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Abstract. Let R(X) = Q[z, z2,...,zs] be the ring of polynomials in the variables X =
{zy, =3, ..., zn} and R*(X) denote the quotient of R(X) by the ideal generated by the elementary
symmetric functions. Given a o € S,, we let g,(X) = I'Ia‘”m(a:,1 Zo, ... %) In the late 1970s

I. Gessel conjectured that these monomials, called the descent monomials, are a basis for R*(X).
Actually, this result was known to Steinberg [10]. A. Garsia showed how it could be derived
from the theory of Stanley-Reisner Rings [3]. Now let R(X, Y) denote the ring of polynomials in
the variables X = {zy, 23,..., 2.} and Y = {41, 32, ..., ¥n}. The diagonal action of o € S, on
polynomial P(X, Y) is defined as oP(X, Y) = P(%s,, Toy, -++1 Ton» Yoys Yous ++» Yo ). Let RP(X,Y)
be the subring of R(X, Y) which is invariant under the diagonal action. Let R**(X, Y) denote the
quotient of R?(X,Y) by the ideal generated by the elementary symmetric functions in X and the
elementary symmetric functions in Y. Recently, A. Garsia in [4] and V. Reiner in [8] showed that a
collection of polynomials closely related to the descent monomials are a basis for R”*(X, Y). In this
paper, the author gives elementary proofs of both theorems by constructing algorithms that show
how to expand elements of R*(X) and R”*(X, Y) in terms of their respective bases.
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1. Introduction

The basic purpose is to show that the methods introduced in [1] and [2] can
also be used to give elementary proofs of Theorems 1.1 and 1.3 stated below.
To be specific we need some notation. Let R(X) = Q[z,, 2, ..., z.] be the ring
of polynomials in the variables X = {z;, z;, ..., z,}. Given a o € S,,, we agree
to represent o as 0103 - -0, Where o; = o(i). The action of o on a polynomial
P(X) is defined as

oP(zy1, 2, ..., Zn) = P(Te,, Toys -+ T, )

A polynomial is said to be symmetric if cP(X) = P(X) for all 0 € S,. Let us
denote by R%(X) the ring of symmetric polynomials in the alphabet X.
Recall that the elementary symmetric function e;(X) is defined to be

ei(X) = Z T &gy * * * Ty (1)

1<Hi1<fa<<fign
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It is well known and not difficult to show that

(1) The €;(X) are algebraically independent.
(2) Every element of RS (X) can be expressed as a polynomial in the e;(X).

Define R*(X) to be the quotient of R(X) by the ideal generated by the
elementary symmetric functions. In other words,

Q[wl’ L2y vouy mﬂ]
(e1(X), e2(X), ..., en( X))

The descent monomial g,(X) in the alphabet X = {z,, 25, ..., z,} is defined
to be

gﬂ(X) = H(mm Lgg e oo .’Du‘)x(”i>0i+1) (2)
where we use the convention that if A is a statement then
1 if Ais true
x(4) = {0 if A is false

For example, if o0 = 2 1 4 3 then

R*(X) =

90 = (22)(222124) = 717524

Let us define § = {g, : 0 € S,}. We have the following theorem whose proof is
given in Section 2.

THEOREM 1.1. The collection G is a basis for R*(X).

Let M(X) be a graded polynomial ring over the variables X = {z,23,..., Zp}
where the grading is obtained by the degrees of the variables and set H,,,(M(X))
to be the submodule of M(X) consisting of elements that are homogeneous of
degree m in X. The Hilbert series of M(X) is defined to be

HM)(X)) = 3 _ t" dimHn(M(X))
m20
An important ingredient in our proof is the following proposition, whose proof
can be found in [3].

THEOREM 1.2. Let V be a graded ring over a field F and T = {iy, i3, ..., in} a Set
of homogeneous elements with deg(i;) > 0. Let V* be the quotient of V by the ideal
generated by I. Let B be a finite collection of homogeneous elements such that the
Hilbert series H(V) equals

Ype ptis®
IT-(1 - £9) @
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Then the following are equivalent

(a)
BI = {bi}'i?---if» : b e B, p; 2 0}

spans V as a vector space.

(b) I are algebraically independent and V is a free module over F[iy, ..., i,] with
basis B.

(c) B is a basis for V* as a vector space.

Now it is well known and not difficult to show that the Hilbert series of R(X)
and the collections of the descent monomials and of the elementary symmetric
functions satisfy (3). Thus once we have established that the collection

EG = {e]'e] - el (X)go(X) : 0 € Sn} 4

spans R(X) we will have a proof of Theorem 1.1.
Let u be a vector of length n with nonnegative integer components. The
monomial symmetric function m,(X) is defined to be

_ Hoy Moy om
myu(X) = z A AL
a€Sy/G,

where G, is the stabilizer of . The fundamental theorem of symmetric functions
implies that the product of the elementary symmetric functions ef'e}’ - - - el (X)
can be replaced in (4) by the monomial symmetric functions m,(X). Thus it
will be sufficient to prove that the collection

MG = {my(X)g,(X): 0 € S} )

spans R(X). This is precisely what we will do in Section 2.

Let Y = {y1, ¥2,..., ¥n} and let R(X,Y) be the ring of polynomials in the
variables X and Y. Furthermore, let us suppose that M(X,Y) is a bigraded
module and let Hy, ,(M(X, Y)) denote the collection of polynomials of M(X, Y')
that are homogeneous of degree m in X and p in Y. We define the Hilbert
series of M(X,Y) to be

HM(X,Y)) = ) t" ¢ dimHn,o(M(X, Y))

We say that a polynomial P(X,Y) is doubly symmetric if

P(ma,a Tagy vooy Tany Yoy Yy + v yﬁy.) = P((C], L2y eoey Ty Y1y Y20 400y yn)

for all @, B € S,. Let us denote the ring of doubly symmetric polynomials by
R5*5 (X, Y). Note that every polynomial in R%*5 (X, Y) can be expressed as a
polynomial in the collection {e;(X), e2(X), ..., en(X), e1(Y), e2(Y), ..., ex(Y)}.
We define the diagonal action of S, on a polynomial P(X,Y) by
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UP(EI’ T2y ey Ty Y1y Y25 000y yn) = P(map Laoyy vory Lo,y Yoys Yozs o+ ya,.)-

A polynomial P(X,Y) is said to be diagonally symmetric if for all o € S,

P(zlawZa veeys Tny Y1, Y2, --'9yn) =aP(m1, T2y ooy Ty Y15 Y2, -"ayn)'

Clearly the ring of diagonally symmetric polynomials is spanned by the collection

{» P(X,Y)}
where P(X,Y) is a polynomial in the variables X and Y and

Let us denote the ring of diagonally symmetric polynomials by R?(X,Y). We
wish to consider the quotient ring

R(X,Y)

RPXY) = @), @) oy enX), en(D), @), o en@))

6

THEOREM 1.3. The collection
GR = {pg,(Y)rs1(X) : 0 € S,.}

where
rg-1(X) = [J (o1 - wiyCor'>ei)

is a basis for R™*(X,Y).

We will prove Theorem 1.3 by using the following two-parameter version of
Theorem 1.2, namely

THEOREM 1.4, Let V be a bigraded ring over a field F where the bigrading is obtained
by the degree of the variables in X = {x1,23,...,zo} and Y = {y1, 42, ..., ¥n}
respectively. For p = p(X,Y) €V let degy(p) and degy (p) be the degrees of p in X
and Y respectively. Let T = {iy, i3, ..., i, J1, J2, ---, Jn} De a set of homogeneous
elements where degx(ix) > 0, degy(ix) = 0, degx(jx) = 0, and degy,(jx) > 0. Let
V* be the quotient of V by the ideal generated by I. Let B be a finite collection of
homogeneous elements such that the Hilbert series H(V') equals

Thep gier® pdesx®)

ITh-1 (1 — tdesxG)(1 — gleay ()’ Q)
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Then the following are equivalent

(a)
BI = {62 . g5 . 7 b€ B, i, my 2 0}

spans V as a vector space.

(b) T is algebraically independent and V is a free module over Fliy, ..., in, 31,
<+, Jn] with basis B.

(c) B is a basis for V* as a vector space.

That GR, T = {e1(X), e2(X), .., en(X), e1(Y), ex(Y), ..., ea(Y)} and the Hil-
bert series of H(R?(X, Y)) satisfies (7) can be found in [4]. Furthermore, it is
a corollary to Theorem 2.3 of [5]. Thus to prove Theorem 1.3 it is sufficient to
show that the collection

EGR = {1t e (X) el - b (¥) pro-(X) o(V) 10 €5} (8)

spans R?(X,Y). Once again we use the fundamental theorem of symmetric
functions to substitute the monomial symmetric functions for the elementary
symmetric functions in (8) and thus we need only show that the collection

MGR = {m,(X)m,(Y)pr,-1(X)gs(Y) : o € S} ®
spans R?(X, Y). We will show this in Proposition 3.2.

2. The descent basis for R*

If p = (p1, P2, ..., Pn) We will use the convention that zP = 2f1ab?...zf. We
define the type 7(p) of =P to be the rearrangement of entries of p in decreasing
order. For example, if p = (3, 1, 3, 0, 2, 0) then 7(p) = (3, 3, 2, 1, 0, 0).

We shall label the entries of p from smallest to largest, breaking ties from right
to left. In other words, if a; < a3 < --- < a; are the distinct entries in p, we first
label all the entries of a; from right to left, then we label all the entries of a;
from right to left, etc. From this labeling we construct v(p) = (71, 72, -+., n) i
the following manner. Replace the entry labeled by 1 with 0. Now recursively,
if we have replaced the entry labeled ¢t with s we replace the entry labeled t + 1
by s if it is left of the entry labeled ¢ and by s + 1 otherwise. Let u; = p;i — v
so that u(p) is the sequence

p@E)=p—1@) = (@1 =Y, P2 = Y21 -+ Pn — Tu): (10$)
For example, if

o = TririraziTy
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then we have

r=(3,1,3,0, 2, 0) and labeled p = (3¢, 13, 35, 02, 24, 0y)
and thus

v(p) =(1,0,1,0,1,0) and pu(p) =(2,1,2,0,1,0).

Note that we have defined a decomposition ¢ of p into a pair of sequences
(v(p), u(p)). This decomposition is the usual P-partition encoding of p (see [7]
and [9]). This gives the following theorem.

THEOREM 2.1, Let p = (p1, P2y ..+, Pn) If v = v(p), then = is a descent monomial.

We can define a total order on the set of monomials z? in the following
manner. We say that 29 <;, z? if

(1) (@) <L 7(p); or
(2) if 7(q) = 7(p) then g <z p
where <; means that we are comparing the sequences in lexicographic order.

We will now show that the set MG is triangularly related to the set of monomials
in R(X).

(11)

PROPOSITION 2.1. Let 2P = z}'z}? - --ab, v = ¥(p) and p = u(p). Then

my(X)z" = o + Z cqz? 12)

I, P

where m,, is the monomial symmetric function corresponding to p.

Proof. Recall that if G, is the stabilizer of u then the monomial symmetric
function m,(X) is defined as

mu(X) = Z z?

g €8, /G,

where op = (g, Hoys -+, Ho,) and thus

mu(X)z" = Z Y = Z 7T,

0€S,/Gu 0€8,/G,
Let By = {i:v; = k} and define
SB = SBo XS'};l Xovoe XSB‘

where ¢ is the largest entry in ~.
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Now there are three cases

(a) c €G,.
(b) o € BG, some S € Sp but 0 € G,.
(c) o & BG, for all B € Sp.

Note that in the first case,

op+y=p+y=@+v, ..., tn+v) =@ P2, ..., P) = p.

Thus zo#+Y = P,
In case (b), we have o = Bg where 8 € Sp and g € G,. Recall that every
element of Sp fixes v and g fixes p and thus

op+y=Pgu+Py=P0u+pPy=0Bu+r)=70p

and therefore r(ou + v) = 7(p). Note, however, if j, k¥ € B; and j < k then
pj 2 pr. Thus op <z p and

op+y<pp+y=p
In case (c), where o ¢ 8G, for all B € Sp we have that 7(ou + v) < 7(p). In
either case (b) or case (c) we have that 294+7 <,, «?. |

Proposition 2.1 shows that the collection MG spans R(X). Thus we have
proven Theorem 1.1.

The proof of Proposition 2.1 implies an algorithm for the expansion of an
element of R* as a linear combination of elements of G. As an example,
suppose that our alphabet is X = {zy, 2;, 3, 4} and that z* = w§m3m4. Then
pr=(0,2,1,1),vy=+(p) =(0,1,1,1), and p = u(p) = (0, 1, 0, 0). Now

my(X) =z + 2+ 23+ 24
thus

mu(X)z" = z 22324 + TiT3T4 + za734 + THTA2l
or

T3T3T4 = mu(X)x? — 21222324 — Tyx3T4 — TYT3T3

Now both m,(X)z" and z;z,x3z4 are elements of the ideal generated by the
elementary symmetric functions. The terms z,a3z4 and z,z323 are elements of
g, namely the descent monomials that correspond to 3241 and 4231 respectively.
Thus in R* we have

:L‘%w:;.’l,‘.; = —w2w§z4 - .'1:2.'173(1)3.
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3. A basis for R”*(X, Y)

Suppose that y? = g,(Y). We say that 2P is minimal with respect to y? if
? = (p1, p2, ..., Pn) satisfies the following three conditions:

(@) pn=0;
(b) if ¢; > gis1 then pi = piyy; (13)
(c) if ¢ <gi+q then p; = p;yy + 15

As an example, let us suppose that ¢ = 41253. Thus if ? = g,(Y) then

g=(1,1,0,2,1) and the minimal monomial with respect to y? would be 2
where p = (1, 1, 1, 0, 0).

PROPOSITION 3.1. Suppose that y? = g,(Y) for some o € S,. Then z* is minimal
with respect to y° if and only if ¥ = r,..(X) where

rg-i(X) = [@1 - mae>o. (14)

Proof. Suppose z? = r,_.(X). Note p, = 0. Now,

¢ <gi+1=>tisto the rightof i+ 1in o
=071 > ”.'_+11
=pi=piy +1
Thus z? = r,.1(X) is minimal with respect to 9.

On the other hand, if we suppose that zP is minimal with respect to y? then
we see that p, = 0 and

Pi = piv1 + 12 ¢ < iy
#U;1>0‘;31

Thus if 7 is minimal with respect to y?¢ then

n
2 = [ [Ty
j=1i2j
n

[ [Ty

i=1j<i

n
1y -1
= H(‘”l g YT,
i=1

Thus z? = r -(X). a
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Note that the above proposition also may be also found in [5] or [6]. Recall
that R?(X, Y) is the ring of diagonally symmetric polynomials in the alphabets
X and Y. Note that within each polynomial pzPy? there is a unique monomial
z¥y? such that

()= (2) =2 (3)

where

7)>(7)

(%) (5

means

(1) p; > pj; or

(2) if p; = p; then ¢ > ¢;

(see [5]). Since pzPy? = pa¥'y? we see that R?(X, Y) is spanned by the collection
PXY = {pz"y? : (p, q) € DS}

where

oo (3) 2 () 2020 (3)

Now if 7(p) = (v}, 5,..., P,) and 7(¢) = (4}, %, ..., ¢,) then we define the zy-

type To(p, q) of (p, q) to be (¢}, ..., Py &4 B, -+, 7). We now define a total
order on the polynomials pzPy? (where (p, ¢) € DS) and say that pzPy? >, pz'y"
if and only if

(a) Toy(p, @) >1 Tay(n, v); or
(b) if Ta:y(p» q = sz(u, 'U) then (p, q) >1, (u, v),

Given this, we can now prove the following proposition:

PROPOSITION 3.2. The collection
MGR = {my(X)mu(Y) p 75-1(X) 9 (Y) : 0 € S,} (15)
is triangularly related to the set PXY, and thus MGR spans R*(X,Y).

Proof. Let (p, ) € DS. As was seen in Section 2, ¢ decomposes into (u, v). Now
let o € S, be such that g,(Y) = y7. Set z° = r,.,(X). Note that (6, v) € DS.
Let v = (v, v2, ..., v,) Where v; = p; — §;.

Now define D; = {j:6; = i} and C; = {j : 7; = i}. Suppose that d is the
largest entry of § and g is the largest entry of ~. Set
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Sp = Sp, x Sp, x -+ x Sp,
and
Sc = Sg, X S¢, X +++ x 8¢,
Now
MMV 70 ()G (¥) = iz 3 3 e iy
VI aes, pes,
where |G,| and |G,| denote the cardinality of G, and G,, respectively. There

are three cases that we wish to consider,

(a) a ¢ Sp implies that r(av + 8) <; 7(p) and thus T(av + 6, Bu + v) <z (p, 9).
(b) Suppose o € Sp and B & Sc. o € Sp implies that 7(av + §) = T(p) but
B € Sc¢ implies that 7(8p + v) <t 7(g). Thus once again we have that

T(aw + 8, B +7) <¢ 7(p, 9).
(c) Suppose o € Sp and B € S¢. Note that the elements of Sp and S¢ fix § and
v respectively. Thus

av+ 6 = a(v+ 6) = alp)
and
Buty=put) =059
and thus ryy(av + 6, Bu + v) = T2y(p, g). Now
pmavﬂyﬁuﬂ = pma(p)yﬁ(q)
= pwpya“ﬂ(q)
= pafy

where (p, t) € DS. Note that t = ca~!(¢q) where o € Sp. Let us suppose
that ¢ # ¢q. Let s be the smallest integer such that t, # ¢,. i, j € C; and
i < j imply that ¢; > ¢;. (p,q) € DS, 1, j € D and ¢ < j also imply that
¢ 2 g;. Thus t, < g,. Therefore, we have that (p, t) <, (p, ¢). Thus

mAX)mu(Y) p1o-1(X) 9o(Y) = cpgaPy? + Y cp,ga?y?
(Iqul)<zv(p|q)
where ¢, , > 0. a

This proof provides an algorithm for expanding elements of R?(X,Y) in
terms of the basis MGR and thus elements of R*(X,Y) into the basis GR.
Suppose that
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zPy? = zizaydysys

Note

(6)2(2) 2 (5) > (9)
In Section 1, we saw that
yausys = m(Y)y2usys — ma(Y) — v23dye — voysd-
Thus
w3z5vsys = my(V)2imayaysys — ma(Y)aies — 2imannydys — wianysys
and therefore
prizydysys = my(Y)pzizayaysys — ma(Y)paiz, — prizayaylys — prizayaysyl.

Note that pmf:z:z = my,1(X) and that pmfmzyzygy.t and pmfmzyzygyﬁ are clements of
our basis GR (hence MGR). Thus the only term that is not already expanded into
elements of our basis is ml(Y)pwfa:zyzygy‘;. Now 13y is a descent monomial,
namely it is the descent monomial of 2341, but a:%mz is not minimal with respect
to y2y3y4. The minimal monomial that corresponds to the sequence (0, 1, 1, 1)
is the monomial that corresponds to the sequence (1, 0, 0, 0), or z;. Thus we
must have

v=p-(1,0,0,0)=(2,1,0,0)-(1,0,0,0) = (1, 1,0, 0).
Thus

m(X)z; = 2e; + 2lxs + 2lzy + wymams + TyEpmy + T304
Letting m2(X) = m(q,1,0,0/(X) we have

mp(X)Z102yYs = T2Ta0ysys + TITIWYYE + TIT4Y213Y4

+2122230203Y4 + TIT2ZaY3Ys + T1T3T4Y2Y3Ys-

Recognizing that

PTATIY2Y3Ya = PTATIY2Y3Ys = PTITAY2Y3Ya
and that

PT1Z2T3Y2Y3Y4 = PT1T2T4Y2Y3Y4 = PL1T3T4Y2Y3Y4
gives us that

my (X)pziyaysvs = 3pziTavaysys + 3pT1T2%3Y2Y34

or better
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1
pw¥w2y2y3y4 = §Pm(1, 1,0,00T14%2Y3Y4 — PL1T2T3Y2Y3Y4

Now,

PT1T2X3Y2Y3Ys = pT1L2T3Y1Y2Y4

and both pm;:(X)x y2y3y4 and pz z,23y132y4 are elements of MGR. Thus, we
have that

1
prizyylysys = §m1(Y)Pm12(X Ye1y293y8 — m(Y)pxy 22391 Y294
—~ma(Y)my, 1 (X) — pz2esysyys — poieaysusvs.

Now in R**(X,Y) we have

prerydysys = ~priTavayive — prieayniysyl.
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