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Abstract. For a positive integer n, does there exist a vertex-transitive graph r on n vertices which is
not a Cayley graph, or, equivalently, a graph r on n vertices such that Aut F is transitive on vertices
but none of its subgroups are regular on vertices? Previous work (by Alspach and Parsons, Frucht,
Graver and Watkins, MaruSic and Scapellato, and McKay and the second author) has produced
answers to this question if n is prime, or divisible by the square of some prime, or if n is the product
of two distinct primes. In this paper we consider the simplest unresolved case for even integers,
namely for integers of the form n = 2pq, where 2 < q < p, and p and q are primes. We give a new
construction of an infinite family of vertex-transitive graphs on 2pq vertices which are not Cayley
graphs in the case where p = 1 (mod q). Further, if p = 1 (mod q), p = q = 3(mod 4), and if every
vertex-transitive graph of order pq is a Cayley graph, then it is shown that, either 2pq = 66, or every
vertex-transitive graph of order 2pq admitting a transitive imprimitive group of automorphisms is a
Cayley graph.

1. Introduction

In [22] Marusic asked: For which positive integers n does there exist a vertex-
transitive graph on n vertices which is not a Cayley graph? The problem
of determining such numbers was investigated by Marusic [22] when n is a
prime power, and many constructions of families of non-Cayley, vertex-transitive
graphs can be found in the literature, for example see [1, 10, 19, 23, 25,
32]. Constructions and partial solutions to the problem were summarized and
extended in [19]. For even integers n > 14 it was shown in [19, Theorem 2(c)]
that there is a non-Cayley vertex-transitive graph of order n except possibly if
n = 2p1p2 ...Pr where the pi are distinct primes congruent to 3 modulo 4, r > 1.
If r = 1 there is no such graph, see [2]. This paper considers the problem for
the next case, n = 2p1p2, where 2 < p1 < p2. We shall give a construction of
a non-Cayley vertex-transitive graph on 2p1p2 vertices in the case where p2 = 1
(mod p1). Further if p2 = 1 (mod p1), p1 = p2 = 3 (mod 4), and if every
vertex-transitive graph on p1p2 vertices is a Cayley graph then we shall show that
either 2p1p2 = 66, or every graph on 2p1p2 vertices which admits a transitive
imprimitive group of automorphisms is a Cayley graph.

Keywords: finite vertex-transitive graph, automorphism group of graph, non-Cayley graph, imprimitive
permutation group
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A graph F = (V, E) consists of a set V of vertices and a set E of unordered
pairs from V called edges. The cardinality of V is called the order of F. The
automorphism group Aut F of r is the subgroup of all permutations of V which
preserve the edge-set E, and r is said to be vertex-transitive if Aut F is transitive
on V. For group G and a subset X of G such that 1G e X and X-1 = X, where
X-1 = {x - 1 \x e X}, the Cayley graph Cay(G, X) of G relative to X is the graph
with vertex set G such that two vertices g, h e G are adjacent, that is {g, h} is an
edge, if and only if gh-1 e X. The group G acting by right multiplication is then
a subgroup of the automorphism group of Cay(G, X), and as G is regular on
vertices (that is G is transitive and only the identity fixes a vertex) Cay(G, X) is a
vertex-transitive graph. Thus all Cayley graphs are vertex-transitive. Conversely,
every vertex-transitive graph F for which Aut F has a subgroup G which is
regular on vertices is isomorphic to a Cayley graph for G. However there are
vertex-transitive graphs which are not Cayley graphs. We will call such graphs
non-Cayley vertex-transitive graphs, and these are the subject of this paper. The
order of a non-Cayley, vertex-transitive graph will be called a non-Cayley number.
Let NC denote the set of non-Cayley numbers.

An important, but elementary, fact about non-Cayley numbers is that, for
every non-Cayley number n and every positive integer k, kn is also a non-Cayley
number, for the union of k vertex disjoint copies of a non-Cayley, vertex-transitive
graph of order n is a non-Cayley, vertex transitive graph of order kn. Thus the
important numbers n to examine turn out to be those with few prime factors.
We have the following information about non-Cayley numbers which are relevant
to our investigations of even numbers, where p and q are distinct odd primes,
p> q.

(a) [2, 10], 2P € NC if and only if p = 1 (mod 4).
(b) [19, Theorem 5], 2P

2 e NC.
(c) [19, Theorem 3], 4P € NC if p > 5.
(d) [17, 21, 27], for n < 24, n even, n e NC if and only if n is one of 10, 16,

18, 20, 24.
(e) [1, 24, 25, 26] or see [20], pq e NC for q < p if and only if one of the

following holds:
(i) q2 divides p - 1,

(ii) p = 2q - 1 > 3 or p = (q2 + l)/2.
(Hi) p = 2t + 1 and q divides 2t - 1, or q = 2t-1 - 1.
(iv) p = 2t - 1, q = 2t-1 + 1.
(v) (P, q) = (7, 5) or (11, 7).

From results (a)-(e) we see that membership of an even number n in NC
can be determined unless n = 2p1p2 .. .pr where p1, p2, • • •, Pr are distinct primes
congruent to 3 modulo 4 and r > 2 and where none of the conditions (i)-(v) of
(e) hold for any pair of primes p, q € {p1, p2, • • •, Pr}.
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In this paper we investigate the first open case, namely n = 2pq with p, q
distinct primes, p = q = 3(mod 4). We give (Construction 2.1) a construction
of an infinite family of vertex-transitive non-Cayley graphs of order 2pq where q
divides p - 1. Thus we have:

THEOREM 1. If 2 < q < p and p, q are primes such that p = 1 (mod q), then
2pq e NC.

Then we analyze vertex-transitive graphs of order 2pq such that 2 < q < p, pq e.
NC, p = 1 (mod q), p = q = 3(mod 4). We confine ourselves to examining graphs
r = (V, E) for which Aut F has a subgroup H which is transitive and imprimitive
on V. (A transitive permutation group H on V is said to be imprimitive on V if
there is a partition Z = {B1, B2, ..., Br} of V with 1 < \S\ < \V\ such that, for
each h € H and each Bi e z, the image 5* also lies in z; such a partition z is
said to be H-invariant. If there is no such partition for a transitive group H then
H is said to be primitive on V.) Our reasons for this restriction are two-fold.
The set of numbers n for which there exists a vertex-primitive non-Cayley graph
has zero density in the set of all positive integers. This can be easily derived
from the result of Cameron, Neumann, and Teague [5] that the set of numbers
n for which there is a primitive permutation group on n points, different from
An and Sn, has zero density in the set of all positive integers. (Note that the
only graphs of order n admitting An or Sn as a group of automorphisms are the
complete graph Kn and the empty graph n.K\, both of which are Cayley graphs.)
Thus the case where there is a vertex-imprimitive group of automorphisms is the
heart of the problem. The other reason for omitting the primitive case here is
that it will be treated by Greg Gamble as an application of his, as yet unfinished,
classification of primitive permutation groups of degree kp, k < 2p, p a prime.

THEOREM 2. Let p and q be primes such that 2<q<p,p = q = 3(mod 4), p = 1
(mod q), and pq e NC. Let F be a vertex-transitive graph of order 2pq which admits
some transitive imprimitive group of automorphisms. Then either F is a Cayley graph
or p = 11, q = 3.

Notation

A transitive permutation group G acting on a set V induces a natural action on
V x V given by

for all a, B e V and g e G. The G-orbits in V x V are called orbitals of G.
In particular A0 = {(a, a)|a e V} is an orbital, called the trivial orbital and
all other orbitals are said to be nontrivial. For a e V, the Ga-orbits in V are
called suborbits of G, and they are precisely the sets A(a) := {B|(a, B) e A}
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where A is an orbital. For each orbital A, the set A* := {(B, a)|(a, B) e A}
is also an orbital and is called the orbital paired with A; if A* = A then A is
said to be self-paired. Similarly A*(a) is called the Ga-orbit paired with A(a)
and if A* (a) = A(a) (which is equivalent to A* = A) then A(a) is said to be
self-paired.

Let 0 be a union of orbitals which is self-paired (that is A C Q implies
A* C 0) and such that A0 C ®- The generalized orbital graph corresponding to
Q is defined as the graph r(e) with vertex set V such that {a,B} is an edge if
and only if (a, B) e 0. The fact that 0 is self-paired ensures that the adjacency
relation is symmetric, and the fact that A) 2 9 ensures that there are no loops.
Clearly G is a subgroup of automorphisms of F(0) which is vertex-transitive.
Conversely, it is not hard to see that every graph admitting a vertex-transitive
group G of automorphisms is a generalized orbital graph for G corresponding
to some self-paired union of orbitals. If 0 consists of a single self-paired orbital
then .T(e) is called an orbital graph.

For a connected graph F = (V, E), a vertex a € V, and a positive integer i,
the set of vertices at distance i from a is denoted by Fi(a). (Here the distance
between two vertices is the length of the shortest path between them.) If Z is
a partition of V then the quotient graph Fz is defined as the graph with vertex
set z such that {B, B'} is an edge, where B, B' e z, if and only if, for some
a e B and a' € B', {a, a'} € E. For a subset B of V the induced subgraph B is
the graph with vertex set B and edge set {{a, B} e E|a, B e B}. In particular
if G < Autr, G is vertex-transitive, and E is a G-invariant partition of V, then
the induced subgraph B, for B € z, is independent of the choice of B; the two
graphs, .Fz; and B will be analyzed in detail whenever such a pair G, 17 arises.
Two disjoint nonempty subsets U, W of V are said to be trivially joined if either,
for all aeU, F1(a) D W, or for all a e U, F1(a) n W = 0.

The lexicographic product F1[F2] of F2 = (V2, E2) by F1 = (V1, E1) has vertex
set V1 x V2 and {(x1, x2), (y1, y2)} is an edge if and only if either (x 1 , y1) € E1,
or x1 = y1 and (x2, y2) € E2. Since Aut F1 [F2] contains the wreath product Aut
T2 wr Aut F1, if F1 and F2 are both Cayley graphs it follows that F1[F2] is also
a Cayley graph.

For a group G, the socle soc G of G is the product of the minimal normal
subgroups of G. If G is a group of permutations of a set V then fixvG = {a e
V|ag = a for all g e G} is the set of fixed points of G in V.

2. Non-Cayley graphs of order 2pq

In this section we give constructions of two families of non-Cayley vertex-transitive
graphs of order 2pq.

The first construction gives a non-Cayley vertex-transitive graph of order 2pq
where p and q are odd primes and q divides p - 1.

MILLER AND PRAEGER
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Construction 2.1. The graphs A(p,q), where p and q are odd primes and q divides
p - 1. Consider the following group G of order 4p2g : G = (a, 6, c, x) where
ap = bp = cq = x4 = [a, 6] = 1, and also ax = b, bx = a-1, cx = c-1, ac = ae and
bc = bs-1 where 1 < e < p - 1, and eq = l(mod p). Let H = (b, x2) and let
V = [G : H], the set of right cosets of H in G with G acting by right multiplication.
Let A(p, q) be the graph with vertex set V and with edges {Hy, Hz} such that
yz-1 e (HaH) U (HcH) U ( H c - 1 H ) U (HxH).

We shall show in Proposition 2.1 that -A(p, q) is a vertex-transitive non-Cayley
graph of order 2pq and valency p+4 such that AutA(p, q) contains G as a subgroup
of index dividing 8. Before proving this we discuss in more detail the action of
G on V. Let a = H e V so that Ga = H. There is a one-to-one correspondence
between the set V of points and the right transversal T = (a, c) u (a, c)x of
Ga in G, such that a = 1 and an element g e G maps t e T to t' € T, where
Ht' = Htg. The actions of the generators a, b, c, x, and the element x2 on V
identified with T are given as follows: (note that xa = b-1x and xb = ax, and
ca = ae-1 c).

The set of orbits of the normal subgroup L = (a, b) of G is a block system for
G. It consists of 2q blocks of size p, namely Bj = (cj)L = {aicj|i e Zp}, j e Zq

and Cj = (c jx)L = {aicjx|i e Zp}, j e Zq. Let us denote this block system by
z = z1 U z2, where z1 = {Bi|i € Zq} and Z2 - {Ci\i e Zq}. In addition, G
preserves the block system A = {D1, D2} where D1 = UieZqBi and D2 = UiezqCi.

Now (ai)Ga = {ai, a-i} for all i e Zp, and so the Ga-orbits in B0 are A±i,0(a) =
{a i, a-i}, for i e Zp. Since a-i sends the pair (1, ai) to (a-i, 1) it follows that
the orbits A±i,0(a) are self-paired. Also, since c-ja-i : (1, aicj) -> (c - ja - i ,l) =
(a-ieJc-j,l), while {aicj}Ga = {aicj, a - ic j} , the Ga-orbit A±i , j(a) = {aicj, a-icj}
in Bj is paired to the Ga-orbit A±iej,-j(a) = {a-iejc-j, aiejc-j} in B-j. Further-
more x-1c-ja-i maps (1, aicjx) to (cjx, 1) since x-1c-ja-i = x2biejcjx is in the
same Ga-coset as cjx. Nothing that

for all i e Zp, j € Zq, each Cj is a self-paired Ga-orbit.
Thus A(p, q) is the generalized orbital graph (as defined in Section 1) associated

with the Ga -orbits containing the points a, c, c-1, and x and so has valency
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|A+1,0(a)| + |A0,1(a)| + |A0,-1(a)| + |C0| = p + 4. Clearly A(p, q) admits G
as a vertex-transitive group of automorphisms, its edge-set is U1<j<3Ej where
E1 = {1, a}G, E2 = {1, c}Gu{1, c - 1}G , and E3 = {1, x}G. For any edge e e E(F)
let us say that e is a type j edge if and only if e e Ej.

PROPOSITION 2.1. The graph A(p, q) is a vertex-transitive non-Cayley graph of order
2pq and valency p + 4, and \AutA(p, q): G\ divides 8.

Proof. Set F = A(p, q) and A = Aut T. All type 1 edges consist of a pair of
points contained in some set Bj or some set Cj, for j € Zq. Every edge of this
type lies on p triangles each of which contains two type 3 edges. Also all type 2
edges consist of a pair of points lying in different sets Bj and Bj' or in different
sets Cj and Cj' where 0 < j < j' < q. All edges of this type lie in 0 triangles if
q > 3 and in 1 triangle (consisting of three type 2 edges) if q = 3. Finally all
type 3 edges consist of one point in a set Bj and one point in C-j, for some
j e Zq, and lie in 4 triangles each consisting of two type 3 edges and one edge
of type 1. Since p, 0 (or 1), and 4 are all distinct, Aut F preserves the sets
E1,E2, and E3. Hence Aut F permutes the connected components of the graph
Fj defined as the graph with the same vertex set as F and with edge set U j e J Ej

for each J C {1, 2, 3}. Taking J = {1} we obtain that {B1, ..., Bq, C1 ..., Cq}
is preserved by A and taking J = {1, 2}, we find that {D1 ,D2} is preserved by A.

Now A contains G, and hence A is transitive on V and \A : Aa\ = 2pq. For
1 < j < 3, Aa fixes F1(a) n Ej setwise and, since x2 e Aa and x2 interchanges a
and a-1, \A: Aa,a\ = 4pq. In addition, as the subgraph induced on BO is a cycle
of length p, Aa,a fixes B0 pointwise. Since the only type 2 edges from a end in c
and c-1, Aa,a fixes setwise {c, c-1}. So \Aa,a : Aa,a,c| = 1 or 2. Moreover, since
each point of BO is joined to exactly one point of B\ and one point of Bq-1, Aa,a,c

fixes B1 uBq-1 pointwise and in fact Aa,a,c fixes D1 pointwise. Further, since
edges from points of Bi to points of D2 go only to points of C-i, Aa,a,c fixes each
Ci setwise. Since b e Aa,a,c Aa,a,c is transitive on C0, so |Aa,a,c: Aa,a,c,x| = P.
Arguing as above Aa,a,c,x fixes F1(x)n C0 and r1(x)n(C1 UCq-1) (which are sets
of size 2) setwise, and the stabilizer in Aa,a,c,x of a point of each of these sets
fixes D2 pointwise. Hence |Aa,a,cx| divides 4. Thus \A\ = 4p2qs where S is 1, 2,
4, or 8.

Now |G| = 4p2q and so s = \A : G\ = 1, 2, 4, or 8. Let A+ be the subgroup
of A fixing D1 and D2 setwise. Then \A : A+\ = 2, and A = (A+, x) = A+G. So
\A+ : A+ n G\ = \A : G\ = s. Now A+ acts on the quotient graph zi with vertex
set Si such that two elements of zi are adjacent in zi if there is at least one
edge of F having a point in each of those elements. Since zi is a cycle of length
q, Aut zi ~ D2q. Let Ki = A+ (the subgroup fixing each element of Si setwise)
and let P = (a, b). Then P C K1 nK2 (as \A+ /(K1 nK2)\ divides 4q2). Moreover
K1 n K2 = A(z) and K1 n K2< Liezq (K1nK2)Bi x Liezq(K1 n K2)

ci < D2q. It
follows that P, which is a Sylow p-subgroup of A (since p3 does not divide |A|),
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is normal in K1 n K2 .Hence P is a characteristic subgroup of K1 n K2 and
therefore P is a normal subgroup of A.

Suppose that A has a subgroup R which is regular on vertices. Then \R\ = 2pq.
So R contains a Sylow q-subgroup of A (since q2 does not divide \A\). We may
therefore assume that c € R (by replacing R by some conjugate if necessary).
Moreover \R n P| = p (since P is the unique Sylow p-subgroup of A). Since
R n P is transitive on each element of z, R n P = (abi) for some i = 0 (mod
p). Now (abi)c e (abi), since R n P is normal in R. But (abi)c = ac(bc)i = aebe-1i

and hence (abi)c = (abi)e so be-1i = bie. Hence bi(e-e-1) = 1 and so e = e-1 (mod
p). Thus e2 = 1 (mod p) which is a contradiction since e has order q modulo p.
Hence A has no regular subgroup and F is a non-Cayley graph. D

The next construction produces a non-Cayley vertex-transitive graph of order
r(r + l)/2 for each odd prime power r > 7; the order is of the form 2pq with p
and q distinct odd primes if and only if p = r = 4q - 1.

Construction 2.2. The graphs Ext(r) constructed from a conic in the projective plane
PG2(r), for r an odd prime power. Let C be a conic in PG2(r), that is C is a
maximal subset of PG2(r), no three points collinear. Then |C| = r + 1. Points
not on C lie on either 2 or 0 tangents to C; those points lying on 2 tangents
to C are called external points to C. There are r(r + l)/2 external points. For
an external point P let A and B be the two points of C such that the lines PA
and PB are tangents to C, and let P1 denote the line AB. Then PL contains
exactly (r - l)/2 external points since there are r - 1 tangent lines which meet
Px in points different from A, JB, and each of these (external) points lies on two
such tangent lines. It follows from the above discussion that, if Q is a point on
P-1, then P lies on QL also.

Define a graph Ext(r) with vertex set the set of external points to C, such
that a pair {P, Q} of external points is an edge if and only if Q lies on Px (or
equivalently P lies on QL).

PROPOSITION 2.2. Let r be a power of an odd prime.

(a) The (isomorphism class of the) graph Ext(r) is independent of the choice of C.
(b) Ext(r) is a vertex-transitive graph of order r(r + l)/2 and valency (r - l)/2.

Further Ext(3) = 3K2 Ext(5) = 5C3, and, for r > 7, the graph Ext(r) is
connected, and Aut (Ext(r)) = PFL(2, r) is primitive on vertices, transitive on
ordered pairs of adjacent vertices, and has no subgroup regular on vertices.

(c) For r > 7, the group PSL(2, r) is the unique subgroup of Aut (Ext(r)) which is
minimal transitive on vertices; it is imprimitive on vertices if and only if r = 7 , 9,
or 11.

(d) The order r(r + l)/2 of Ext(r) is equal to 2pq, where 2 < q <p and p and q
are primes, if and only if p - 4q - 1 = r.
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Proof. Since PGL(3, r) is transitive on the set of all conies in PG(2, r), graphs
constructed as above with respect to different conies are isomorphic. Clearly
Ext(r) has order r(r+l)/2 and valency (r-l)/2. Let F = Ext(r) and A = Aut T.
By construction the stabilizer of C in PFL(3, r), namely PFL(2, r), is contained
in A and PGL(2, r) is transitive on the external points to C. Hence F is
vertex-transitive. For r = 3, F has valency 1 so F = 3AT2. For r = 5, F has
order 15 and valency 2 so T = sCt where at = 15; the group PGL(2, 5) a S5
must therefore permute the s connected components of r, each of which has
size at least 3, and it follows that F = 5G3.

Now let r > 7. Then the stabilizer in PGL(2, r) of an external point P, namely
D2(r-1), is maximal in PGZ/(2, r), so PGL(2, r), and hence A, is primitive on
vertices. In particular F is connected. Also, as D2(r-1) is transitive on the
external points on PL, it follows that PGL(2, r), and hence A, is transitive on
ordered pairs of adjacent vertices of F. It follows from [15] that PFL(2, r) is
a maximal subgroup of Ar(r+1)/2.PFL(2, r) and hence A = PFL(2, r). Then by
[9], A has no subgroup regular on vertices.

Suppose that r > 7 and that G < A is minimal transitive on vertices. Then
r(r + l)/2 divides |G| and it follows that G=PSL(2, r). Then the stabilizer in G
of an external point P is Dr-1, which is maximal in G (by [9]) unless r is 7, 9,
or 11 (when Dr-1 is contained in S4, S4, or A5 respectively). If r(r + l)/2 = 2pq
then pq = r(r +1)/4 and, since r is odd, 4 divides r +1. Thus p = r, q = (r +1)/4
and (d) follows. D

We thank Andries Brouwer for drawing to our attention the construction of
Ext(r). We note that Ext(7) is the Coxeter graph, see [3, p. 382]. This
construction gives a family of vertex-transitive, non-Cayley graphs of order 2pq
where p = 4q - 1. From Proposition 2.2 it follows that the only graph in this
family which has order 2pq (2 < q < p, q and p primes) and admits a transitive
imprimitive group of automorphisms is Ext(11) of order 66. Using the computer
packages CAYLEY [6], GAP [28], Nauty [18] and GRAPE [29], we investigated
the graph Ext(11) and showed that it has the distance diagram (see [3, 2.9])
depicted in Figure 1. Here each circle represents an orbit of the subgroup H
of automorphisms of Ext(11) fixing a given vertex. The size of an H-orbit A is
written in the corresponding circle C(A). For a vertex S € A and an H -orbit A'
(which may or may not be equal to A) the number n of vertices of A' adjacent to
6 is independent of the choice of 8 in A; this number n is indicated in Figure 1
by a directed edge from C(A) to C(A') labeled n.

There is an alternative construction of Ext(11) obtained from the 2-(11, 5, 2)
design, which was pointed out to us by A.A. Ivanov. The action in this case is
on antiflags (that is nonincident point-line pairs) of the design.
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Fig. 1. Distance diagram.

3. Some minimal transitive groups and their graphs

In our analysis of this problem we had to deal with several families of minimal
transitive permutation groups of degree 2pq. One such family led to Construction
2.1 of a family of non-Cayley vertex-transitive graphs. Two other similar families
arose, and for them all related generalized orbital graphs turned out to be Cayley
graphs. The results of analyzing these groups will be required at several places
in our proof and so we give the analyses here. The basic strategy in showing that
the graphs are Cayley graphs is to prove that they have additional automorphisms
to those in the given group G. The smallest members of the families of minimal
transitive permutation groups arising in connection with Construction 2.1, and
Propositions 3.1 and 3.2 below, were examined using GAP and GRAPE [28,29].
This gave us the insights necessary to construct both the non-Cayley graphs
of Construction 2.1, and the extra automorphisms of Propositions 3.1 and 3.2.
The following result gives conditions under which the existence of such extra
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automorphisms may be inferred. It may be regarded as a generalization of
Wielandt's dissection theorem [33, Theorem 6.5].

LEMMA 3.1. Let r = (V, E) be a finite graph, and let {U, W1 ..., Wt} be a
partition of V, where t > 1. Let H be a subgroup of Aut F which fixes each of
U,W 1 , . . . ,W t setwise, and such that, for each H-orbit U' C U, U' is trivially joined
to each of W1, W2, ..., Wt. Then Hu (the group which fixes V\U pointwise and
which induces the same permutation group of U as H does) is a subgroup of AutF.

Proof. Consider three types of edges in F; those that lie within U, those that
lie outside U, and those that have one point inside U and one point outside
U. An edge of the first type is sent to an edge of the same type by Hu since
H < Aut F and H fixes U setwise. An edge of the second type is fixed by Hu

as Hu fixes all points not in U. Finally let e be an edge of the third type. Then
e is an edge of the form {v, v'} where v e U and v' e Wi for some 0 < i < t.
Since VH and Wi are trivially joined, {v, v'}h is an edge for all h e Hu. Hence
Hu < Aut T. D

We assume throughout the remainder of this section that p and q are distinct
odd primes.

PROPOSITION 3.1. Suppose that F is a graph of order 2pq admitting the following
group G as a vertex-transitive group of automorphisms: G = (a, 6, c, x) where
aq = bq = cp - x4 - [a, b] = [a, c] = [b, c] = 1, and also ax = b, bx = a-1, cx = cs

for s = +1 or -1. Suppose that the action of G is such that, for some a e V, Ga =
(b, x2). Then F is a Cayley graph.

Proof. As in Construction 2.1 we may identify the set of points V with the right
transversal T = (a, c) U (a, c)x of Ga in G such that a = 1, and the actions of
the generators a, b, c, x, and the element x2 on the points are given as follows:
(note that xa = b-1x and xb = ax)

The set of orbits of the normal subgroup L = (a, b) of G is a block system
for G:z = BG

0 where B0 = aL. It consists of 2p blocks of size q, namely
Bj = (cj)L = {aicj|i € Zq}, and Cj = (c jx)L = {aicjx|i € Zq}, for j € Zp.

The Ga-orbits in B0 are A± i ,0(a) = (a i)Ga = {a i , a - i}, for i e Zq. Since
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a-i sends the pair (1, ai) to (a- i, 1), these orbits are self-paired. Also, since
c-ja-i: (1, aicj) -> (c-ja-i, 1) = (a-ic-j, 1), the Ga-orbit A±i , j(a) = {aicj}Ga =
{aicj, a-icj} in Bj is paired to the Ga-orbit A+i,-j(a) = {a-ic-j, aic-j} in B-j.
Furthermore x - 1 c - j a - i maps (1, aicjx) to (c-jsx, 1) since x-1c-ja-i = x2bic-jsx
is in the same Ga-coset as c - j s x . Hence the Ga-orbit (aicjx)Ga = {a±i+tcjx | t e
Zq} = Cj is paired with the Ga-orbit C-sj for each j e Zp.

Any graph T with vertex set V admitting G is a generalized orbital graph for G
and the set F(a) is a union of Ga-orbits in V\{a} closed under pairing. Hence

for some Ij C Zq, for j e Zp, and for some J C Zp, where 0 e I0 (since there are
no loops in T), Ij = -Ij = {i|i e Ij} = I-j, for all j e Zp, and J = - J (since T
is undirected).

Now we apply Lemma 3.1 to the partition {U = U iezpB i, C0, C1 , . . . , Cp-1}
and the group H = {x2}. The H-orbits in U are the sets {aicj, a-icj} for
i, j e Zq. Suppose there is an edge e from aicj to a point aicj x in Cj'. Then
ec-ja-i = {1, ai'cj'-jsx} is also an edge, that is j' - js e J. It follows that
e" = {1, a ic j ' - j sx} is an edge and hence that (e")a±icj) = {a+icj, ai"cj'x} is an
edge for all i" e Zq. It follows that each H-orbit {aicj, a-icj} in U is trivially
joined to each Cj'. By Lemma 3.1, a = (x2)U e Aut F. By considering the
actions of aa, ba, ca, and xa on V, aa = a-1, ba = b, ca = c, and xa = x-1. It is
straightforward to check that xcr is an involution and (ab, c, xcr) is regular on V,
so r is a Cayley graph. D

PROPOSITION 3.2. Suppose that F is a graph of order 2pq admitting the fol-
lowing group G (of order 2apq) as a vertex-transitive group of automorphisms:
G - (x 1 , x2, ..., xa, y) where ypq = x2 = 1 for i = 1, ..., a; and where [xi, Xj] =
1, i = j. If y normalizes S = (x1, x2, ..., xa) = Za but y normalizes no proper
nontrivial subgroup of S, then F is a Cayley graph.

Proof. As G acts transitively on the set V of 2pq vertices we may assume
the Ga = (x2, x3, ..., xa) = H for some vertex a € V. As in Construction
2.1, there is a one-to-one correspondence between V and the right transversal
T = (y) U x 1 ( y ) of H in G, such that a = 1 and the action of G on the points
is equivalent to the action of G by right multiplication on the set of right cosets
{Ht | t e T}. Since S = ( x 1 . . . , xa) is a normal subgroup of G, for each
x 6 5 we have yjx € yjS = Syj. Hence yjx = Xe1xe2 • • • xeayj e Hxe1yj for some
e1, e2, ..., e0 € z2 depending on x and on j. So the actions of the generators
Xk (for 1 < k < a), and y on the points are given as follows:
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Consider the pair of points Cj = {y j , x1y j}. An element of G has the form
xys where x e S = Za

2 and 0 < s < pq — 1. Every element of 5 either swaps the
points yj and x1y

j or fixes them. Therefore {yj, x1y
j}xy' = {y j + s , x1y j + s} = C j+s

(taking the subscript modulo pq), and hence A = {Cj | 0 < j < pq-1} is a system
of blocks of imprimitivity for G. As in Proposition 3.1, the graph F admitting
G on the set of points V is determined by F(a), a union of Ga-orbits closed
under pairing.

Suppose that j is such that 1 < j < pq - 1 and yj e NG(H). Then there are
elements h1 and h2 in H such that h1 := y jh1y - j e H and h2 := y - jh2y j e H.
Since S is normal in G, h1, h2 e S\H.

Consider the pair of blocks Cj = {yj, x1yi} and Cj' = {yj', x1y
j'} and suppose

that yj'-j does not normalize H. Then Cj = Cj'. Now suppose that there
is an edge between Cj and Cj', say {xs1yj, xs2yj'} € E for some s1 = 0 or
1 and 82 = 0 or 1. Now from the above, since yj'=j does not normalize
H, there exist elements h1, h2 € H and h1,h2 € s\H such that yj'-jh2 =
h2y

j'-j and h1y
j'=j = yj'-jh1. Hence {xs1yj, xs2yj'}y-jh2yj = {x1

s1, x1
s2yj'-j}h2yj -

{x1
s1+11, x1

s2h2yj'-j}y2 (since h2 does not fix a = 1 or x1) = {x1
s1+1yj, x1

s2yj'} € E.
Similarly {x1

s1+eyj, x1
s2yj'}y-jh1yj = {x1

s1+eyj, x1
s2+1yj'} € E, for e = 0 or 1. It

follows that Cj and Cj' are trivially joined whenever y j '- j does not normalize H.
Suppose that, for all 1 < j < pq - 1, yj does not normalize H. Then every

pair of distinct blocks are trivially joined. It follows that F is the lexicographic
product FA[CJ], which is a Cayley graph since both the quotient FA and Cj

admit regular groups of automorphisms.
Suppose on the other hand that, for some j where 1 < j < pq-1, yj normalizes

H. Since H is not normal in G, H is not normalized by yk for any k coprime to
pq. It follows that yj has order p or q. We may assume, without loss of generality,
that yj has order q and we may take j = p. Then, since y does not normalize
H, no element of (y) of order p normalizes H, Now H < (S, yP) < G. Define
DO to be the (S, yp)-orbit containing a = 1. Then DO is a block of imprimitivity
for G in V of size 2q, and is the union of the q blocks Crp for 0 < r < q. Also,
for i = 1, 2,.. .p - 1, set Di = D0

yi. Then Di is the union of the q blocks Crp+i,
for 0 < r < q. For all 0 < i < p, and 0 < k, l < q, y(1P+i)-kP has order divisible by
p and so does not normalize H. Hence Ckp and C1p+i are trivially joined, that is
every S-orbit in D0 is trivially joined to each C1p+i for 0 < i < p and 0 < l < q.
By Lemma 3.1 applied to the partition {U = D0, C1p+i, for 0 < i < p, 0 < l < q}
and the group S, it follows that SD0 < Aut F.

Now H fixes C0 pointwise and, as yv normalizes H, yp permutes the points
fixed by H amongst themselves. Hence H fixes D0 pointwise and therefore
SD0 has order 2. It follows that SDi = {&) = Z2, and is contained in Aut r,
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for i = 0, 1, ...p - 1. Hence Aut r > Lp-1
i=0 S

Di = Zp
2. Now Ci = Ci+1 for

i = 0, 1,.. .p - 1, and c;_j = C0. Hence (C0C1 • • • Cp-1)
y - (C0C1 • • • CP - 1) and it

follows that (C0C1 • • • Cp-1, y) is regular on V. Hence r is a Cayley graph. n

4. Permutation groups related to primitive groups of degrees p or pq

In this section we prove some technical results which are needed in the proof
of Theorem 2.

LEMMA 4.1. Suppose that p and q are distinct primes such that p = q = 3(mod 4), p =
1(mod q) and q = 1(mod p), and such that pq eNC. Then if G is a primitive group
of degree pq and G has socle T, G is 2-transitive and one of the following holds:

(i) T = Apq.
(ii) T=PSLm(r) on the points or hyperplanes of the projective space PGm-1(r), pq =

(rm — 1 ) / ( r — 1), where m is prime or the square of a prime, and (m, r) =
(2, 2), (2, 3).

Proof. Suppose, without loss of generality, that p > q. The primitive groups of
degree kp, p a prime and k < p, were classified by Liebeck and Saxl in [16].
(Those groups which are primitive but not 2-transitive of degree qp, p a prime
greater than q, were extracted from the lists in [16] and then listed in [26, table
IV] and [31, Lemma 2.1] (where q > 3 and q = 3 respectively).) There are no
examples with p = q = 3 (mod 4), p = 1 (mod q) and pq e NC. Hence G is
2-transitive and T is therefore one of those groups listed in [4, Theorem 5.3].

Suppose that PSU3(r) < G < PFU3(r) with pq = r3 + 1. Then, since p > q, q =
r + 1 and p = r2 - r + 1. Since q = 3(mod 4), it follows that r = 2(mod 4) and
so, since r is a prime power, r = 2. But then p = q = 3, which is a contradiction.

It now follows from [4, Theorem 5.3] that the only examples of degree pq,
where p = q = 3(mod 4) are as in (i) or (ii) above, and we need to obtain the
restrictions on m and r in case (ii). Certainly (m, r) = (2, 2)or (2, 3).

If m1 divides m, then (rm1 -l)/(r-l) divides (rm-l)/(r-1). If m were divisible
by two distinct primes m1 and m2 say, then (rm1 - l)/(r - l).(rm2 - l)/(r - 1)
would be a proper divisor of (rm - l)/(r - 1) which is not possible. So m = ma

1

for some prime m1. If a > 3 then (rm2
1 - l)/(rm1> - l).(rm1 - l)/(r - 1) would be

a proper divisor of (rm - l)/(r - 1). Hence a < 2. D

LEMMA 4.2. Suppose that p and q are primes such that p = q = 3 (mod 4),
p = 1 (mod q) and q = 1 (mod p), and such that pq e NC. Suppose also that
G < Sym(V) is transitive with \V\= p and G has socle T.

(a) If q divides the order of G then T is nonabelian.
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(b) If T is nonabelian then T is one of the following groups:
0) Ap
(ii) PSLm(r) where p = (rm - l)/(r - 1),

(iii) PSL2(11) or M11 with p = 11, or
(iv) M23 with p = 23.

(c) Suppose that T is nonabelian. If Gx, where x € V, has a subgroup H of index
2 and no proper subgroup of G is transitive on the coset space [G : H], then
T = M11 with p = 11, or PSLm(r) where p = (rm - l)/(r - 1).

(d) If Gx, where x € V, has a subgroup of index q, or Gx has a subgroup H
of index 2, which in turn has a subgroup of index q, then T=PSLm(r) and
p = (rm- l)/(r - 1).

Proof.

(a) If T is abelian then G < Zp.Zp-1 and, since q divides the order of G, q divides
p - 1, which is a contradiction. Hence T is nonabelian.

(b) If T is nonabelian then, by [13], T is one of the groups listed in (b).
(c) If G a Sp, then Gx a Sp-1 and H a Ap-1. Let R = Zp.ZP-1 < G. Then

Rx = zp-1 is not a subgroup of Ap-1 and so R is transitive on [G : H] which
is a contradiction. If G = Ap, PSL(11) or M23 then Gx = Ap-1, A5 or M22,
none of which has a subgroup of index 2. Hence by (b), G is either M11,
with p = 11, or PSLm(r) <G< PFLm(r) with p = (rm - l)/(r - 1).

(d) Since q divides |G|, T is nonabelian by (a) and T is one of the groups listed
in (b). As pq divides |G| and p = q = 3 (mod 4), p = q, it follows that p > 7.
Suppose that Gx has a subgroup of index q. If G = Ap or Sp, M11, PSL2(11)
or M23 then Gx has no subgroup of index q unless G= PSL2(11) and q = 5
in which case q = 3(mod 4). Hence T = PSLm(r). Suppose instead that
Gx has a subgroup H of index 2 such that H has a subgroup of index q. If
G = Ap, PSL2(11) or A/23 then Gx has no subgroup of index 2. If G = SP or
M11 then the subgroup of Gx of index 2 has no subgroup of index q. Hence
T=PSLm(r). n

LEMMA 4.3. Suppose that p and q are primes such that p = q = 3(mod 4). Let
p = (rm - l)/(r - 1) with r a power of a prime r0 and m > 2.

(a) Then m is prime and r = r0
mc for some c>0. Further, either p = r + 1 = 3, or

m>3.
(b) If there is a subgroup G < S2p such that pq divides |G|, then m > 3, and if

m = 3 then r = 1 (mod 4).
(c) If G is as in (b) and is a subgroup of PFLm(r) wr S2 or S2 wr PFLm(r) acting

imprimitivefy of degree 2p, then the group PSLm-1(r) is a nonabelian simple
group and has no subgroup of index q.
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Proof.

(a) For any divisor a > 1 of m, (ra - l)/(r -1) > 1 divides p whence p = (ra -1)
/(r - 1) and a = m. Thus m is prime. Suppose that r = r0

sb where m does
not divide a and b > 1, s > 1. Then r0

bm -1 divides rm -1 = r0
sbm -1 and the

greatest common divisor of rbm-1 and r-1 is equal to r0
(bm,bs)-1 which equals

rb
0 - 1. Thus (r0

bm - l)/(rb
0 - 1) > 1 divides p, whence (rbm

0 - 1)/(rb
0 - 1) = p.

But 2r0
b(m-1) > (r0

bm - l)/(r0
b - 1) = (rm - l)/(r - 1) > rm-1 - r0

bs(m-1) so
b(m - 1) > bs(m - 1), that is s = 1. Hence r = r0

mc, for some c > 0. If
m = 2 then p = r + 1 = 3 (mod 4), so r = 2, p = 3.

(b) If m = 2 then, by (a), G < S6. But \G\ is not divisible by any q = p with
q = 3 (mod 4). Hence m > 3. If m = 3 then p=l + r + r2 = 3(mod 4)
so r(r + 1) = 2 (mod 4). So either r = 2 or r = l(mod 4), However if
r = 2 then p = 7 and the only odd prime q = 7 dividing |G| is q = 3 which
contradicts the fact that p = 1 (mod q).

(c) By (b) it follows that PSLm-1(r) is a nonabelian simple group. Suppose
that PSLm-1(r) has a subgroup of index q. Since q divides |PSLm-1(r)|, q <
(rm-1 - l)/(r - 1). If PSLm - 1(r) has minimal degree (that is minimum
index of a proper subgroup) (rm-1 - 1)/(r - 1) then q = (rm-1 - l)/(r - 1).
As in the proof of (a), m - 1 is prime and, as m is also prime, m = 3.
Hence q = r + 1 = 3 (mod 4), whence r = 2 (mod 4), contradicting
(b). Thus the minimal degree of PSLm - 1(r) is less than (rm-1 - l)/(r - 1)
whence (m - 1, r) - (2, 5), (2, 7), (2, 9), (2, 11), or (4, 2) (see [8], [9] or
[11]). Moreover since PSLm-1(r) has a subgroup of odd prime index q =
3(mod 4), q < (rm-1 - l)/(r-1), (m-1, r) is (2, 7) or (2, 11). In either case
p = 1 + r + r2 is not prime. Hence PSLm-1(r) has no subgroup of index q. D

LEMMA 4.4. Let m>3, and k = (rm - l)/(r - 1) for some prime power r, and
suppose that the group G=PSLm(r) acts imprimitively on a set V of points where
\V\ - tk for some t > 1. Suppose that G has a set E = {B1, B2, • • • Bk} of k
blocks of size t, which G permutes as the 1-spaces of an m-dimensional vector space
Vm(r) over GF(r), and suppose that Ga > [Zr

m-1].SLm-1(r), for a e B e 27. Then
Ga is transitive on V\B.

Proof. We may choose B = (e1) where e1 = (1, 0,..., 0). Consider H = SLm(r),
the preimage of G in GLm(r), and for A € H let A denote the corresponding
element of G. Then A fixes B (or A € GB) if and only if

where a1 det A1 = 1. Since, for a € B, Ga > [Z m - 1 ] .SL m - 1 ( r ) , the preimage Ha

of Ga in H contains all matrices of the form



92 MILLER AND PRAEGER

with del A1 = 1. It follows that, for A e GB, A e Ga if and only if

with a1 belonging to the subgroup L of order (r - 1) / t of the multiplicative
group of GF(r). Clearly Ga is transitive on z\{B} and, for B' - (e2) where
e2 = (0, 1,..., 0), the preimage of Ga,B' in H contains all matrices of the form

where a1 e L and a1a3det A1 = 1. It follows that Ga,B' is transitive on B' and
hence Ga is transitive on V\B. D

5. Proof of Theorem 2: A preliminary analysis.

In this section we begin the proof of Theorem 2. Let F = (V, E) be a vertex-
transitive non-Cayley graph of order 2pq, where p and q are distinct odd primes,
and p, q are such that all vertex-transitive graphs of order pq are Cayley graphs.
It will be convenient in the proof to allow either of q, p to be the larger prime
so we shall assume

p = q = 3(mod 4), p = l(mod q) and q = l(mod p).

Suppose that there is a subgroup G of Aut F which is transitive and imprimitive
on V. We may assume that G is minimal transitive on V, that is, that every
proper subgroup of G is intransitive on V. Then there is a G-invariant partition
E = {B1, B 2 , . . - , Br} of V with 1 < \z\ < 2pq. Choose z such that the only
proper refinement of Z which is G-invariant is the trivial partition with 2pq parts
of size 1. A consequence of this is that the setwise stabilizer GB of a block
B e z is primitive on B. This is true since GB must be transitive on B and, if
{Cg\g e GB} is a GB-invariant partition of B with 1 < \C\ < \B\ then {Cg\g € G}
would be a G-invariant partition of V which is a proper refinement of 17.

Associated with Z are (up to isomorphism) two graphs smaller than F, namely
the quotient graph FE and the induced subgraph B, as defined in Section 1.
First we show that F is not a lexicographic product F z [ B ] of B by FE.

LEMMA 5.1. The graph F is not isomorphic to the lexicographic product Fs[B] of
the subgraph B induced on B e £ by the quotient graph Fe.



NON-CAYLEY VERTEX-TRANSITIVE GRAPHS 93

Proof. Suppose that F = Fz[B], Since both \B\ and \S\ are proper divisors of
2pq, B and Fe are Cayley graphs by our assumptions about p and q, and hence
r is a Cayley graph, which is a contradiction. D

This lemma has certain consequences for the structure of G. Let K = G(e)

be the subgroup of G fixing each block of E setwise, and for B e £ let K(B)

denote the subgroup of K fixing B pointwise. The complementary graph Fc of F
is the graph with vertex-set V such that {a, B} is an edge of Fc if and only if
{a, B} e E.

LEMMA 5.2.

(a) If K = 1 then K is transitive on each block of E. The group K(B) fixes pointwise
a blocks of E, where s>2 and a divides \E\, and is transitive on the remaining
blocks, if any, of E.

(b) The complementary graph Fc is connected.

One consequence of part (b), since Aut Fc = Aut F, is that we may replace
P by Fc whenever it is helpful for the proof.

Proof.

(a) Suppose that K = 1. Then the set of K -orbits is a G-invariant partition of
V which is a refinement of E. Since E has no proper nontrivial G-invariant
refinements, K is transitive on B. If |B| is prime then K is primitive on each
B e E. On the other hand, if \B\ is not prime then r is prime. It follows
from the minimality of G that G/K = Zr. Hence, for each C € E, Gc = K
is primitive on C. If K(B) = 1 then the rest of part (a) follows so assume
that K(B) = 1 and let C € E\{B} be a block on which K(B) acts nontrivially.
Then, since Kc

(B) is normal in the primitive group Kc, K(B) must be transitive
on C. So K(B) fixes pointwise a, say, blocks of £ and is transitive on the
remaining blocks of E.
It is straightforward to show that the set F of fixed points of K(B) in V is
a block of imprimitivity for G in V, and hence that s divides \E\. If s = 1
then K(B) is transitive on each block of E\{B}. If {B, C} is an edge of the
quotient graph FE then for some a e B, B € C, {a, B} e E. It follows that
for all 9 e K(B), {a, B}9 = {a, B9} e E and consequently that a is joined to
every point of C. Similarly, K(C) is transitive on B and hence B is joined
to every point of B. It follows that F is isomorphic to F E [ B ] , contradicting
Lemma 5.1. Hence s > 2.

(b) If Fc is not connected then it has t connected components of size u say
where tu = 2pq, t > 1, u > 1 (since F being a non-Cayley graph is not K2pq).
Thus, since u is a proper divisor of 2pq, a connected component C of Fc
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is a Cayley graph. Thus, since Aut F = Aut Fc contains Aut CwrSt, F is
also a Cayley graph, which is a contradiction. D

This completes the preliminary analysis. Following a sensible suggestion of
one of our referees, we give here a summary of the notation introduced in this
section (and in section 1) which will be used in the remainder of this section
and in the next three sections.

System of blocks of imprimitivity: S = {B1 , ... Br}
Permutation group induced by G on S: GE

Setwise stabilizer of B e E in G: GB
Subgroup of G fixing each Bi setwise: K = G(E) = n1<i<rGBi

Permutation group induced by GB, K on B e E: GB
B, KB

Stabilizer of a e V in G: Ga

Pointwise stabilizer of B e E in G, K: G(B), K(B)

Subgraph induced on B: B
Set of vertices adjacent to a: F1(a)
Quotient graph of F modulo S: Ae
Complementary graph of F: Fc

Lexicographic product of F2 by F1: F1 [F2]
Set of points of V fixed by H < G or g € G: f i x v (H) or fixv(g)
Socle of a group H: soc(H)

In the remainder of this section we deal with the simplest case where \E\ = 2.
Clearly we may assume in this case that q < p, and we write S = {B, C}.

PROPOSITION 5.1. There are no examples with \S\ = 2.

We prove Proposition 5.1 essentially by a sequence of lemmas. Let a € B.
Since F is connected, F1(a) n C is nonempty; let B e F1(a) n C.

LEMMA 5.3. If a e B then Ka has at least two orbits in C.

Proof. The set F1(a) n C is nonempty, and by Lemma 5.1 is a proper subset
of G. Since it is fixed setwise by Ka it follows that Ka has at least two orbits
in G. D

LEMMA 5.4. The group K is not 2-transitive on B.

Proof. Suppose that K is 2-transitive on B and hence on C. By Lemma 5.3,
Ka is intransitive on G, and, since the number of Ka-orbits in G is equal to the
inner product of the permutation characters for K on B and on G, it follows
that Ka has exactly two orbits in G and A(a)n C is one of them. Moreover, Ka

is transitive on B\{a} and so a is joined to all or none of the points of B\{a}.
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Replacing F by Fc if necessary (as we may by Lemma 5.2) we may assume that
a is joined to no points of B, so A (a) C C. If the actions of K on B and
C are equivalent then Ka fixes a point a' in C and is transitive on C\{a'}.
Since r is connected, r1(a) = {a'}, and so F1(a) = C\{a} and r is isomorphic
to the complete bipartite graph Kpq,pq with the edges of a matching removed.
However in that case Aut T = Spq x Z2 contains a subgroup Zpq x Z2 regular on
V which is a contradiction. It follows that the actions of K on B and C are
inequivalent. The only 2-transitive groups of degree pq with two inequivalent
2-transitive representations of degree pq, p = q = 3(mod 4), are the projective
groups PSLn(r) <K< PFLn(r), pq = (rn - l)/(r - 1), n > 3. Here B can be
identified with the points and C with the hyperplanes of the projective geometry
PGn-1(r). Moreover for a hyperplane B, F1(B) is either the set of points incident
with B or the set of points not incident with B, as these are the two orbits of KB

in B. In either case Aut F > Aut PSLn(r) and hence Aut F contains a subgroup
R regular on V; for example R can be taken as a cyclic subgroup of PGLn(r)
of order (rn - 1 ) / ( r - 1) (a so-called Singer cycle) acting regularly on the points
and hyperplanes of PGn-1(r) extended by a polarity interchanging points and
hyperplanes. Hence K is not 2-transitive on B or C. D

Completion of Proof of Proposition 5.1. Now K = GB and so KB is primitive of
degree pq. Also K(B) = 1 by Lemma 5.2 and hence K ~ KB. By Lemma 5.4, K
is not 2-transitive on B. By Lemma 4.1 there are no primitive groups of degree
pq satisfying these conditions, which is a contradiction. D

Thus \S\ > 2. We shall examine the cases where \S\ is an odd prime or the
product of two primes in the next sections.

6. The case \E\ = q

Next we treat the case where \E\ is equal to an odd prime. Without loss of
generality we may assume that E = {B1, B 2 , . . • , Bq}, with \Bi\ = 2p, 1 < i < q.
Then for B e r, GB induces on B a primitive permutation group of degree 2p
and it follows from [16] that, since p = 5, GB is 2-transitive on B. Thus the
subgraph induced on B is either the complete graph K2p or the empty graph
2pK1. Replacing T by Fc if necessary we may assume that B is 2pK1 that is, B
contains no edges.

LEMMA 6.1. If |z| = q then K = 1.

Proof. Assume that K = 1. By the minimality of G, since K = 1, G/K =
Zq. Thus GB = K, and by Lemma 5.2, K(B) = 1. By the classification of
finite 2-transitive groups (see [4]), K has at most two inequivalent 2-transitive
representations of degree 2p. Since the union of the blocks on which the
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representation of K is equivalent to its representation on B forms a block of
imprimitivity for G, it follows that the actions of K on all blocks of S are
equivalent. Thus Ka fixes exactly one point in each block of z, so Ga = Ka has
q fixed points and is transitive on C\{B} for each C € S where Ka fixes B e C.
The set F of q fixed points of Ka is (easily shown to be) a block of imprimitivity
for G in V. Since T is connected there is an edge from a to some point in V\F.
Hence for some C € Z\{B}, if {B} = Fn C, we have C\{B] C F1(a). Now G
is isomorphic to a subgroup of the largest subgroup of Sym V preserving both
S and {Fg\g € G}, namely S2p x Sq. Moreover the group S2p x Zp preserves
all the G-orbits in V x V and hence Aut F contains S2p

 x Zq, which contains a
subgroup Z2p

 x Zq regular on V, This contradiction completes the proof. D

PROPOSITION 6.1. If |Z| = q then q = 11, p - 3, G ~ PSL2(11) and there is at
least one example of a vertex-transitive non-Cayley graph given in Construction 2.2.

Proof. By Lemma 6.1, K = 1, so G<Sq. Let T denote the unique minimal normal
subgroup of G. By Lemma 4.2, as p divides the order of G, T is nonabelian
and is one of the groups listed in Lemma 4.2(b) (with p and q reversed). Since
GB must be 2-transitive of degree 2p, p = 3(mod 4), q = l(mod p), it follows
that either G = PSL2(11) with q - 11, p - 3, or PSLm(r) <G< PFLm(r) with
q = (rm - l)/(r - 1). By Proposition 2.2, Ext(11) is a vertex-transitive non-Cayley
graph of order 66 admitting G=PSL2(11) (with this action on V) and hence we
may assume that PSLm(r) < G < PFLm(r). Now G is 2-transitive on Z, so
the quotient graph FE is the complete graph Kq. For B e Z, GB is therefore
transitive on both B and Z\{B}- Let a e B and C e Z\{B} be such that
F1(a) n C is nonempty. If Ga,c were transitive on C then F(a) DC. As G is
2-transitive on S, for every block C' = C, F1(a) D C' and hence F = Kq[2pK1]
contradicting Lemma 5.1. Thus Ga,c has at least two orbits in C and F 1 (a )nC
is a proper subset of C.

Since q is prime, r and m are both prime. Now

(or Zr.Z(r-1)/2 if m = 2). Since all 2-transitive groups of degree 2p have a
nonabelian simple normal subgroup we must have m > 3, (m, r) = (3, 2) or
(3, 3) and the only possibility for |B| = 2p, p = 3(mod 4), is 2p = (rm-1 -1)
/(r - l)(since r is prime). Since m is an odd prime, m - 1 = 2m > 2 and
2p = (rm + l)(rm - l)/(r - 1) which implies that m = 3, q - 1 + r + r2 and
2p = r + 1 so p divides q - 1 which is contradiction. D

7. The case |Z| = 2p

Next we treat the case where |Z| is twice an odd prime, that is, without loss
of generality, £ = {B1, B2, ...B2p}, with \Bi\ = q, 1 < i < 2p. This case is far
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more complicated than the previous two cases. The first substantial part of the
analysis is the proof of the following proposition.

PROPOSITION 7.1. If \E\ = 2p then we may assume that K = 1, that is we may, if
necessary, replace G by a different minimal transitive subgroup of Aut F, preserving
E, and acting unfaithfully on Z, or replace p by q, q by p and £ by a set of 2q
blocks of size p so that the kernel is nontrivial.

Before proving Proposition 7.1 we first obtain some detailed information in
the case where G is faithful on 27.

LEMMA 7.1. If K = 1 then GE is imprimitive.

Proof. If K = 1 then G = Gs<S2p. If Ge is primitive then G is a transitive
primitive permutation group of degree 2p and so, since p = 3(mod 4), it follows
from [16] that G = A2p or S2P. So GB is A2p-1 or S2p-1 which has no subgroup
of index q. D

Thus, if K = 1, Gs either has 2 blocks of size p or p blocks of size 2. The
next Lemma shows that in the former case Proposition 7.1 holds.

LEMMA 7.2. Either Proposition 7.1 holds or K = 1 and Gs has a set of p blocks of
size 2, and does not preserve a set of two blocks of size p.

Proof. Suppose on the contrary that K = 1 and Gs has two blocks of size p.
Then G = GE < SpwrS2. Hence, in its action on V, G has two blocks, A\ and
A2 say, of length pq. Now G_has a subgroup H of index 2 that fixes A\ and
A2 setwise, H<SP x Sp, and H := HA i<SP where HA

i is transitive of degree qp.
Let M be the socle of H and T the socle of 77. As M fixes A1 and A2 setwise
it is either transitive on A1 and A2 or has 2q orbits in V of length p. In the
latter case replacing Z by the set of M-orbits would give a block system for G
for which the kernel is nontrivial and Proposition 7.1 is true. Hence we may
assume that M is transitive on A1 and A2. In particular T = Zp and so T is
a nonabelian simple group. Now M<T xT. If M = T x T then M(A1) = T is
transitive on A2 so F = K2[A1] which contradicts Lemma 5.1. Hence M = T.
Let B e B, B C A1. Now MB is transitive on the q points of B and thus
contains a subgroup of index q. Hence, by Lemma 4.2(d), M = PSLm(r) with
p = (rm - l)/(r - 1), and by Lemma 4.3, m is an odd prime, and PSLm-1(r) is
a nonabelian simple group with no subgroup of index q.

Now MB = Z r
m-1 .GLm-1(r) and for a e B, \MB : Ma\ = q is prime. Since

PSL m - 1 (r ) has no subgroup of index q, Ma > Z r
m - 1 .SLm - 1(r) and so MB =

Zq < Zr-1, whence Ma fixes B pointwise. By Lemma 4.4, Ma is transitive on
A1\B. Set Zi = {B' € E\B' C Ai}, for i = 1, 2. Suppose M acts similarly
on E1 and E2. Then MB fixes B1 e E2. Now MB = MBB' = Zr

m-1GLm-1(r)



98 MILLER AND PRAEGER

has a unique subgroup of index q containing Z r
m - 1SLm - 1(r). Hence Ma fixes

B U B' pointwise and Ma is transitive on A1\B and on A2\B'. Since for
a' e B', Ma = Ma' is transitive on A1\B and A2\B', it follows that, for a1 e A1\B
and a2 e A2\B', (MB)ai is transitive on B and on B' for i = 1, 2. This implies
that each of B and B' is trivially joined to each of A1\B and A2\B'. By
Lemma 3.1 applied to the partition {U = B U B'\ A1\B, A2\B'} and the group
MB, we have (MB)BuB ' < Aut T. We have shown that (MB)BUB' = (y) ~ Zq, and
hence Aut F contains a subgroup Zp

q fixing each block of H setwise. It follows
that Aut r has a transitive subgroup of the form Zp

q.NG(P) preserving S, where
P < M has order p. A minimal transitive subgroup of this group would either
be unfaithful on £ or would have a normal subgroup of order p with 2q orbits
of length p. In either case Proposition 7.1 would hold.

Hence we may assume that M acts on S1 and S2 as on points and hyperplanes
of PGm-1(r) respectively. Let g e G\Gn(Sp x SP) be a 2-element. By mini-
mality, G = (M, g) and, as g interchanges A1 and A2,g interchanges points and
hyperplanes of PGm-1(r) so g e C G (M). We may identify S1 with the 1-spaces
of an m-dimensional vector space Vm(r) over GF(r) in such a way that B = (e1)
where e1 = (1, 0,. . . , 0). For A e SLm(r), the preimage of M in GLm(r), let A
denote the corresponding element of M. Then A fixes B (or A e MB) if and
only if

where a1 det A1 = 1 (as BA is the block identified with the 1-space generated
by e1A). Let us, for convenience, identify E2 with the set of 1-spaces (generated
by column vectors) in the dual space V*. The image of a 1-space (v*) of V*
under A is (v*}A = (A~V). Now for A e MB, A e Ma if and only if the (1, 1)
entry a1 in A belongs to the subgroup L of order (r - l)/q of the multiplicative
group of GF(r). Note that

where a1
-1a2 + A1a'2

 = 0, or equivalently a1a'2 + A1
-1a2 = 0. Thus the image of

(x*) under A, where x* = [ x 1 , x2]
t = [x1, x2, ..., xm] t , is (A - 1x*) where

From this we see that the orbits of MB and Ma on E2 are the same, namely
E21 = {{[0, x2]

t)\x2 = 0} and S22 = {([x1,x2]t)|x1 = 0,x2 = 0}; |Z21| = (rm-1 -
l)/(r - 1), and \En\ = rm-1. Consider B' = {[0,1, 0 , . . . , 0]t) e E21. Then
A e MB, B' if and only if
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where a1a2det A2 = 1. Since m > 3, Ma,B' is still transitive on B'. Hence Ma

is transitive on U{B'\B' € E21}. Now let B' e S22, say B' = {[1, 0]t). Then,
for A € MB, A e MB,B' if and only if a'2 = 0, that is if and only if a2 = 0. If
A € Ma,B' then, in addition, a1

-1 e L, and it follows that Ma,B' fixes B' pointwise.
That is Ma has q orbits of length rm-1 in U{B'\B' e E22}.

We may identify the vertex set V = A1 U A2 as follows: A1 = {Lv|v €
Vm(r)\{0}},A2 = {Lv*|v* e Vm(r)*\{0}}, where, for A €GLm(r), A arts as
follows: (Lv)A = L(vA), (Lv*)A = L(A -1v*). The 1-spaces (v*) in E22 are the
ones for which e1y= 0 and the points in B' = (v*) are the sets £'Lv*, 0 < i < q,
where £ is a primitive root of GF(r). The q orbits of Ma,B' in U{B'|B' e E22} are
therefore the sets A2,j = {Lw*\e1.w e e jL}, 0 < j < q . Since F is connected, for
a. e B C A1, F1(a) n A2 = 0 and, since T = K2[A1] by Lemma 5.1, F1(a) 2 A2.
By replacing T by Fc if necessary we may assume that F1(a)n A2 2 U{B'|B' e E21}
and therefore F1(a)nA2 = U j e j A2,j for some 0 = J C [0, q-1]. Also F1(a)n A1

may contain all or none of A1 \B and may contain some points of B\{a}. Thus the
edges of T are of at most three types. Those of type 1 are of the form {Lv, Lw*}
where v.w e Ujej ejL; those of type 2, which exist if and only if A1\B C F1(a),
are of the form {Lv, Lw} where n and w are linearly independent in Vm(r),
and {Lv*, Lw*} where v* and w* are linearly independent in Vm(r)*; those of
type 3, which may or may not exist are of the form {Lv, Lw} where v = kw for
k e L1, and {Lv*, Lw*}, where v* = kw* for k € L2 for some L1, L2 c GF(r)#

with Li = Li
-1 for i = 1,2. The action of GLm(r) on V defined above preserves

the set of edges and the kernel of this action is L* = {lI|l e L}. That is Aut
F > GLm(r)/L* and the normal subgroup Z r - 1/L* ~ Zq (the scalars modulo
L*) fixes each block of E setwise. Now since Aut F interchanges points and
hyperplanes, it also contains the mapping a given by (Lv)a = Lv*, (Lv*)a - Lv
and a normalizes a Singer cycle P and P/L* ~ Zpq. Hence Aut F contains a
regular subgroup, namely P/L*.(a), which is a contradiction. This completes the
proof of Lemma 7.2. D

In order to complete the proof of Proposition 7.1 we must examine the case
where K = 1 and GE has p blocks of size 2.

LEMMA 7.3. If K = 1 and GE has p blocks of size 2 then G contains no nontrivial
normal 2-subgroup.

Proof. If K = 1 and GE has p blocks of size 2, then G = GE < S2wrSp

and G has a set A = {D1 , D2 , . . . , Dp} of p blocks of length 2q in V where,
without loss of generality, A = Bi U Bi+p for 1 < i < p. Let S = O2(G) (the
largest normal 2-subgroup of G). Then S = G n Sp

2 and |S| < 2P. Suppose
that S = 1. Then the S-orbits form a set i = {C1, C2,..., Cpq} of pq blocks
of imprimitivity for G of size 2. We may assume that D1 = C1 u C2 U • • • U Cq

and then, for a € B1, Sa fixes B1 n Ci for 1 < i < q. Hence Sa fixes B1
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pointwise and similarly fixes Bp+1 pointwise. So fix Sa > D1. As fix Sa is a
block for G, either Sa = 1 and \S\ = 2, or fix Sa = D1. Suppose temporarily
that |S| > 2, so fix Sa = D1. Then Sa = S(D1) and the S-orbits and Sa-orbits
in V\D1 are the same. It follows that, for each i, j with 1 < i < q and
q < j < pq, Ci and Cj are trivially joined, and hence by Lemma 3.1 applied to
the partition {U = D1, Cq+1,..., Cpq} and subgroup S, SD1 < Aut r. Similarly,
setting SDj = (yj) ~ Z2 for 1 < j < p, Aut F > Y = fa, 1 < j < p) = Zp

2 > S.
Suppose that P is a Sylow p-subgroup of G. If NG(P) has a subgroup P.Q of
order pq with 2 orbits of length pq, then Aut F > Y.PQ and clearly y = y1y2 • • • yp
is centralized by PQ (since for any g e G with Dg

i = Dj, we have yg
i = yj, as

SDi = (yi)
Di). So (y) pQ is regular on V which is a contradiction. Similarly

when G has such a subgroup PQ, and \S\ = 2, then SPQ is regular on V, which
again gives a contradiction. Hence G has no subgroup PQ of order pq with two
orbits of length pq.

Now G/S = GS/SS<SP. As G is minimal transitive on V and as G permutes
the pq orbits of S of length 2, G/S is minimal transitive of degree pq and G/S
is the subgroup of Sp induced on A. Now (G/S)D is a subgroup of G/S of
index p where D € A, and (G/S)c is a subgroup of (G/S) D of index 3, where
C C D, C & V. Let T be the minimal normal subgroup of G/S. Then by
Lemma 4.2(d), T=PSLm(r) where (rm - l)/(r - 1) = p, and by Lemma 4.3, m
is prime and PSLm - 1(r) is a nonabelian simple group with no subgroup of index
q. Let M be the subgroup of G containing S such that M/S = T. If G = M
then, by the minimality of G, M has q orbits of length 2p and G = (M, g) for
some q-element g. But, if P = Zp e Sylp(M), then S.NG(P) is transitive on
V contradicting the minimality of G. Hence G = M, so G/S = T and either
|5| - 2 or y = Zp

2 < Aut T.
Now GD1, = S.(Zr

m-1.GLm-1(r)). Since 5 interchanges B1 and Bp+1, GD1 =
SGB1 and |S : SnGB1| = 2. So GB1/(Sn\GB1) = Zr

m-1.GLm-1(r). As GB1 is
transitive on B1 of degree q, and PSLm-1(r) has no subgroup of index q, it
follows that Ga > (SnGB1).(Zr

m-1.SLm-1(r)) and q divides r- 1. This means in
particular that GD1 is regular on D1, and G(D1) = Ga is transitive on the p - 1
blocks of A\{D1}. By Lemma 4.4, G(D1,)D2 is transitive on the set of q S-orbits
contained in D2. If |S| > 2 then S(D1) = 1 and S(D1) is transitive on all 5-orbits
not in D1 (since fix Sa = D1); but this means that Ga is transitive on V\D1, and
so F is isomorphic to FA[D1], contradicting Lemma 5.1.

Hence |S| = 2 and Ga, for a e D1, has two orbits in V\D1, with a joined
to exactly one of these orbits (again using Lemma 5.1 and the fact that F is
connected). Let C1 = {a, B}, and Ci = {a', B'} be two S-orbits in D1. Since
Ga fixes D1 pointwise, and since S = Z2 intercharges the points in each S-orbit,
and S interchanges the two Ga-orbits in V\D1, it follows that a' is joined to all
points in one of the Ga-orbits in V\Dj and to no points in the other. We may
assume that F1(a)\D1 = F1(a')\D1 and F1(B)\D1 = F1(B')\D1. Suppose now
that {a} = C1 n B1. We have shown that Ga = G(D1) is a normal subgroup of
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GB1 of index q so GB1 permutes the Ga-orbits amongst themselves. However,
since [GB1 : Ga| = q is odd, GB1 must fix setwise the two Ga-orbits in V\D1. As
GB1 is transitive on B1, all points of B1 are joined to the same Ga-orbits in V\D1

and all points of Bp+1 are joined to the other Ga-orbit in V\D1. Hence each of
B1 and Bp+1 is trivially joined to each of F1(a)\D1, F1(B)\D1, the two Ga-orbits
in V\D1. By Lemma 3.1 applied to the partition {U = D1, F1(a)\D1, F1(B)\D1}
and the subgroup GB1, we have GB1 < Aut f. Now GB1 is a cyclic group of
order q, say (y). It follows that Aut F contains Y = (yg \g E G) = (Zq)p with one
copy of Zq acting on each of the Di

, for i = 1 to p. Moreover SD1, and hence
S centralizes y, so S centralizes Y. Let X = Zp < G. Then X acts regularly on
{D1, D2, ..., Dp}; X acting on Y normalizes a subgroup Q = Zq, and (S x Q).X
is regular on V, which is a contradiction. Hence S = 1. This completes the
proof of Lemma 7.3. D

Proof of Proposition 7.1. By Lemmas 7.1, 7.2, and 7.3, if K = 1 then GE has p
blocks of size 2 and contains no nontrivial normal 2-group. Thus G = GE<SP

and G has a set 4 of p blocks, {D1, D2, ..., Dp} say, of length 2q in V where,
without loss of generality, A = Bi u Bi+p for 1 < i < p. Let T = soc G and for
convenience set D = D1, B = B1 and let a e B. Now GD is a subgroup of G
of index p, and as GD is transitive on {B, B1+p}, GD has a subgroup of index
2, namely GB. Since GB is transitive on B, (GB)a = Ga is a subgroup of GB

of index q. Hence, by Lemma 4.2(d), T =PSLm(r) where (rm - l)/(r - 1) = p
and by Lemma 4.3, m is an odd prime and PSLm - 1(r) is a nonabelian simple
group with no subgroup of index q. If T were not transitive on E then T would
have 2 orbits in Z of length p. The T-orbits would be blocks for G and so
Ge < SpwrS2 whence Proposition 7.1 would be true by Lemma 7.2. So we may
assume that T is transitive on S of degree 2p.

Suppose that Tv is intransitive. Then T has q orbits in V of length 2p, and by
minimality G = (T, x) for some q-element x. Let P ~ Zp be a Sylow p-subgroup
of G. Then G =TNG(P), so we may assume that x € NG(P). However, since
G<SP, \NG(P)\ divides \NSp(P)\ = p(p- 1) and hence q divides p - 1 which is a
contradiction. Therefore Tv is transitive and, by minimality, G = T.

Now TD = Zr
m-1 .GLm-1(r) has TB as a subgroup of index 2, and hence r is

odd and TB > Zm - 1 .SLm - 1(r). Since \TB : Ta\ = q is prime Ta > Z m - 1 . SL m - 1 ( r )
for otherwise PSLm - 1(r) would have a subgroup of index q. By Lemma 4.4, Ta

is transitive on V\D, whence F ~ FA[D1] which contradicts Lemma 5.1. This
completes the proof of Proposition 7.1. D

In the remainder of this section we assume (as we may do, by Proposition 7.1),
that K = 1. Then GE is a minimal transitive subgroup of S2P. We shall show
that there are no non-Cayley graphs in this case.

PROPOSITION 7.2. There are no examples with |Z| = 2p.
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First we investigate a Sylow q-subgroup Q of K. Let B e S, and a e B.

LEMMA 7.4. The group Q is normal in G and Q(B) fixes pointwise r blocks, where r
is 2, p or 2p, and Q(B) is transitive on each of the 2p-r blocks not fixed pointwise
by Q.

Proof. By Lemma 5.2(a) q divides \K\, so Q = 1. Since G = KNG(Q), NG(Q) is
transitive on E and hence on V. By minimality, G = NG(Q). Since the set of
rq fixed points of Qa = Q(B) is a block of imprimitivity for G in V,r divides 2p.
By Lemma 5.2, r = 1. D

LEMMA 7.5. The number r is not p.

Proof. If r = p then there are two distinct subgroups, Q1 and Q2 of index q in Q,
each fixing pointwise half of the blocks, and Q1 n Q2 = 1. Hence Q = Q1 x Q2.
Suppose that Q1 fixes the blocks D1 = {B1 , B2, ..., Bp} and Q2 fixes the blocks
D2 = {Bp+1, Bp+2, ..., B2p}. Then G/K acts imprimitively on Z with D1 and
D2 being blocks of size p. Let H be the subgroup of G of index 2 fixing D1 and
D2 setwise.

Let P be a Sylow p-subgroup of G. Since p is odd, P normalizes Q1 and Q2,
and since p does not divide q — 1, P centralizes Q1 and Q2. Hence P centralizes
Q. Now P < H and hence G = NG (P) .H, so NG(P) contains a 2-element x
which interchanges D1 and D2. Since (Q, P, x) is transitive on V, it follows by
the minimality of G that G = (P, Q, x) - (Q.P).(x) and \G\ = psq22t for some
s, t > 1. Since P centralizes Q, P is normal in G, so P has 2q orbits of length p.
Now, for a € B1, Pa fixes each block in D1 pointwise. Hence P is Zp or Zp x Zp.
Suppose that |P| = p2 and let P2 = Pa and, for B € Bp+1, let P1 = PB. Then
Qk x Pk is transitive on the set Dk of pq points in Dk and fixes V\Dk pointwise,
for k = 1, 2. It follows that F ~ K2[D1] which contradicts Lemma 5.1. Hence
|P| = p. Since Aut P = Zp-1 and p = 3(mod 4), it follows that x2 e CG(P).

Now Q = Q1 x Q2 where Q1 = (a) and Q2 = (b) (say) are cyclic groups of
order q. For each 1 <i_< q- 1, Qi = (abi) is transitive on each block of H
and, if (x) normalized Qi then Qi.P(x) would be a transitive subgroup of G,
contradicting the minimality of G. Hence (x) does not normalize Qi for any
1 < i < q - 1- Since Qx

1 - Q2 we may assume that ax = b and bx = aj for some
1 < j < q - 1- Then Qx

i = (baij) which equals Qi if and only if i2j = l(mod q).
Since (x) normalizes no (Qi, j is a nonsquare modulo q. Now x2 conjugates each
element y of Q to yj. Since j is a nonsquare x2 e CG(Q)- But since q = 3(mod
4), x4 centralizes Q, and since ax4 = aj2 it follows that j2 = 1, whence j - -1.
Now x4 centralizes P and Q and fixes D1 and D2 setwise. Hence x4 = 1.

So |G| = 4pq2 and, setting P = (c), G = (a, 6, c, x) where aq = bq = cp =
x4 = 1, and [a, b] = [a,c] = [b, c] = 1, ax = b, bx = a-1 and, since x either
centralizes or inverts P, cx = cs where 6 = ±1. Also Ga = (a, x2) and it follows
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from Proposition 3.1 that F is a Cayley graph. D

The remaining possibilities for r are r = 2 and r = 2p. We shall treat the case
r = 2p next, but as preparation we prove the following technical lemma.

LEMMA 7.6. If GE has a set A = {D1, D2,..., Dp} of p blocks of size 2, and if
L = G(A), the subgroup of G fixing each block setwise, is such that L = K, then
GE ~ D2p.

Proof. Suppose that L = K, Then GE ~ GA < SP, GE is a minimal transitive
group of degree 2p, and for D = {B, C} € A, (GD)A has a subgroup (GB)4 of
index 2. If G4 has socle Zp then this implies that GE ~ D2p, so assume that the
socle N of GA is nonabelian. Then by Lemma 4.2(c), either N - M11, p = 11
or N =PSLm(r), p = (rm - l)/(r - 1). In the latter case m > 3 by Lemma 4.3.

Suppose that N =PSLm(r). Let K < R < G such that R/K = PSLm(r). If RE

is intransitive then RE has 2 orbits of length p and, for a Sylow p-subgroup P
of R, G = RNG(P). Thus there is some 2-element, x say, belonging to NG(P)
such that QP(x) is transitive on V, so G = QP(x). In this case G/K<P(x) does
not contain PSLm(r) which is a contradiction. Hence RE, and hence also Rv, is
transitive and so, by minimality, G = R.

Now GE
D = Z r

m-1 .GLm-1(r) and, since |GE
D : GE

B| = 2, r must be odd, and
GE

B > Zr
m-1.SLm-1(r). By Lemma 4.4, GB is transitive on E\D, and since

for a e B,GB = QGa, also_Ga is transitive on Z\D. Jf \Q\ > q then Ga
is transitive on V\D where D = B U C, and so F ~ FA[D] which contradicts
Lemma 5.1. Hence \Q\ = q. Since Aut Q ~ Zq-1, CG(Q) has N as a composition
factor, and hence CG(Q) is transitive on V. By minimality of G, G = CG(Q),
and in particular K = Q and GB = QB ~ Zq. Now QD is central in GD and
GD/Q = Zr

m-1.GLm-1(r). If Ga
C ~ Zq, then we would have GD

D ~ Zqwr Z2 but
GD has no quotient of this type. Hence GD

D ~ Z2q. So GD has a subgroup H
of index q and HD is the unique subgroup of GD

D of order 2. Let B' € E\D.
If GB'a,B' is transitive then, since Ga is transitive on E\D, Ga is also transitive
on V\D) and T ~ FA[D] as above. Hence GB'a,B' = 1 and so Ga has q orbits of
length 2p - 2 in V\D.

Now aH = {a, B} is a block of imprimitivity for G. Moreover, since H <
CG(Q). Q permutes the H-orbits in V\D, and since \H: Ga\ = 2 it follows that the
H -orbits and Ga -orbits in V\D are the same. It follows that each H-orbit in D is
trivially joined to each Ga-orbit in V\D, and hence by Lemma 3.1, HD < Aut F.
Let HD = (CD) = Z2. For D' € A we therefore have (CD') < Aut F where Co-
is the unique involution in GD'. Then, for P ~ Zp < G, and £ = LD'eACD'
the subgroup QP(C) of Aut T is regular on V, which is a contradiction. Thus
N =PSLm(r).

Hence N = M11. Then G/K = M11, G
E

D = M10, and GE
B = A6 is transitive on

A\{D}. Now M11 induces a rank 3 action of S (see [7]) and so GB is transitive
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on S\{B, C}. A similar argument to that used for PSLm(r) now shows that F
is a Cayley graph. D

LEMMA 7.7. The number r is not 2p.

Proof. If r = 2p then Q = Zq. Since Gs is minimal transitive of degree
2p, Gs ¥ S2P or A2p. Since p = 5, it follows from [16] that GE is imprimitive.

Since p does not divide q - 1, a Sylow p-subgroup P of G must centralize Q.
Hence the normal subgroup H of G generated by Q and all Sylow p-subgroups
of G centralizes Q. If H is intransitive then H has two orbits of length pq and,
as G = HNG(P), some 2-element y e NG(P) interchanges them. By minimality
of G, G - (Q x P)(y), and as q = 3 (mod 4), y inverts or centralizes Q. If H is
transitive then G = H = CG(Q). In particular CG(Q) is either transitive or has
two orbits of length pq.

It is convenient to continue our proof via a series of steps:

Step 1: If p2 divides |GE| then G = (Q x P)(y) where P is a Sylow p-subgroup
of G and y is a 2-element normalizing P.

Suppose that p2 divides |GE|. Then GE has two blocks, D1 and D2 say, of size
p and the subgroup H above is intransitive. Then step 1 follows.

Step 2: K = Q.ZT for some divisor r of q-1, and CK(Q) = Q.

Here q does not divide \K(B)\, and it follows from Lemma 5.2 that K(B) = 1.
Thus K ~ KB, a transitive group of degree q with normal subgroup QB = Zq,
so K = Q.Zr for some divisor r of q -1. In particular Ck(Q) = Q.

Step 3: G = (Q x P)(y) where y € NG(P), and y is a 2-element which inverts Q.

Suppose this is not the case. Then, by our observations above, G centralizes
Q. By step 2, K = CK(Q) = Q and GE = G/Q < S2p. Suppose that p2 divides
|G|. Then, by step 1, G = (Q x P)(y), where y is a 2-element normalizing
P. Using a similar argument to that used in the proof of Lemma 7.5 (and
interchanging P and Q), y4 e CG(Q) n CG(P) n CG({y)) and thus y4 = 1. Thus
G is as in Proposition 3.1 (with p and q reversed), and hence f is Cayley graph,
a contradiction. Hence p2 does not divide |G| and a Sylow p-subgroup P of G
is cyclic of order p.

Suppose that Gs has 2 blocks D1 and D2 of length p. Then, as in step 1,
G = (Q x P){y) for some 2-element y which normalizes P and interchanges D1
and D2. Since p = 3 (mod 4), y2 centralizes P and Q, and fixes D1 and D2

setwise, whence y2 = 1. Therefore |G| = 2pq, so G is regular on V, which is
a contradiction.

Hence GE has a set A - {D1, D2, ..., Dp} of p blocks of size 2, G/Q =
GE < S2wrSp and a Sylow p-subgroup P of G has order p and acts transitively
on A. Let L = G(A), the subgroup of G fixing each A setwise. Then K < L.
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Suppose that LE = 1. Then L = K = Q, and GE = GA<SP. By Lemma 7.6
G/K = G/Q ~ D2p, which implies that G is regular on V, a contradiction. So L
has p orbits of length 2q. Let S be a Sylow 2-subgroup of L. Then G = LNG(S),
so we may choose P < NG(S). Then, by minimality of G, G = QSP. Since
GG(Q) = G we have in fact G = Q x SP. Also, since QS = Q x S is transitive
on each D1, |(QS)D1| = 2q and QS is regular on Di. Now S is elementary
abelian of order 2a say, where a < p. Thus G = {x1, x2, ..., xa, b, c} where
(x1, x2, ..., xa) = Z2

a, bq = cp = 1, b centralizes xi for 1 < i < a and b centralizes
c. If c centralized S then PS would be an abelian transitive group of degree 2p
and hence regular whence QSP would be regular on V which is a contradiction.
Hence c acts nontrivially on 5, and by the minimality of G, c acts irreducibly on
S. Then, setting y = bc,G is as in Proposition 3.2 and it follows that F is a
Cayley graph which is a contradiction. Thus step 3 follows.

Now we complete the proof of Lemma 7.7. By step 3, G = (Q x P)(y) where
y is a 2-element which inverts Q and normalizes P. By step 2, K = Q. So
P ~ PE, and |P| is p or p2. If |P| = p2 then, by a proof similar to that for
Lemma 7.5, y4 = 1. If y has order 4 then G is as in Propositon 3.1 (with p and
q interchanged), so F is a Cayley graph which is a contradicton. On the other
hand if y has order 2 then G contains a regular subgroup, again a contradiction.
Hence P = Zp acts transitively on the Q-orbits within each CG(Q)-orbit. As
y2 e CG(P) n CG(Q) and y2 preserves the sets D1 and D2, y

2 = 1, but then G is
regular, which is a contradiction. D

Proof of Proposition 7.2. By Lemmas 7.4, 7.5, and 7.7, r = 2 and Q has p
distinct subgroups, Q1, Q2, ••• , Qp, of index q that fix pointwise two blocks and
are transitive on each of the other 2p-2 blocks of E, say Qi fixes pointwise blocks
Bi and Bi+p, for 1 < i < p. Moreover G = NG(Q) permutes the subgroups Qi

and hence the set A - {Di = Bi U Bi+p|1 < i < p} is a system of p blocks of
imprimitivity of length 2q in V. Let D e A, where D = B U C, B, C € E. The
group QD = (CD) = Zq for some C € Q. It follows from Lemma 3.1 that £D €
Aut P, and Aut T contains Q = LDeA QD = Zp

q. Now Q < Q = ZP, so Q = Za
q

for some a < p. Since Q1 = 1, a > 2.
Let L be the subgroup of G that fixes the sets A, for 1< i < p, setwise.

Suppose that L = K. Then L has p orbits of length 2q. Let 5 be a Sylow
2-subgroup of L. Since G=LNG(S), N G (S) is transitive on A, and by minimality
G=QNG(S). Let x be a p-element in N G (S) acting nontrivially on A. Then,
again by minimality, G = QS(x). Set P = (x). Now xp fixes each A setwise,
and so normalizes QDi ~ Zq. Since p does not divide q - 1 it follows that xp

centralizes QDi and hence xp fixes Di pointwise, for all i, whence xp = 1. So
P = Zp.

Suppose that \SE\ > 4. Then SB fixes only B and G setwise and interchanges
the two blocks of S in all other D' e A\{D}. Let a e B. Now GE

a = GE
B = SE

B,
and since Ga > Q1 it follows that Ga is transitive on D' for each D' e A\{A}.
Therefore F ~ FA[D], contradicting Lemma 5,1. Hence \SE\ = 2, and therefore
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GE ~ Z2p. Let H be the subgroup of index 2 in G such that HE ~ Zp. Then
P C H and so G=HNG(P). So there is a 2-element y € NG(P) interchanging
the two H-orbits. By minimality G=QP(y), and (y) is a Sylow 2-subgroup of G.
Now y fixes each Di setwise and hence normalizes each QDi. Since 4 does not
divide q — 1, y2 centralizes each QDi and hence y2 € CG(Q) n K = Q, so y2 = 1.
Hence |5| = 2 and as P normalizes S, PS is cyclic and S = (y).

Now since P = (x) and S permute the Qi, they normalize Q. If Dx
i = Di+1

for 1 < i < p, we may choose QDi = (Ci) such that Cx
i = Ci+1 for i = 1, ..., p - 1.

Then Cp = Cxp
1 = C1 since xp = 1 and hence C1C2 • • • Cp is centralized by x. Also y

normalizes each QDi, and, since x centralizes y, y acts in the same way on
each QDi, so either y € CG(Q) or y inverts each element of Q. In either case
(C1C2 • • • C p , x , y) is regular on V, a contradiction.

Thus L = K, so GE = GA<SP and, by Lemma 7.6, GE ~ D2p. Since
K < LB € EKB < AGL(1, q)2p, the prime p does not divide \K\ and so a Sylow
p-subgroup P = (x) of G has order p. Moreover, as QNG(P) is transitive it
follows that, for some 2-element y e NG(P), G=QP(y), and K = Q(y2). Since y
normalizes Q, y2 e CK(Q) = Q, so y2 = 1 and (C1C2 • • • C P , x , y ) is regular on V,
a contradiction. Q

8. The case \E\ = pq

Finally we treat the case where F = (V, E) is a non-Cayley graph of order 2pq
with minimal transitive group G such that \S\ is equal to pq. By the results of
the previous sections we may assume that G preserves no partition with blocks
of size p, q, or pq. We assume as usual that pq e NC, p = l(mod q), q = 1
(mod p) and p = q = 3 (mod 4). First we show that G is not faithful on S.

PROPOSITION 8.1. If \H\ = pq then K =1.

Proof. Suppose that G(E) = K = 1. Then G = GE<Spq. If GE is primitive then
G is a transitive primitive permutation group of degree pq and so, by Lemma 4.1,
either G > Apq, or PSLm(r) < G < PFLm(r) with pq = (rm - l)/(r - 1).
Let a e B e S. If G > Apq then, since GB has a subgroup of index 2
(namely Ga), G = Spq. Now Sm has a transitive subgroup of the form G1 x G2,
where G1 = Zp.Zp-1 and G2 = Zq.Zq-1, which contains an odd permutation.
Therefore G1 x G2 is transitive on V, contradicting the minimality of G. Suppose
that T=PSLm(r) < G < PFLm(r). If Tv is not transitive the T-orbits provide
a system of two blocks for G of size pq, which is a contradiction. Hence, by
minimality, G = T. Then TB = Zr

m-1.GLm-1(r) and, since TB has a subgroup
of index 2, r is odd. If m = 2 then pq = r + 1 = 1 (mod 4) whence r is even,
which is a contradiction. Hence m > 3, and since (rm - l)/(r - 1) = pq, (m, r)
is not (3, 3) and hence PSLm-1(r) is a nonabelian simple group. Therefore
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Ta > Zm - 1 .SLm - 1 (r) and by Lemma 4.4, Ta is transitive on V\B and hence
r = FE[B], which contradicts Lemma 5.1.

Thus GE is imprimitive and, without loss of generality, we may assume that GE

preserves a set A = {D1, D2, ...,Dp} say, of p blocks of size q. Each Di is
a subset of q blocks of E; let Di denote the union of these blocks. Then
A = {D1, D2 , . . . , Dp} is a set of blocks of imprimitivity of size 2q for G in V.

Suppose that GE is not faithful on A and let H be the subgroup of G that fixes
each block of A setwise. For D e A let H = HD < Sq. Let M be the socle of H
and T the minimal normal subgroup of H. Since the M-orbits form a G-invariant
partition of V and there is no G-invariant partition with blocks of size q, M has
p orbits of length 2q in V and in particular \M\_ is even. Now M = Ta for some
1 < a < p. If a > 2 it follows that T ~ FA[D] which contradicts Lemma 5.1.
Hence M = T < H and MD is a simple primitive group of degree q. Moreover,
since |M| is even, M is a nonabelian simple group. Since MB has Ma as a
subgroup of index 2, it follows from Lemma 4.2(c) that M is M11 with q = 11,
or PSLm(r) with q = (rm - l)/(r - 1) and (from Lemma 4.3(a)) m is prime, and
r = r0

mc for some prime r0 and c > 0. In the latter case, since \MB : Ma\ = 2, r
is odd.

If p does not divide \OutM\ then a p-element x of G/M centralizes M. Since
(M, x) is transitive, G = (M, x) and CG(M) = (x) is a normal subgroup of G
with 2q orbits of length p contradicting the fact that there are no such G-
invariant partitions of V. Hence p must divide \OutM\ and C G (M) = 1. Hence
M = M11, and so M=PSLm(r) and p divides \Out PSLm(r)\ = 2mc.(m, r - 1).
It follows that p = m. If p divides r - 1 then q = 1 + r + ••• + rm-1 = m
(mod p) = 0(mod p) which is a contradiction. Hence c > 1. By minimality
of G, G = (M, x} < PFLm(r) for some p-element x. It follows that the actions
of H on DI, D2, • • • , Dp are equivalent and hence that Ha fixes a set C of 2p
points, two from each of the Di. Now C is block of imprimitivity for G and
Gc

c = Z2P. Therefore Gc has a subgroup of index 2 containing Ga, whence G
has a block of imprimitivity of size p, which is a contradiction. Hence G acts
faithfully on A, that is G a GE a GA<SP.

Again let T denote the minimal normal subgroup of G. If T is abelian then T
has 2q orbits of length p which form a G-invariant partition of V, contradicting
our assumptions. Hence T is a nonabelian simple group. For B € D e A, GB

is a subgroup of GD of index q. Hence, by Lemma 4.2(d), T=PSLm(r) and
p = (rm-1)/(r-1).

If TE is intransitive, then the TE-orbits form a block system for GE consisting
of q blocks of size p on which GE acts unfaithfully. We have just shown that
this is not possible. Hence T is transitive on E. If T were intransitive on
V then G would preserve a partition of V consisting of two blocks of size pq,
which is not the case. Hence T is transitive on V and so by minimality G = T.
Since q divides |G|, it follows from Lemma 4.3 that m is an odd prime, and
r = rmc

0 for some prime r0 and c > 0. If m = 3, r = 2, then q = 3 would divide
p - 1 = 6 which is not the case. Also, since p = 3(mod 4), (m, r) = (3, 3).
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Hence PSLm-1(r) is a nonabelian simple group. If PSLm-1(r) had a subgroup
of index q then, arguing as in the proof of Lemma 4.3(c), m = 3, q = r + 1 =
3(mod 4), and p = 1 + r + r2 = 3(mod 4). However q = r + 1 = 3(mod 4)
implies that r=2 contradicting the fact that (m, r) = (3, 2). Hence PSLm-1(r)
has no subgroup of index q, and it follows that GB, and hence Ga (where a € B)
contains Zm - 1 .SLm - 1(r). Then by Lemma 4.4, Ga is transitive on V\D, and it
follows that F ~ F A [D] , which is a contradiction. D

PROPOSITION 8.2. There are no examples with |E| = pq.

Proof. By Proposition 8.1, K is a nontrivial elementary abelian 2-group, and
hence GE = G/K is a minimal transitive group of degree pq. If GE is primitive
then by Lemma 4.1, either GE > Apq, or PSLm(r) < GE < PFLm(r) with
pq = (rm - l)/(r - 1), where m is prime or the square of a prime, and (m, r) =
(2, 2), (2, 3). Since Apq contains a transitive cyclic subgroup, Apq is not
minimal transitive.

If T = PSLm(r) then, since T is transitive of degree pq, by minimality. GE = T.
Since KB is transitive, GB = Ga.K and hence Ga

{B} is transitive. If \K\ > 4
then Ka = 1 and so there is some C e E such that KC

a is transitive. Therefore Ga
is transitive on V\B and so F = FE[B] which contradicts Lemma 5.1. Hence
\K | = 2. Since F = FE[B], Ga must have 2 orbits in V\B and a must be
adjacent to the points of one of the these orbits and not the other. By replacing
P by its complement if necessary (as we may do by Lemma 5.2), we may assume
that a is not adjacent to a', where B = {a, a'}. Since each of a and a' is
adjacent to exactly one point in every block of E\{B} and since F is connected,
it follows that a and a' are at distance 3. Now F1 (a') is a Ga-orbit containing
at least one point at distance 2 from a, and so F1(a') C F2(a). It follows that
F1(a') = F2(a), and so F is a distance transitive antipodal double cover of a
complete graph. These graphs are equivalent to regular "two graphs" with doubly
transitive groups, which were classified in [30, Theorem 1]. It follows from [30]
that GE=PSL2(r) with r = 1 (mod 4) whence pq = r + 1 = 2 (mod 4), which is
a contradiction, since pq is odd.

Thus GE is imprimitive and, without loss of generality, we may assume that
GE preserves a set A = {D1, D2 , . . . , Dp} of p blocks of size q. Let D e A
and B = {a, B} for some B € D. Let L be the subgroup of G that fixes the
sets A, for 1 < i < p, setwise. First suppose that L = K. Then L has p
orbits of length 2q and, for a Sylow q-subgroup Q of L, G=LNG(Q), so NG(Q)
is transitive on E. By minimality, G =KNG(Q). Let c be a p-element in NG(Q)
acting nontrivially on A. Then, again by minimality, G =KQ(c). Now cp fixes
each D e A setwise, and so normalizes QD ~ Zq. Since p does not divide q -1 it
follows that cp centralizes QD and therefore fixes setwise each block of E in D,
for each D e A, that is cP e K. But as K is a 2-group, this implies that cp = 1.

Now Q < HDeAQD = Zq
p, so Q = za

q for some a < p. Since c normalizes Q,
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(Q(D))
c - Q(D') for D' = Dc € A\{D}. It follows that either Q(D) fixes only the q

blocks of E contained in D, or Q = Zq. Similarly, since K is normal in G, both
Q and (c) normalize K and it follows that one of (i) K(B) fixes only the block
B pointwise, or (ii) K(B) fixes pointwise one block of S in each block of A and
is transitive on the rest, or (iii) K(B) fixes pointwise all the blocks of E in D
and is transitive on the rest, or (iv) K = Z2. We shall analyze these possibilities
according to the nature of the set of fixed points of K(B).

In case (i), since K(B) is transitive on B' for all B' e Z\{B}, F ~ F E [B] ,
contradicting Lemma 5.1.

In case (ii), G preserves the block system o = {(fix K (B))
g\g e G} consisting

of q blocks of size 2p with each block the union of p blocks of S. Since
Qo =(KQ)o is a normal subgroup of Go and Qo is transitive, Go <AGL(1, q)
and p does not divide |Go| (since p does not divide q - 1). We therefore have
K(c) < G(o) and Go = Qo = Zq. Moreover K.(Q n G(o)) is normal in G and so
the length of its orbits divides |fix K(B)\ = 2p. It follows that Q n G(o) = 1, that
is |Q| = q. Thus Q(c) = Zpq, K = (x1, x 2 , . . . , xd) = Zd

2 for some d > 2, and by
minimality Q(c) = (y) = Zpq acts irreducibly on K. It follows from Proposition
3.2 that r is a Cayley graph, which is a contradiction.

In case (iii), if \Q\ > q2 then Qa is transitive on all D' e A\{D}, and
hence Qa.K(B) is transitive on V\D, where D is the union of the blocks of S
contained in D. Thus F = F A [D] , contradicting Lemma 5.1. Hence |Q| = q and
Q(c) = Zpq. Thus K = ( x 1 , x2, ..., xd) = Zd

2 for some d > 2, and by minimality
Q(c) = (y) = Zpq acts irreducibly on K. it follows from Proposition 3.2 that P
is a Cayley graph which is a contradiction.

In case (iv), \K\ = 2 and so K < Z(G). Hence Q is normal in G and it follows
that G has blocks of size q, which is a contradiction.

Thus L = K, so GE ~ GA<SP, and GA
B is a subgroup of GD

A of index q. Let N
denote the minimal normal subgroup of GA. By Lemma 4.2(d), N=PSLm(r)
where p = (rm - 1) / (r -1) and, by Lemma 4.3, m is an odd prime (since p = 3).
Since p = l(mod q), (m, r) = (3, 2), and since p = 3(mod 4), (m, r) = (3, 3).
Hence PSLm-1(r) is a nonabelian simple group. As in the proof of Proposition 8.1,
PSLm-1(r) has no subgroup of index q. It follows that GB/K > Z r

m - 1-SLm - 1(r)
and hence, by Lemma 4.4, that GB/K (and thus GB) is transitive on E\D. Since
GB=KGa, Ga is transitive on E\D. If \K\ > 4, then, for a e B, Ka = K(B) is
normal in GB, and Ka = 1. If Ka is transitive on each block of E in S\D, then
Ga is transitive on V\D and F = P A [D] , which contradicts Lemma 5.1. Hence
Ka fixes a point of V\D, and since Ga is transitive on E\D, Ka fixes V\D
pointwise. Since fix Ka is a block of imprimitivity for G, |fix Ka| divides 2pq
while |fix Ka| > \V\D\ = 2q(p-1), and we have a contradiction. Hence \K\ = 2
and K = Z(G). If K < G' (where G' is the derived subgroup of G), then
G > K x G', G' >PSLm(r), and by minimality, G' is intransitive. Since G has no
blocks of length p or pq, G' must have q orbits of length 2p, but then q divides
|G : K x G'|, and if x is a q-element which permutes the G'-orbits, then (G', x)
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would be a transitive proper subgroup of G, which is a contradiction. Hence
K < Z(G) n G'. So K is contained in the Schur multiplier of PSLm(r), But
(see [12]), since m is an odd prime and p = (rm - l)/(r - 1) is prime, the Schur
multiplier of PSLm(r) has order (m, r - 1)6 where either 6 = 1 or (6, m, r) =
(2, 3, 2). But since (m, r) = (3, 2), this is a contradiction. Hence there are no
examples with \E\ = pq. This completes the proof of Proposition 8.2. n

The results in Sections 5-8, namely Propositions 5.1, 6.1, 7.2, and 8.2, together
complete the proof of Theorem 2.
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