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Abstract Let R(X) = Q[x1,x2 xn] be the ring of polynomials in the variables X =
{x1, X2,..., xn} and R*(X) denote the quotient of R(X) by the ideal generated by the elementary
symmetric functions. Given a a e Sn, we let g a ( X ) = Yai>ai+1 (xa1,xa2 ... xai). In the late 1970s
I. Cessel conjectured that these monomials, called the descent monomials, are a basis for R*(X).
Actually, this result was known to Steinberg [10]. A. Garsia showed how it could be derived
from the theory of Stanley-Reisner Rings [3]. Now let R(X, Y) denote the ring of polynomials in
the variables X = {x1, x2 xn} and Y = {y1, y2 yn}. The diagonal action of a e Sn on
polynomial P(X, Y) is defined as rP(X, Y) = P(xai, xa2 xan, ya1, ya2 yan). Let R p ( X , Y)
be the subring of R(X, Y) which is invariant under the diagonal action. Let R p + ( X , Y) denote the
quotient of R p ( X , Y) by the ideal generated by the elementary symmetric functions in X and the
elementary symmetric functions in Y. Recently, A. Garsia in [4] and V. Reiner in [8] showed that a
collection of polynomials closely related to the descent monomials are a basis for Rp+(X, Y). In this
paper, the author gives elementary proofs of both theorems by constructing algorithms that show
how to expand elements of R*(X) and Rp *(X, Y) in terms of their respective bases.

1. Introduction

The basic purpose is to show that the methods introduced in [1] and [2] can
also be used to give elementary proofs of Theorems 1.1 and 1.3 stated below.
To be specific we need some notation. Let R(X) = Q[x1, x2,..., xn] be the ring
of polynomials in the variables X = {x1,x2,..., xn}. Given a a e Sn, we agree
to represent a as a1a2 • • • an where ai = a(i). The action of a on a polynomial
P(X) is defined as
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A polynomial is said to be symmetric if a P ( X ) = P(X) for all a € Sn. Let us
denote by RS n(X) the ring of symmetric polynomials in the alphabet X.

Recall that the elementary symmetric function e i ( X ) is defined to be



6 ALLEN

It is well known and not difficult to show that

(1) The ei(X) are algebraically independent.
(2) Every element of R S n (X) can be expressed as a polynomial in the e i (X ) .

Define R*(X) to be the quotient of R(X) by the ideal generated by the
elementary symmetric functions. In other words,

The descent monomial g a ( X ) in the alphabet X = {x1, x2 , . . . , xn} is defined
to be

where we use the convention that if A is a statement then

For example, if a = 2 1 4 3 then

Let us define Q = {ga : a e Sn}. We have the following theorem whose proof is
given in Section 2.

THEOREM 1.1. The collection Q is a basis for R*(X).

Let M(X) be a graded polynomial ring over the variables X = {x1,x2,..., xn}
where the grading is obtained by the degrees of the variables and set Hm(M(X))
to be the submodule of M(X) consisting of elements that are homogeneous of
degree m in X. The Hilbert series of M(X) is defined to be

An important ingredient in our proof is the following proposition, whose proof
can be found in [3].

THEOREM 1.2. Let V be a graded ring over a field F and I = {i1, i2 , . . . , in} a set
of homogeneous elements with deg(ij) > 0. Let V* be the quotient of V fey the ideal
generated by I. Let B be a finite collection of homogeneous elements such that the
Hilbert series H(V) equals
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Then the following are equivalent

spans V as a vector space.
(b) I are algebraically independent and V is a free module over F[i1 , ...,in] with

basis B.
(c) B is a basis for V* as a vector space.

Now it is well known and not difficult to show that the Hilbert series of R(X)
and the collections of the descent monomials and of the elementary symmetric
functions satisfy (3). Thus once we have established that the collection

spans R(X) we will have a proof of Theorem 1.1.
Let u be a vector of length n with nonnegative integer components. The

monomial symmetric function m u X ) is defined to be

where Gu is the stabilizer of u. The fundamental theorem of symmetric functions
implies that the product of the elementary symmetric functions ep1

1e
p2

2 ...epn
n(X)

can be replaced in (4) by the monomial symmetric functions mu(X). Thus it
will be sufficient to prove that the collection

spans R(X). This is precisely what we will do in Section 2.
Let Y = {y1, y2, • • • , yn} and let R(X,Y) be the ring of polynomials in the

variables X and Y. Furthermore, let us suppose that M(X, Y) is a bigraded
module and let Hm,P(M(X, Y)) denote the collection of polynomials of M(X, Y)
that are homogeneous of degree m in X and p in Y. We define the Hilbert
series of M(X, Y) to be

We say that a polynomial P(X, Y) is doubly symmetric if

for all a, B e Sn. Let us denote the ring of doubly symmetric polynomials by
RsnxSn(X, Y). Note that every polynomial in RsnxSn(X, Y) can be expressed as a
polynomial in the collection {e1(X), e2(X), .... enX), e1(Y), e2(Y), ..., en(Y)}.
We define the diagonal action of Sn on a polynomial P(X, Y) by
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A polynomial P(X, Y) is said to be diagonally symmetric if for all a € Sn

Clearly the ring of diagonally symmetric polynomials is spanned by the collection

where P ( X , Y) is a polynomial in the variables X and Y and

Let us denote the ring of diagonally symmetric polynomials by RP(X, Y). We
wish to consider the quotient ring

THEOREM 1.3. The collection

where

is a basis for Rp*(X, Y).

We will prove Theorem 1.3 by using the following two-parameter version of
Theorem 1.2, namely

THEOREM 1.4. Let V be a bigraded ring over a field F where the bigrading is obtained
by the degree of the variables in X = {x1, x2, • • • , xn} and Y = {y1 , y2,..., yn}
respectively. For p = p(X, Y) e V let degx(p) and degy(p) be the degrees of p in X
and Y respectively. Let I = {i1, i2,..., in, j1, J 2 , . . . , jn} be a set of homogeneous
elements where degx(ik) > 0, degy(ik) = 0, degx(jk) = 0, and degY(jk) > 0. Let
V* be the quotient of V by the ideal generated by I. Let B be a finite collection of
homogeneous elements such that the Hilbert series H(V) equals
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Then the following are equivalent

spans \ as a vector space.
(b) I is algebraically independent and V is a free module over F [ i 1 . . . , in, j1,

• • •, jn] with basis B.
(c) B is a basis for V* as a vector space.

That GR, I = {e1(X), e2(X), ..., e n ( X ) , e1(Y), e2(Y), ..., en(Y)} and the Hil-
bert series of H(R p (X , Y)) satisfies (7) can be found in [4]. Furthermore, it is
a corollary to Theorem 2.3 of [5]. Thus to prove Theorem 1.3 it is sufficient to
show that the collection

spans RP(X, Y). Once again we use the fundamental theorem of symmetric
functions to substitute the monomial symmetric functions for the elementary
symmetric functions in (8) and thus we need only show that the collection

spans R p (X , Y). We will show this in Proposition 3.2.

2. The descent basis for R*

If P — (p1, P2 ,..., Pn) we will use the convention that xp — xp1
1x2

p2 ...xpn
n. We

define the type r(p) of xp to be the rearrangement of entries of p in decreasing
order. For example, if p = (3,1, 3, 0, 2, 0) then r(p) = (3, 3, 2,1, 0, 0).

We shall label the entries of p from smallest to largest, breaking ties from right
to left. In other words, if a1 < a2 < ... < ak are the distinct entries in p, we first
label all the entries of a1 from right to left, then we label all the entries of a2

from right to left, etc. From this labeling we construct g(p) = (g1, g2, • • •, gn) in
the following manner. Replace the entry labeled by 1 with 0. Now recursively,
if we have replaced the entry labeled t with a we replace the entry labeled t + 1
by a if it is left of the entry labeled t and by a + 1 otherwise. Let mi = pi - gi

so that u (p) is the sequence

For example, if
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then we have

and thus

Note that we have defined a decomposition $ of p into a pair of sequences
(g(p), u(P)). This decomposition is the usual P-partition encoding of p (see [7]
and [9]). This gives the following theorem.

THEOREM 2.1. Let p = (P1, P2, • • •, Pn). If g = g(p), then xg is a descent monomial.

We can define a total order on the set of monomials xp in the following
manner. We say that xq <ts, x

p if

where <L means that we are comparing the sequences in lexicographic order.
We will now show that the set MQ is triangularly related to the set of monomials

in R(X).

PROPOSITION 2.1. Let xp = xp1
1x

p2
2 • • • xPn

n, g = g(p) and u = u(p). Then

where mu is the monomial symmetric function corresponding to u.

Proof. Recall that if Gu is the stabilizer of u then the monomial symmetric
function mu(X) is defined as

where ru = (ua1, ua2,..., uan) and thus

Let Bk = {i: gi = k} and define

where t is the largest entry in 7.
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Now there are three cases

(a) a € Gu.
(b) a e pGu some B e SB but r e Gu.
(c) a e BGu for all B e SB.

Note that in the first case,

Thus Z a u+T = xp.
In case (b), we have a = Bg where B e SB and g e Gu. Recall that every

element of SB fixes 7 and 3 fixes u and thus

and therefore r(au + g) = r(p). Note, however, if j, k e Bi and j < k then
Mj > Mk. Thus au, <L u and

In case (c), where a e BGu for all B e SB we have that r(au + g) < r(p). In
either case (b) or case (c) we have that xau+r <ts x

p. n

Proposition 2.1 shows that the collection MQ spans R(X). Thus we have
proven Theorem 1.1.

The proof of Proposition 2.1 implies an algorithm for the expansion of an
element of R* as a linear combination of elements of Q. As an example,
suppose that our alphabet is X = {x1, x2, x3, x4} and that xp = x2

2x3x4. Then
p = (0, 2, 1, 1), g = g(P) = (0, 1, 1, 1). and u = u(p) = (0, 1, 0, 0). Now

thus

or

Now both mu(X)xg and x1x2x3x4 are elements of the ideal generated by the
elementary symmetric functions. The terms x2X

2
3X4 and x2x3x

2
4 are elements of

Q, namely the descent monomials that correspond to 3241 and 4231 respectively.
Thus in R* we have
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3. A basis for Rp*(X, Y)

Suppose that yq — 9a(Y). We say that xp is minimal with respect to yq if
P = (P1, P2, • • • , Pn) satisfies the following three conditions:

As an example, let us suppose that a = 41253. Thus if yq = ga(Y) then
q = (1, 1, 0, 2, 1) and the minimal monomial with respect to yg would be xp

where p = (1, 1, 1, 0, 0).

PROPOSITION 3.1. Suppose that yq = ga(Y) for some a e Sn. Then xp is minimal
with respect to yq if and only if xp = r a - 1 ( X ) where

Thus xp = r a - 1 ( X ) is minimal with respect to yq.
On the other hand, if we suppose that xp is minimal with respect to yq then

we see that pn = 0 and

Thus if xp is minimal with respect to yq then

Thus xp = r a - 1 ( X ) . D

Proof. Suppose xp = r a - 1 (X) . Note pn = 0. Now,
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Note that the above proposition also may be also found in [5] or [6]. Recall
that RP(X, Y) is the ring of diagonally symmetric polynomials in the alphabets
X and Y. Note that within each polynomial pxpyq there is a unique monomial
xp'yq' such that

where

means

(see [5]). Since pxpyq = pxp'yq' we see that RP(X, Y) is spanned by the collection

where

Now if r(p) = (p'1, p'2,..., p'n) and r(q) = (q'1, q '2 , . . . , q'n) then we define the xy-
type rxy(p, q) of (p, q) to be (p'1, p'2,..., p'n, q'1, q'2,..., q'n). We now define a total
order on the polynomials pxpyq (where (p, q) € DS) and say that pxpyq >xy pxuyv

if and only if

Given this, we can now prove the following proposition:

PROPOSITION 3.2. The collection

is triangularly related to the set PXy, and thus MGK spans RP(X, Y).

Proof. Let (p, q) E DS. As was seen in Section 2, q decomposes into (u, g). Now
let a e Sn be such that ga(Y) = yr. Set xs = ra-1(X). Note that (s, g) e DS.
Let v = (v1, v2, ..., vn) where Vi = pi — si.

Now define Di = {j : sj = i} and Ci = {j : gj = i}. Suppose that d is the
largest entry of 6 and g is the largest entry of 7. Set
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and

Now

where \GV\ and |Gu| denote the cardinality of Gv and Gu, respectively. There
are three cases that we wish to consider.

(a) a e SD implies that r(av + s) <L r(p) and thus r(av + s, Bu + g) <L (p, q).
(b) Suppose a e SD and B e Sc. a € SD implies that r(av + s) = r(p) but

B e Sc implies that r(Bu + g) <L r(q). Thus once again we have that
r(av + s, Bu + g) <L r(p, q).

(c) Suppose a e S D and B e Sc. Note that the elements of SD and SG fix 6 and
7 respectively. Thus

and

and thus rxy(av + s, Bu + g) = rxv(p, q). Now

where (p, t) e DS. Note that t = ra - 1B(q) where r € SD. Let us suppose
that t = q. Let a be the smallest integer such that ts = qs. i, j E Ck and
i < j imply that qi > qj. (p, q) € DS, i, j e Dk and i < j also imply that
qi > qj. Thus ts < qs. Therefore, we have that (p, t) <L (p, q). Thus

where Cp,q > 0. d

This proof provides an algorithm for expanding elements of RP(X, Y) in
terms of the basis MQR and thus elements of R * P ( X , Y) into the basis QR.
Suppose that
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Note

In Section 1, we saw that

Thus

and therefore

Note that px2
1X2 = m 2 , 1 ( X ) and that px2

1x2y2y
2
3y4 and px2

1x2y2y3y
2
4 are elements of

our basis QR (hence MQR) . Thus the only term that is not already expanded into
elements of our basis is mi(Y)px2

1x2y2y3y4. Now y2y3y4 is a descent monomial,
namely it is the descent monomial of 2341, but x2

1x2 is not minimal with respect
to y 2 y 3 y 4 . The minimal monomial that corresponds to the sequence (0, 1, 1, 1)
is the monomial that corresponds to the sequence (1, 0, 0, 0), or x1. Thus we
must have

Thus

Letting m 1 2 (X) = m ( 1 , 1 , 0 , 0 ) ( X ) we have

Recognizing that

and that

gives us that

or better
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Now,

and both pm12(X)x1y2y3y4 and px1x2x3y1y2y3y4 are elements of MQR. Thus, we
have that

Now in R * p ( X , Y) we have
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