are sA, s and the identity. The secondary polytope A(A) is computed
by integrating the fibers of the middle vertical map p. This integral can be
decomposed into integrating the fibers of the left and the right vertical map
in (45):
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Each of the equations in (46) is a strong isomorphism.

The isomorphism in Theorem 5.1 defines a bijection between the coherent
triangulations of A and the TCMDs of Q. The combinatorial rule for this
bijection is as follows. A triangulation T of (A, P) is a collection of (2n + 1)-
element subsets a of A. Under the natural identification of A with the disjoint
union of A0,. . . . An, each cell a of T is given as the disjoint union of its subsets
si := snAi for i = 0, 1, . . . , n. Here each ai is nonempty, because otherwise a
would not span a 2n-dimensional affine space. The corresponding TCMD T' of
Q has the maximal cells F = F0 + F1 + • • • + Fn, where Fi = conv(ai).

Theorem 2.1 gave a one-to-many correspondence between the extreme mono-
mials of R and the TCMD's of Q. This correspondence has the following
geometric refinement.

COROLLARY 5.1. The resultant pofytope N(R) is a summand of the fiber pofytope
E(A, Q).

Two proofs. Corollary 5.1 is a direct consequence of Observation 5.1, Lemma
5.1, Theorem 5.1 and [6, Theorem 2E.1].

An alternative, self-contained proof goes as follows. We need to show that
the normal fan of E(A, Q) refines the normal fan of N(R). Let w and w' be
linear functional on Rm which define the same vertex of E(A, Q), i.e., they lie
in the same open cone of the normal fan of Z(A, Q). By Lemma 5.2 (a), they
define the same TCMD Aw = Aw'. By Theorem 2.1, they define the same initial
monomial of the sparse mixed resultant: initu(R) - initW'(R). Hence w and w'
lie in the same open cone of the normal fan of N (R) .

Two vertices of the fiber polytope £(A, Q), or two TCMDs of Q, are said to be
R-equivalent if they correspond to the same extreme monomial of the sparse mixed
resultant K. For sets A arising from the Cayley trick, this notion of R-equivalence
is exactly the notion of D-equivalence introduced by Gelfand, Kapranov, and
Zelevinsky. In what follows we give a combinatorial characterization of R-
equivalence, thus providing a partial answer to a question raised in [6, Remark
3D.21].

Corollary 5.1 implies that any two R-equivalent vertices of £(A, Q) are con-
nected by a sequence of edges. Therefore we need to identify those edges of
S(A, Q) whose endpoints are R-equivalent. For this task we utilize the known
general construction of the edges of any fiber polytope. A face F of A is called
critical if dim(n(F)) = dim(F) - 1 and dim(n(G)) = dim(G) for each proper
face GcF.

LEMMA 5.3
(a) Each edge of the fiber pofytope S(A, Q) is parallel to a fiber segment S(F, r(F)),

for some critical face F of A.
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(b) For each critical face F of A, there exists an edge of S(A, Q) which is parallel
to E(F, r(F)).

For fiber polytopes in general, the critical face F in part (a) of Lemma 5.3
need not be unique. However, we claim that in our situation it must be unique.
First note that each face of the product of simplices A = Am0 x • • • x Amn is itself
a product of simplices F = Al0 x Ali x • • • x Aln. We call (l0, l1, . . . , ln) the type
of F. Hence each face F of A is gotten as an intersection F = A n L, where
L is a coordinate subspace L in Rm. Given the fiber polytope S(F, 7r(F)), we
can recover L (and hence F): it is the smallest coordinate subspace containing
£(F, TT(F)). Now, if A had two critical faces F1 and F2 for which the fiber
segments E(F1, t(F1}) and S(F2, r(F2)) were parallel, then the corresponding
subspaces L1 and L2 would coincide, and hence F1 = F2. We conclude that each
edge of S(A, Q) equals a translate of £(F, r(F)) for a unique critical face F
of A.

Note that the type of a critical face F satisfies l0 + l1 + • • • + ln < n + 1. We
say that F is an affine cube if 0 < l0, l1, . . ., ln < 1.

THEOREM 5.2. The two endpoints of an edge of S(A, Q) are R-equivalent if and
only if the corresponding critical face F is not an affine cube.

Proof. Let u be a linear functional on Rm which supports the given edge of
S(A, Q). We need to show that initu(R) is a not a monomial if and only if
the critical face F is an affine cube. The image of F under TT apears as one
of the faces in the CMD Au. We will identify the critical face F and its image
in Au, say F = F0 + F1 + • • • + Fn. All other factors in (24) are supported on
faces with equality in (11), so they must be monomials. It suffices to consider
the specific factor R ( f 0 | F 0 , f 1 p 1 , • • •, Fn|Fn) which is supported on the critical face
F. By Proposition 4.1, its Newton polytope has dimension > 1 if and only if
dim(F0), dim(F1), ..., dim(Fn ) > 1. Therefore R ( f 0 | F 0 , f1|F1, ..., fn|Fn) is not
a monomial if and only if the critical face F = F0 x F1 x • • • x Fn of A is an
affine cube.

Two TCMDs of Q which are connected by an edge on the fiber polytope
E(A, Q) are said to be related by a flip. If the corresponding critical face F is
an affine cube, then we call it a cubical flip, otherwise it is a noncubicalflip. Thus
a cubical flip consists of replacing the "bottom" by the "top" in a codimension
1 projection of a regular cube (cf. [3, Section 4]).

Except for degenerate cases, there are exactly three types of flips in the plane.
The flip of type (1, 1, 1) is cubical, while the flip of type (2, 1, 0) and (3, 0, 0)
are not cubical. They are "prismatical" and "tetrahedrical."

The following characterization of R-equivalence is the most intuitive.

STURMFELS



The polytope P = conv(A) is 4-dimensional and has 11 facets, 26 2-faces, 23
edges, and 8 vertices. It is not simple. For each vertex of P we list the number
of adjacent vertices:

Example 2.1 (continued). The configuration A e Z5 consists of the eight points

COROLLARY 5.2. Two TCMDs are R-equivalent if and only if they are connected by
a sequence of noncubical flips.

As an illustration consider our (continued) Example 2.1. Corollary 5.2 implies
that the TCMD in Figure 3 is obtained from the CMD is Figure 4 by a refinement
followed by a sequence of noncubical flips (Figure 5).

Remark 5.1. It is an instructive exercise to verify the results in this section
for the case n = 1. Here R is a Sylvester resultant, P = conv(A) is a planar
trapezoid, and Q = Q0 + Q1 is a line segment. A completely explicit description
of the Newton polytope N(R) was given in [9]. There are two types of flips: the
cubical flip (1, 1) corresponds to a four-element circuit of A, while the noncubical
flip (2, 0) corresponds to a three-element circuit of A. Performing a noncubical
flip on a TCMD of Q means decomposing a triangle of the corresponding
triangulation of A into two smaller triangles, or vice versa.

Figure 5. One cubical flip and two noncubical flips in the plane.
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Proof of Theorem 6.1. We will show that the space V is the translate of the affine
span of N(R). Since {A0, A1, . . ., An} is essential, we have dim(£ieIBi ) > \I\
for each proper subset I of {0, 1,..., n}. We can select vectors b(i) e Bi such
that each proper subset of {b(0),b(1),..., b(n)} is linearly independent in Rn. Let
A0 € V be the unique linear relation among these n + 1 vectors. For each b
in one of the sets Bi\{b(i)}, let Ab e V be the unique linear dependency on
{b(0),..., b ( n ) \ b ( i ) } U {b}. Let A denote the collection of all Ab, augmented
by the vector A0. Thus card(A) = m - 2n - 1. It is easy to see that A is
linearly independent, because the corresponding m x (m - 2n - l)-matrix has a
nonsingular upper triangular maximal minor. Hence A is a basis for V.

Let V c Rm denote the linear subspace of all mixed dependencies on {A0, A1, ...,
An}. The total number of equations (i) and (ii) equals 2n + 1, hence dim(V) >
m - 2n - 1. Clearly the space V is invariant under translations of each of the
set At. Hence we may assume that each sets Ai contains the origin 0. We set
Bi := Ai{0} and B := B0 U B1, U. . . U Bn. Then B is a spanning configuration of
m - n - 1 vectors in the vector space Rn. The space V is naturally identified
with the space of linear dependencies on B. This implies

The fiber polytope S(A) = E(A, Q) is a 3-dimensional polytope with 23 facets,
57 edges, and 36 vertices. Hence the heptagon Q = Q0 + Q1 + Q2 has precisely
36 TCMDs. Each of these (for instance, the one in Figure 3) corresponds to
a unique coherent triangulation of P. The 36 TCMDs are grouped into six
R-equivalence classes, one for each extreme monomial of the resultant R. The
cardinalities of these classes are 8 for a1b3c1c2, 6 for a\c^b\b^ 5 for a1a3b2c1c2,
5 for a2b1b3C1c2, 1 for a2a3b1b2c1c2, and 11 for a3b1c1.

6. Combinatorics of resultant polytopes

We continue our study of the resultant polytope N(R). The next theorem
concerns its dimension. Throughout Section 6 we assume that {A0, A1, . . . , An}
is essential. By (43) and Corollary 5.1, we have dim(N(R)) < m - 2n -1, where
m = Ei=0 card(Ai).

THEOREM 6.1. The dimension of the resultant polytope N(R) equals m — 2n — 1.

A mixed dependency of the family {A0, A1,..., An} is a vector A = (..., A i ,a,. . .)
€ Rm which satisfies the following system of linear equations:

STURMFELS232



Proof. We need to give an upper bound on the number of open cells in the
normal fan of N(R). Consider the hyperplane arrangement H whose hyperplanes
are the spans of the codimension 1 cells in the normal fan of N(R). Now, by
Theorem 6.1 and Corollary 6.1, H is a (m - 2n - l)-dimensional arrangement of
at most (m0)(m1) . . . (mn) hyperplanes. Using Buck's formula [4], the number of
its open cells is bounded above by (48).

In each fixed dimension there are only finitely many combinatorial types of
resultant polytopes. The following estimate is rather weak and can undoubtedly
be improved. It would be interesting to find a more tight upper bound, as well
as a matching lower bound.

PROPOSITION 6.1. A resultant polytope of dimension dhas at most (3d-3)2dZ vertices.

Proof. By Theorem 6.1 and Corollary 6.2, the number of vertices is bounded above
by (2d - 2)(IImi )

2d-2. In the subsequent Theorem 6.2 we will show that every
resultant polytope is isomorphic to a resultant polytope with m0, m 1 , . . . , mn > 3.
So, we may assume these inequalities. They imply 3n + 3 < m = d + 2n + 1, and
therefore mi < m < 3d - 3 and n < d - 2, which implies the stated bound.

To complete the proof, it suffices to show that for each vector A in A there
exists an edge of N(R) parallel to that edge. Note that the support of A intersects
each set Bi at most once. Lift A to a vector of length m which satisfies (i) and
(ii), and abbreviate A' := supp(A) n Ai. Then either A' is empty or contains two
elements. The resultant polytope of A't has dimension 1; it is an edge parallel
to A, by Proposition 1.1. By Corollary 4.2, there exists an edge of N(R) which
is parallel to A.

The support of a vector A e Rm is the set of points a e UiAi for which Ai,a ^ 0.
It is a denoted supp(A). A nonzero vector A in V is a circuit if supp(A) is minimal
with respect to inclusion. We call A € V a mixed circuit if card(supp(A) n Ai) < 2
for all i = 0, 1, ..., n. Note that card(supp(X) n Ai) can only be 0 or > 2, not
1, by the condition (i) above.

COROLLARY 6.1. The edge directions of the resultant polytope N(R) are precisely
the mixed circuits in V. Their number is bounded above by (m0)(m1). . . (mn).

This implies the following bound for the number of vertices.

COROLLARY 6.2. The number of vertices of N(R) is bounded above by
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Our resultant R equals c2 1c1 4 times the Sylvester resultant of (51). In particular,
N(R) is affinely isomorphic to the resultant polytope for A0 = {0, 6, 7} and
A1 = {0, 2, 5} in Z1. Thus N(R) is combinatorially isomorphic to the polytope
N2,2 in [9, Figure 2].

Remark 6.1. The algorithm in the proof of Theorem 6.2 is particularly interesting
in the case k = 0. In this case (49) consists of one equation f0 with three or more
terms and n "binomials" ci,1xi - ci,2. In (50) this system is reduced to a single
equation with no variables at all !!! Such an equation is its own sparse mixed
resultant, and its Newton polytope is a regular simplex of dimension m0 -1. We
conclude that N(R) is an (m0 - 1)-simplex whenever m1 = • • • = mn = 2.

We now come to the classification of all resultant polytopes of dimension < 3.
Let us first recall the results of Gelfand, Kapranov, and Zelevinsky in [9] in the

and let R' denotes its sparse mixed resultant. This is a polynomial in the
coefficients of f0, ..., fk and an algebraic function in the Ci,j, i > k. Clearly
(49) is solvable if and only if (50) is solvable. The resultant R of (49) equals,
up to a monomial factor, the product of the R' over all Pi=k+1vi choices of
roots of unity. Therefore the Newton polytope N(R) is affinely isomorphic to
the Newton polytope N(R').

Example 2.3 (continued). To compute the resultant of (19) we perform the change
of variables y -» x2Z1, and we solve Z = -c1c2 to get the univariate system

For each of the ni=k+1vi many choices of roots of unity, consider the k-variate
system

THEOREM 6.2. Every resultant polytope is affinely isomorphic to a resultant poly-
tope N(R) of an essential family {A0, . . . , An} with mi = card(Ai) > 3 for
i = 0, 1, ..., n.

Proof and algorithm. Suppose that m0, . . ., mk > 3 and mk+1 = . . . = mn = 2.
We give an algebraic procedure which expresses our n-variate resultant R in terms
of a K-variate resultant R'. Consider any linear transformation in SL(n, Z) which
maps the directions Ai to multiples v i . e , of the unit vectors e* for i =k +1, ..., n.
The corresponding monoidal change of coordinates on the torus (C*)n transforms
(1) into a system
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Also the polytope N(1,|2),(2,1) is a square-based pyramid. To see this, replace
b1 x by b1 in (54) and recompute (53).

(c) The polytope N(1,2),(1,2) is a tetrahedron. Indeed, for A0 = A1 = {0, 1, 1}
the sparse mixed resultant equals det(a0 a1+a2). Its Newton polytope is a
tetrahedron.

COROLLARY 6.3
(a) The only resultant polytope of dimension 2 is the triangle.
(b) The only resultant potytopes of dimension 3 are the tetrahedron, the square-based

pyramid, and the polytope N2,2 in Figure 2.

Proof. By Theorem 6.2 we may assume that each of the given support sets At
has cardinality mi > 3. By Theorem 6.1, the dimension of the resultant polytope
equals d =Ei=0mi - 2n - 1, hence d > n + 2.

which is sparse mixed resultant of the digenerate system

with cardinalities d0 + d1 + • • • + dr = m0 and e0 + e1 + • • • + en = m1. The
combinatorial type of the resultant polytope of (52) depends only on the multi-
plicity vectors ( d 0 , . . ., dr) and (e0, .. . , en ), and we denote it by N ( d o . . . d r ) , ( c 0 , . . . , c n ) .
This follows from our results in Section 5 because the R-equivalence classes of
TCMDs depend only on the multiplicity vectors. The polytope N(d0,...,dr),(e0,...,er)

 is

always a degeneration of the Gelfand-Kapranov-Zelevinsky polytope Nm0-1,m1-1;
in particular it has less vertices.

We list all three-dimensional polytopes in this class.

(a) The polytope N(1,1,1),(1,1,1) equals the Gelfand-Kapranov-Zelevinsky polytope
N2,2. It equals the resultant polytope in Figure 2.

(b) The polytope N (1 ,2) , (1 ,1 ,1) is a square-based pyramid. It is the Newton
polytope of

univariate case (n = 1). For two univariate equations, having m0 and m1 terms
respectively, the resultant polytope is combinatorially isomorphic to a certain
polytope Nm0-1,m1-1 of dimension m0 + m1-3. The polytope Nm0-1,m1-1 has
CX-'f2) vertices. See [9, §3] for an explicit description of the face lattice of
this polytope.

The essential family constructed in our proof of Theorem 6.2 may consist
of multisets. Therefore we need to extend the list of polytopes in [9] to the
degenerate case when A0 and A1 are multisets, say
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If d = 2 then n = 0 and m0 = 3, i.e., the system (1) consists of one equation
with three distinct terms in zero variables. The resultant R of such a system is
equal to that three-term equation, and N(R) is a triangle (cf. Remark 6.6).

If d = 3 then there are two cases. Either n = 0 and m0 = 4, in which case
N(R) is a tetrahedron (cf. Remark 6.1), or n = 1 and m0 = m1 = 3, in which
case N(R) is one of the three polytopes N(...),(...) listed above.
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