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Abstract We introduce affine Stanley symmetric functions for the special orthogonal
groups, a class of symmetric functions that model the cohomology of the affine Grass-
mannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the
special linear and symplectic groups, respectively. For the odd orthogonal groups, a
Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes with
symmetric functions. For the even orthogonal groups, we conjecture an approximate
model of (co)homology via symmetric functions. In the process, we develop type B

and type D non-commutative k-Schur functions as elements of the affine nilCoxeter
algebra that model homology of the affine Grassmannian. Additionally, Pieri rules
for multiplication by special Schubert classes in homology are given in both cases.
Finally, we present a type-free interpretation of Pieri factors, used in the definition
of noncommutative k-Schur functions or affine Stanley symmetric functions for any
classical type.

Keywords Affine Schubert calculus · Stanley symmetric functions · Pieri factors

1 Introduction

1.1 Stanley symmetric functions and Schubert polynomials

In 1984, Stanley introduced [34] what came to be known as the Stanley symmetric
functions as a tool for studying the number of reduced words of the longest element of
the symmetric group. Stanley’s symmetric functions were soon found to have a deep
relation to the geometry of the flag manifold as the “stable limit” of the Schubert
polynomials of Lascoux and Schutzenberger [2, 24, 25].
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A particularly fruitful point of view for analysis of Stanley symmetric functions
was found in the nilCoxeter algebra by Fomin and Stanley [9]. Billey and Haiman
[1] later explored analogues of Schubert polynomials for all the classical types; that
is, polynomial representatives for Schubert classes in the cohomology ring of G/B ,
where G = SO(n,C) or Sp(2n,C) and B is a Borel subgroup. They also studied
analogues of Stanley symmetric functions that are stabilizations of type B (resp. type
D) Schubert polynomials. (Independently, Fomin and Kirillov [8] explored several
different type B analogues of Schubert polynomials by generalizing different geo-
metric and combinatorial properties of the type A polynomials and also derived type
B Stanley symmetric functions, defined in terms of the nilCoxeter algebra of the hy-
peroctahedral group, whose definition matches that of Billey and Haiman.) T.K. Lam
[20, 21] developed much of the combinatorics of types B and D Stanley symmet-
ric functions using Kraśkiewicz insertion, including proofs that both expand as non-
negative integer combinations of Schur P -functions.

1.2 The affine case

More recently, Thomas Lam [15] defined (type A) affine Stanley symmetric func-
tions, which he labeled as such because (1) they contain Stanley symmetric func-
tions as a special case, (2) they share several analogous combinatorial properties and
(3) they and their duals were conjecturally related by Jennifer Morse and Mark Shi-
mozono to the geometry of the affine Grassmannian and “affine Schubert polyno-
mials,” in a manner analogous to the relation of Schubert polynomials to the coho-
mology of the flag variety. In [16], Lam indeed showed a geometric interpretation of
affine Stanley symmetric functions as representing Schubert classes of the cohomol-
ogy of the affine Grassmannian of SL(n,C). The dual homology representatives are
t = 1 specializations of the k-Schur functions of Lascoux, Lapointe and Morse [22],
which implies a relationship between affine Stanley symmetric functions and Mac-
donald polynomials.

Given the geometric interpretation of affine Stanley symmetric functions, a natu-
ral question to ask is if there are symmetric polynomial representatives for the Schu-
bert classes of the (co)homology of the affine Grassmannian corresponding to any
Lie type. In [5], Bott described the (co)homology of the affine Grassmannian for all
the classical types, but his descriptions lacked concrete realization. In [18], Lam,
Schilling and Shimozono found symmetric function representatives for the affine
Grassmannian of the symplectic group, the type C affine Stanley symmetric func-
tions. More recently, Lam [17] explained the thesis that “every affine Schubert class
is a Schur-positive symmetric function.” That is, given simple and simply connected
complex algebraic groups G ⊂ G′ with an inclusion ι : G → G′, there is a closed
embedding of affine Grassmannians GrG → GrG′ and the pushforward of a Schu-
bert class of H∗(GrG) is a nonnegative linear combination of Schubert classes in
H∗(GrG′). In the limit, H∗(GrSL(∞,C)) ∼= Λ, where Λ is the Hopf algebra of sym-
metric functions, and the Schubert basis is represented by Schur functions.

Therefore, one could expect an interpretation of Schubert classes of the affine
Grassmannian of any Lie type as (Schur-positive) symmetric functions. However,
it is not always possible to find an injective map H∗(GrG) → Λ (for example, if
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G = SO(2n)), so allowances must be made, and the quotation marks above must
remain.

2 Main results

Let G be a simple and simply connected complex algebraic group. Given such a
group, we can associate a Cartan datum (I,A) and Weyl group W (see, for example,
[14]). Let K be a maximal compact subgroup of G, and let T be a maximal torus
in K .

Let F = C((t)) and O = C[[t]]. The affine Grassmannian may be given by
GrG := G(F)/G(O). GrG can be decomposed into Schubert cells Ωw = BwG(O) ⊂
G(F)/G(O), where B denotes the Iwahori subgroup and w is in the set of Grass-
mannian elements in the associated affine Weyl group, denoted W 0

af. The Schubert
varieties, denoted Xw , are the closures of Ωw , and we have GrG = �Ωw = ∪Xw , for
w ∈ W 0

af. The homology H∗(GrG) and cohomology H ∗(GrG) of the affine Grassman-
nian have corresponding Schubert bases, {ξw} and {ξw}, respectively, also indexed
by Grassmannian elements. It is well-known that GrG is homotopy-equivalent to the
space ΩK of based loops in K (due to Quillen, see [32, Sect. 8] or [27]). The group
structure of ΩK gives H∗(GrG) and H ∗(GrG) the structure of dual Hopf algebras
over Z.

We study the Lie types B and D cases. The complex special orthogonal groups
G = SO(n,C) are not simply connected, but we may consider G = Spin(n,C), and
K = Spin(n) (note also that the loop space Ω Spin(n) ∼= Ω0SO(n), the connected
component of the identity). The corresponding Weyl groups will be denoted ˜Bn (for
Spin(2n + 1)) and ˜Dn (for Spin(2n)). We will also denote the affine Grassmannian
of each type by GrB and GrD , respectively.

2.1 Type free results and definitions

Given Waf, an affine Weyl group of classical type, let ω∨
1 , . . . ,ω∨

n be the correspond-
ing finite fundamental coweights. We may identify elements of Waf with the set of
alcoves in the weight space of the associated finite Lie algebra. Let O be the orbit of
ν(ω∨

1 ) under the usual action of the finite Weyl group, where ν is the usual map from
the Cartan subalgebra to its dual. We then define the set of Pieri factors to be the
Bruhat order ideal of Waf generated by the alcoves corresponding to translations of
the identity alcove by elements of O. These Pieri factors will lead to the definition of
affine Stanley symmetric functions in each type, and we denote them by Z (in order
to specify type, we will use the notation Z B , Z D , etc.). Furthermore, let the length i

elements of Z (resp. Z B, Z D) be denoted by Zi (resp. Z B
i , Z D

i ).
The type-free Pieri factors described above match with the corresponding set

of affine Weyl group elements given in type A [16, Definition 6.2], type C [18,
Sect. 1.5], and types B and D below (Definitions 2.3 and 2.7). See Proposition 7.1
for a proof of this fact.

We will also need the following definitions. Define “ ≺” on Iaf in type B by 0,1 ≺
2 ≺ 3 ≺ · · · ≺ n, i.e., 0 and 1 are incomparable. Similarly, define “≺” on Iaf in type D
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by 0,1 ≺ 2 ≺ 3 ≺ · · · ≺ n − 2 ≺ n − 1, n. In each case, this is the ordering suggested
by the Dynkin diagram of affine type B or D, respectively. Define an interval [m,M]
to be the set {j ∈ Iaf : j ⊀ m and j � M}. Note that this implies that any interval
either includes both 0 and 1, or includes neither (and in type D, any interval includes
both n − 1 and n, or neither).

Given an element w ∈ Z , define the pre-support of w, supp(w), to be the subset of
Iaf consisting of the indices that appear in a reduced word for w. Define the support of
w, Supp(w), to be the smallest union of intervals containing supp(w). By the Coxeter
relations for Waf, these are independent of choice of reduced word and therefore well-
defined.

The complement of Supp(w) is Iaf \ Supp(w). When the complement of Supp(w)

is written as a minimal number of disjoint intervals, we say those intervals are the
components of the complement of Supp(w). Let c(w) be the number of components
of the support of w, and let cc(w) be the number of components of the complement
of the support of w.

Example 2.1 In type B , suppose n = 7 and w = 3621 ∈ Z B . Then supp(w) =
{1,2,3,6}, Supp(w) = [0,3] ∪ {6} and the complement of Supp(w) is [4,5] ∪ {7}
so cc(w) = 2.

Let �(w) be the length function on Weyl group elements.

Definition 2.2 We define affine Stanley symmetric functions for any type by

F̃w[y] =
∑

(v1,v2,...)

∏

i

2stat(vi )−1y
�(vi )
i ,

where the sum runs over the factorizations v1v2 · · · = w of w such that vi ∈ Z and
�(v1)+ �(v2)+ · · · = �(w), and stat is a statistic on Pieri factors that is type-specific.
For type A, stat(w) = 1 for all w ∈ Z A. For type C, stat(w) = c(w), and for types B

and D, stat(w) = cc(w).

We note that this definition of affine Stanley symmetric functions matches with
those of [15–18]. Affine Stanley symmetric functions for specific types will be de-
noted by a superscript (e.g., F̃

Bn
w ).

2.2 Type B main results

In terms of reduced words, the type B Pieri factors are given below. Definition 2.3 is
used to prove the type-free Pieri factor formulation above.

Definition 2.3 The type B Pieri factors are generated by the length-maximal ele-
ments with reduced words

s0s2 · · · sn · · · s2s0, s1s2 · · · sn · · · s2s1, s2s3 · · · sn · · · s2s1s0,
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and all cyclic rotations of the last word such that s0 and s1 remain adjacent (for
example, the element with reduced word s0s2 · · · sn · · · s2s1 is not a generator). By
Proposition 7.1, this matches with the above type-free definition of Pieri factors.

Let Λ be the ring of symmetric functions over Q, and let Pi and Qi denote the
Schur P - and Q-functions with a single part. Let Γ∗ = Q[Q1,Q2, . . .], and let Γ ∗ =
Q[P1,P2, . . .]; then Γ∗ and Γ ∗ are dual Hopf algebras under the pairing [·, ·] given
in [26] (in fact, Γ ∗ = Γ∗, but it will be convenient to distinguish them as we begin
considering Z-algebras). Let Γ B

(n) = Z[Q1, . . . ,Qn−1,2Qn, . . . ,2Q2n−1] ⊂ Γ∗ be a

Hopf algebra over Z, and let Γ
(n)
B be the dual quotient Z-Hopf algebra embedded

in Γ ∗.
The finite Weyl group Bn sits inside ˜Bn as the group generated by simple reflec-

tions s1, . . . , sn. We denote by ˜B0
n the set of minimal-length coset representatives of

˜Bn/Bn, which we refer to as Grassmannian (or 0-Grassmannian) elements.

Theorem 2.4 The functions F̃
Bn
w ,w ∈ ˜B0

n form a basis of Γ
(n)
B such that all product

and coproduct structure constants are positive, and all F̃
Bn
w with w ∈ ˜Bn are positive

in this basis.

Let the Grassmannian elements ρi ∈ ˜Bn be given by

ρi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s0 i = 1,

si · · · s3s2s0 2 ≤ i ≤ n,

s2n−i s2n−i+1 · · · sn−1snsn−1 · · · s2s0 n ≤ i ≤ 2n − 2,

s0s2s3 · · · sn−1snsn−1 · · · s3s2s0 i = 2n − 1.

(2.1)

Theorem 2.5 There are dual Hopf algebra isomorphisms

Φ : Γ B
(n) → H∗(GrB) and Ψ : H ∗(GrB) → Γ

(n)
B

such that Φ(2χ(i≥n)Qi) = ξρi
for 1 ≤ i ≤ 2n − 1, and Ψ (ξw) = F̃

Bn
w for w ∈ ˜B0

n .

Furthermore, we will show (Propositions 6.8 and 6.11) that the embeddings of
symmetric functions Γ B

(n) → Γ B
(n+1) and Γ B

(n)
∼= H∗(Spin(2n+1)) ↪→ H∗(ΩSU(2n+

1)) ∼= Z[h1, h2, . . . , h2n] induced by the above isomorphisms agree with the natural
embeddings of symmetric functions. The elements of the basis of Γ B

(n) dual to {F̃ Bn
w }

we call type B k-Schur functions, and denote by {G̃Bn
w }.

Our last main type B theorem is an affine type B version of the Pieri rule:

Theorem 2.6 Given w ∈ ˜B0
n , we have in H∗(GrB):

ξρi
ξw =

∑

v∈Z B
i

2cc(v)−χ(i<n)ξvw,

where the sum is over v such that vw ∈ ˜B0
n and �(vw) = �(v) + �(w).
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The proofs of the above theorems may be found in Sect. 6.

2.3 Type D main results

In type D, the situation is not as favorable. As noted in [17], there may not be a Hopf
inclusion H∗(GrD) ↪→ Λ. However, it may be possible to approximate H∗(GrD) with
symmetric functions by using a slightly non-injective map. We conjecture dual sym-
metric function algebras that approximate the (co)homology of GrD .

Definition 2.7 Type D Pieri factors are generated by the following affine Weyl group
elements:

s0s2 · · · sn−2snsn−1sn−2 · · · s2s0, s0s1s2 · · · sn−2snsn−1sn−2 · · · s2,

all cyclic rotations of the latter such that s0, s1 remain adjacent and sn−1, sn remain
adjacent, and all images of these words under Dynkin diagram automorphisms.

Let the Grassmannian elements ρi ∈ ˜Dn be given by

ρi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s0 i = 1,

si · · · s3s2s0 2 ≤ i < n − 1,

s2n−1−i s2n−i · · · sn−2snsn−1sn−2 · · · s2s0 n − 1 < i < 2n − 2,

s0s2s3 · · · sn−2snsn−1sn−2 · · · s3s2s0 i = 2n − 2

(2.2)

and let ρ
(1)
n−1 = snsn−2 · · · s2s0 and ρ

(2)
n−1 = sn−1sn−2 · · · s2s0. Let

Γ D
(n) = Z[Q1, . . . ,Qn−1,2Qn, . . . ,2Q2n−2],

and let Γ
(n)
D be the dual quotient Z-Hopf algebra embedded in Γ ∗.

It is impossible to find a surjective map from Γ D
(n) onto H∗(GrD)—as stated in

[17], H∗(GrD) may have a primitive subspace of dimension 2 in a given degree,
whereas Λ has primitive spaces of dimension 1 in all degrees. Thus the pushforward
i∗ : H∗(Ω Spin(2n)) → H∗(ΩSU(2n)) must have a nontrivial kernel.

Conjecture 2.8 The kernel γ of i∗ : H∗(Ω Spin(2n)) → H∗(ΩSU(2n)) is gener-
ated by ξ

ρ
(2)
n−1

− ξ
ρ

(1)
n−1

, and H∗(Ω Spin(2n))/γ is isomorphic to Γ D
(n); under the dual

isomorphism, affine Stanley symmetric functions represent cohomology Schubert
classes. Furthermore, the inclusion Γ D

(n)
∼= H∗(Ω Spin(2n))/γ → H∗(ΩSU(2n)) ∼=

Z[h1, . . . , h2n−1] corresponds to the natural inclusion of symmetric functions.

Although we cannot describe the (co)homology explicitly via symmetric func-
tions, our description of Pieri factors is enough to present a Pieri rule for type D

homology. Unfortunately, for some cases (i.e., i = n − 1), the rule is still compli-
cated.
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Theorem 2.9 Given w ∈ ˜D0
n and i �= n − 1, we have in H∗(GrD):

ξρi
ξw =

∑

v∈Z D
i

2cc(w)−χ(i<n)ξvw,

where the sum is over v such that vw ∈ ˜D0
n and �(vw) = �(v) + �(w).

If i = n − 1, we have

ξ
ρ

(1)
n−1

ξw =
∑

v∈Z D
n−1

cvξvw,

where cv is the coefficient of Av in P
D
n−1 + ε (see Sect. 5.6 for definitions). A similar

formula holds for ξ
ρ

(2)
n−1

ξw .

The proofs of the above theorems are contained in Sect. 6. Some proofs of sup-
porting lemmas are very lengthy and similar enough to those contained in [18] that
we refer the reader to [18] or [30] for details.

2.4 Future directions

Many natural questions remain; a small sample includes the following.

− A proof of Conjecture 2.8. This most likely will involve a hard spectral sequence
computation, and techniques similar to the type B case.

− Although a type-free description of Pieri factors exists, the current proof is ver-
ified on a type-specific basis—it would be desirable to have a type-free proof of
our description. Such a type-free proof would almost certainly require a type-free
description of the statistic stat(w), which might lead easily to Pieri factors for the
exceptional types.

− The Q̃-functions studied extensively by Pragacz (see, for example, [23, 31]) may
be a more natural symmetric function model for homology; it would be interesting
to see how they relate.

3 Background

In this section, we present the necessary background, mostly following the conven-
tions and notation of [26] and [13].

3.1 Symmetric functions

Let Λ be the ring of symmetric functions, and let P be the set of partitions. Let
hλ the complete homogeneous symmetric functions, pλ the power sum symmetric
functions, and mλ the monomial symmetric functions for λ ∈ P .

Schur’s P - and Q-functions are symmetric functions that arose in the study of
projective representations of the symmetric group, where they play the role of Schur
functions in linear representations of the symmetric group. They may be defined in
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several ways; we present a combinatorial definition as sums over shifted tableaux,
due to Stembridge [36].

Let λ ∈ P be a strict partition (that is, a partition with all parts distinct), and define
an alphabet A = {1̄,1, 2̄,2, . . .} and partial ordering 1̄ < 1 < 2̄ < 2 < · · · . Then a
shifted tableau of shape λ is a diagram of λ where row i is shifted by i − 1 spaces,
and all boxes of λ are filled with letters from A such that (i) labels weakly increase
along rows and columns, (ii) columns have no repeated unbarred letters, and (iii) rows
have no repeated barred letters.

For a shifted tableau T , we may then define xT = x
c1
1 x

c2
2 · · · , where ci is the num-

ber of i’s in T (both barred and unbarred). Then

Qλ =
∑

T

xT , (3.1)

where the sum is over all shifted tableaux of shape λ. Schur’s P -functions are scalar
multiples of the Qλ; Pλ = 2−�(λ)Qλ, where �(λ) is the number of nonzero parts of λ.
By the definition given above, Schur P - and Q-functions are defined only for strict
partitions. We denote the set of strict partitions by S P . The Pλ are a basis for Γ ∗
defined above, and the Qλ are a basis for Γ∗.

Example 3.1 A shifted tableau of shape (6,4,3) is given below. In the formula for
Schur Q-functions, this tableau would correspond to a monomial x1x

2
2x5

3x2
4x2

5x7.

It is well known that the ring of symmetric functions has a Hopf algebra structure.
On Γ∗, the coproduct is given by

Δ(Qr) = 1 ⊗ Qr + Qr ⊗ 1 +
∑

0<s<r

Qs ⊗ Qr−s . (3.2)

Furthermore, the Qi satisfy only the relations:

Q2
i = 2(Qi−1Qi+1 − Qi−2Qi+2 + · · · ± Q0Q2i ), (3.3)

where we let Q0 = 1 [26, III.8.2′].
Define the Hall-Littlewood scalar product, a pairing [·, ·] : Γ∗ × Γ ∗ → Z, by

[Qλ,Pμ] = δλμ for λ,μ ∈ S P .
The pairing [·, ·] has reproducing kernel

Ω−1 :=
∏

i,j≥1

1 + xiyj

1 − xiyj

(3.4)

=
∑

λ∈S P
2−�(λ)Qλ[X]Qλ[Y ] (3.5)
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=
∑

λ∈P
Qλ1 [X]Qλ2 [X] · · ·mλ[Y ], (3.6)

where the second equality is by [26, III.8.13] and the third is by setting t = −1 in
[26, III.4.2]. Following Macdonald, we denote qλ = Qλ1Qλ2 · · · .

3.2 Weyl groups

For more background on Weyl groups, see [4, 6, 12, 13]. We will assume all Lie
algebras are non-twisted.

Let (Iaf,Aaf) denote a Cartan datum of affine type, and denote the correspond-
ing finite type Cartan datum by (I,A). The affine Weyl group Waf corresponding to
(Iaf,Aaf) is given by generators si for i ∈ Iaf, and relations s2

i = 1,

(sisj )
m(i,j) = 1 for i �= j (3.7)

where m(i, j) = 2,3,4,6, or ∞ as aij aji equals 0,1,2,3, or ≥ 4. The associated
finite Weyl group W has the same relations, but with generators si, i ∈ I .

Given any element w of Waf or W , there are a number of words in the generators
si for w, all of which are connected via the braid relations (3.7) or the relations
s2
i = 1. The length function � : Waf → Z≥0 is given by �(w) = k if k is minimal such

that si1si2 · · · sik is a word for w. If �(w) = k, we call an expression w = si1 · · · sik a
reduced expression, and call i1 · · · ik a reduced word for w. We denote the set of all
reduced words for w by R(w). Elements of Waf or W that are conjugates of the si are
called reflections.

The Bruhat order on Waf or W is a partial ordering given by v ≤ w if some (equiv-
alently, every) reduced word for v is a subword of a reduced word for w. We let � de-
note the covering relation of Bruhat order, so that v�w if v ≤ w and �(v)+1 = �(w).

Given a subset J of Iaf, we will define the parabolic subgroup (Waf)J ⊂ Waf as the
subgroup generated by {si | i ∈ J }, and denote by WJ

af a set of minimal length coset
representatives for Waf/(Waf)J .

3.3 (Co)roots and (co)weights

We will let gaf be the affine Kac-Moody algebra associated to a Cartan datum
(Iaf,Aaf), and let g be the associated finite Lie algebra with Cartan datum (I = Iaf \
{0},A = (Aaf)

n
i,j=1) (see [13] for details). The corresponding Cartan subalgebras are

denoted haf and h, respectively. Given an affine Cartan datum, we have the set of sim-
ple roots Πaf = {α0, α1, . . . , αn} ⊂ h∗

af and simple coroots Π∨
af = {α∨

0 , α∨
1 , . . . , α∨

n } ⊂
haf such that 〈α∨

i , αj 〉 := αj (α
∨
i ) = aij . Since Aaf is of corank 1, there is a unique

positive integer vector a = (a0, a1, . . . , an) whose entries have no common factor
such that Aafa = 0. We let δ = a0α0 +a1α1 +· · ·+anαn = a0α0 + θ ∈ h∗

af be the null
root. Correspondingly, there is a vector a∨ = (a∨

0 , . . . , a∨
n ) such that a∨Aaf = 0; we

let K = a∨
0 α∨

0 +· · ·+a∨
n α∨

n ∈ haf be the canonical central element. There is a basis of
haf given by {α∨

0 , . . . , α∨
n , d}, where d is the scaling element such that 〈αi, d〉 = δ0i .

We also have the fundamental weights Λ0, . . . ,Λn ∈ h∗
af such that {Λ0, . . . ,Λn, δ} is

dual to the above basis of haf. The affine root lattice is denoted by Q̂ = ⊕

i∈Iaf
Zαi
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and the affine coroot lattice by Q̂∨ = ⊕

i∈Iaf
Zα∨

i ⊕ Zd . The affine weight lattice is

P̂ = ⊕

i∈Iaf
ZΛi ⊕Zδ, and the affine coweight lattice P̂ ∨ = ⊕

i∈Iaf
ZΛ∨

i is generated
by the fundamental coweights, which are dual to the simple roots.

The finite coroot lattice is Q∨ = ⊕

i∈I Zα∨
i ⊂ Q̂∨. The finite root lattice Q is

a quotient of Q̂, but we will identify it with a sublattice Q = ⊕

i∈I Zαi ⊂ Q̂. The
finite fundamental weights can be embedded in P̂ by ωi = Λi − 〈Λi,K〉Λ0, for
i ∈ I , and as in the case of the finite root lattice, we identify the finite weight lattice
P with a sublattice P = ⊕

i∈I Zωi ⊂ P̂ . The finite coweight lattice is denoted by
P ∨ = ⊕

i∈I Zω∨
i , where αi(ω

∨
j ) = δij .

3.4 Geometric representation of the affine Weyl group

We have an action of Waf on haf given by si(μ) = λ − 〈μ,αi〉α∨
i , and w(K) = K for

w ∈ Waf. More generally, for any real root α∨ ∈ haf, we have the element sα ∈ Waf
which acts by sα(μ) = μ − 〈μ,α〉α∨. Also for elements α ∈ h∗, we have the “trans-
lation” endomorphism of h∗

af, tα , given by

tα(λ) = λ + 〈λ,K〉α −
(

(λ | α) + 1

2
|α|2〈λ,K〉

)

δ. (3.8)

It is not hard to show that tαtβ = tα+β , and also that tw(α) = wtαw−1 for w ∈ W . We
let M = ν(Q∨), and let the abelian group generated by {tα | α ∈ M} be denoted TM .
The affine Weyl group can be presented as Waf = W � TM .

3.5 Alcoves

Let h∗
R

be the R-linear span of the finite simple roots, and let hR be the R-linear
span of the finite simple coroots. Then let h∗

af ⊗ R = h∗
R

+ RK + Rd , and haf ⊗ R =
hR + RΛ0 + Rδ. Let (h∗

af)s = {λ ∈ h∗
af ⊗ R | 〈λ,K〉 = s}. The hyperplanes (h∗

af)s
are invariant under the Waf action described above, and the action of Waf on (h∗

af)0
is faithful. Furthermore, the action of Waf on (h∗

af)1/Rδ is also faithful. We can
identify (h∗

af)1/Rδ with h∗
R

by projection, thereby identifying Waf with a group
of affine transformations of h∗

R
. Under this isomorphism, tα corresponds to trans-

lation by α, for α ∈ M . Define the hyperplanes Hα,k in h∗
R

by Hα,k = {x ∈ h∗
R

|
(α | x) = k}, and define the fundamental alcove A0 as the domain bounded by
{Hαi,0 | i = 1, . . . , n} ∪ {Hθ,1}. The fundamental alcove is a fundamental domain
for the action of Waf on h∗

R
. The images of A0 are the alcoves, and are in bijection

with the elements of Waf via w ↔ wA0.

3.6 The extended affine Weyl group

Just as we can see the affine Weyl group as Waf = W � TM , we can view the ex-
tended affine Weyl group as Wext = W � T

˜M , where ˜M = ν(P ∨) and the action of
translations is as above. Let C be the dominant Weyl chamber, C = {λ ∈ P̂ ⊗Z R |
〈α∨

i , λ〉 ≥ 0 for all i ∈ Iaf}. If we let Σ be the subgroup of Wext stabilizing C, then we
can write Wext = Σ �Waf, where τsiτ

−1 = sτ(i) for τ ∈ Σ . The group Σ is the finite
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group of Dynkin diagram automorphisms—permutations of the nodes of the Dynkin
diagram that preserve the graph structure. Elements of Σ permute the simple roots;
i.e., if τ(i) = j , then τ(αi) = αj .

One can view the extended affine Weyl group as acting on |Σ | copies of h∗
R

. Label
the wall of A0 formed by Hαi,0 by i and the wall formed by Hθ,1 by 0. Label the
walls of all other alcoves so that the labeling is Waf-equivariant. Then elements of Σ

correspond to permuting the labels on all alcoves, which we can view as transitioning
between different copies of h∗

R
.

4 The affine Grassmannian

This section imitates [16, Sect. 2] and [18, Sect. 4], and introduces the necessary
algebraic and geometric background to prove our main theorems. See [16, 18, 28] for
more details.

4.1 The nilCoxeter algebra

Given a Cartan datum (Iaf,Aaf) of affine type, we can define the affine nilCoxeter
algebra A0 as the associative Z-algebra with generators Ai for i ∈ Iaf and relations
A2

i = 0 for all i ∈ Iaf, and (AiAj )
m(i,j) = 1, where m(i, j) is as in the definition of the

affine Weyl group. Since the braid relations are the same as for the affine Weyl group,
given any w ∈ Waf and i1i2 · · · i� ∈ R(w), the element Aw = Ai1Ai2 · · ·Ai� ∈ A0 is
well-defined. We write A

B
0 (resp. A

D
0 ) for the nilCoxeter algebra of type B (resp. D)

when we want to refer to a specific type.

4.2 The nilHecke algebra

Let S = Sym(P̂ ), the symmetric algebra generated by the affine weight lattice. Peter-
son’s affine nilHecke algebra A is the associative Z-algebra generated by S and the
nilCoxeter algebra A0, with commutation relation

Aiλ = (si · λ)Ai + 〈

α∨
i , λ

〉

1 for i ∈ Iaf and λ ∈ P̂ . (4.1)

There is a coproduct on A given by

Δ(Ai) = Ai ⊗ 1 + 1 ⊗ Ai − Ai ⊗ αiAi (4.2)

Δ(s) = s ⊗ 1. (4.3)

Define φ0 : S → Z such that φ0(s) is the evaluation of s at 0. By abuse of notation,
let φ0 : A → A0 be the map given by

φ0 :
∑

w

awAw −→
∑

w

φ0(aw)Aw. (4.4)

Define the affine Fomin-Stanley subalgebra

B = {

a ∈ A0 | φ0(as) = φ0(s)a for all s ∈ S
}

. (4.5)
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We can define the restriction map φ
(2)
0 : A ⊗S A → A0 ⊗Z A0 by

φ
(2)
0

(

∑

w,v∈Waf

aw,vAw ⊗ Av

)

=
∑

w,v∈Waf

φ0(aw,v)Aw ⊗ Av (4.6)

for aw,v ∈ S. B inherits the coproduct from A via φ
(2)
0 ◦ Δ.

Following Peterson’s work [28] as described in [18], there is an injective ring ho-
momorphism j0 : H∗(GrG) → A0. Given the coproduct inherited from A, j0 restricts
to a Hopf algebra isomorphism H∗(GrG) ∼= B. The following theorem may be found
in [16], Proposition 5.4 and Theorem 5.5, or [18], Theorem 4.6.

Theorem 4.1 ([16, 18, 28]) There exists a Hopf algebra isomorphism

j0 : H∗(GrG) → B

such that for every w ∈ W 0
af, j0(ξw) is unique in B ∩ (Aw + ∑

u∈Waf\W 0
af

ZAu).

We also have the following.

Theorem 4.2 ([19], Theorem 6.3) Let ju
w be defined by

j0(ξw) =
∑

u∈Waf
�(u)=�(w)

ju
wAu

for w ∈ W 0
af, u ∈ Waf. Then for x, z ∈ W 0

af, ξxξz = ∑

y j
y
x ξyz, where the sum is over

y ∈ Waf such that yz ∈ W 0
af and �(yz) = �(y) + �(z).

B is a commutative algebra, and has a basis given by j0(ξw), for w ∈ W 0
af. Define

Pw := j0(ξw), for w ∈ W 0
af. Lemma 4.3 helps to compute the elements Pw .

Suppose w�v in Waf. Then s = v−1w is a reflection, and we can write s = usiu
−1

for some simple reflection si , i ∈ Iaf. Let u be shortest such that α = u(αi) is a
positive real root. Denote this root α by αvw and its associated coroot, u(α∨

i ), by α∨
vw .

Lemma 4.3 ([18], Lemma 4.7) Let a = ∑

w∈Waf
cwAw ∈ A0 with cw ∈ Z. Then

a ∈ B if and only if
∑

w�v cwα∨
vw ∈ ZK for all v ∈ Waf.

5 Special orthogonal groups

In order to prove our theorems for the special orthogonal groups, we need to develop
indexing sets and Cauchy-type reproducing kernels for each case.
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5.1 Type B reproducing kernel

The first of the following sets of partitions was defined in [7] (see also [3]).

Definition 5.1 The set of type Bn affine partitions is P n
B = {λ | λ1 ≤ 2n − 1 and λ

has distinct parts of size smaller than n}. We also define P k
odd to be the set of

k-bounded partitions with odd parts. We will denote the set of all k-bounded par-
titions simply by P k .

Lemma 5.2 There is a size-preserving bijection P n
B ↔ P 2n−1

odd .

Proof Given a partition in P n
B , the bijection is given by dividing all even parts re-

peatedly until there are no even parts left. �

Let p≥n(λ) denote the number of parts of λ larger than or equal to n. Let q ′
λ :=

2p≥n(λ)qλ = 2p≥n(λ)Qλ1Qλ2 · · · .

Proposition 5.3 A basis of Γ B
(n) over Z is given by (q ′

λ)λ∈P n
B

.

Proof Using the relations (3.3), it is clear that the q ′
λ, λ ∈ P n

B , span Γ B
(n). By [26,

III.8.6], (qλ) for odd partitions λ form a Q-basis of Γ∗. Let Γ B
(n)[k] be the graded part

in Γ B
(n)

of degree k. Since (qλ)λ∈P 2n−1
odd

are in Γ B
(n)

, the dimension of Γ B
(n)

[k] is at least

|{λ ∈ P 2n−1
odd | λ � k}|. By Lemma 5.2, this is the same as the number of λ ∈ P n

B such
that λ � k; therefore, the (q ′

λ)λ∈P n
B

must be linearly independent. �

Let (Rλ)λ∈P n
B

be the basis of Γ
(n)
B dual to (q ′

λ) under [·, ·]. By [26], we have
[qλ,Pμ] = 0 if λ > μ, so Rλ is triangularly related to (Pλ)λ∈P n

B
, which is triangularly

related to the monomial symmetric functions, mλ. Since qλ and mλ are dual under
[·, ·], we see that the coefficient of mλ in Rμ for λ ∈ P n

B is given by 2−p≥n(λ)δλμ. By

the duality of qλ and mλ, it is clear that Γ
(n)
B ⊂ Γ ∗/〈mλ | λ1 ≥ 2n〉.

Proposition 5.4 Let (wλ) and (tλ) be two bases of Γ B
(n) and Γ

(n)
B , respectively, in-

dexed by P n
B . Let I (k) be the ideal generated by yk+1

i for all i. Then

Ω−1 mod I (2n−1) =
∑

λ∈P n
B

wλ[X]tλ[Y ] (5.1)

if and only if [wλ, tμ] = δλμ for all λ,μ ∈ P n
B .
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Proof We can write wλ = ∑

ρ∈P n
B

aλρq ′
ρ and tμ = ∑

σ∈P n
B

bμσ Rσ , where aλρ,

bμσ ∈ Q. We therefore have

[wλ, tμ] = δλμ ⇐⇒
[

∑

ρ∈P n
B

aλρq ′
ρ,

∑

σ∈P n
B

bμσ Rσ

]

= δλμ

⇐⇒
∑

ψ∈P n
B

aλψbμψ = δλμ.

In other words, (aλρ)(bμσ )T = I , so (bμσ )T = (aλρ)−1.
On the other hand, suppose

Ω−1 mod I (2n−1) =
∑

λ∈P n
B

wλ[X]tλ[Y ],

∑

ψ∈P
qψ [X]mψ [Y ] mod I (2n−1) =

∑

λ∈P n
B

(

∑

ρ∈P n
B

aλρq ′
ρ[X]

)(

∑

σ∈P n
B

bλσ Rσ [Y ]
)

,

∑

ψ∈P 2n−1

qψ [X]mψ [Y ] =
∑

ρ,σ∈P n
B

(

∑

λ∈P n
B

aλρbλσ

)

q ′
ρ[X]Rσ [Y ].

By looking at the coefficient of qη[X]mμ[Y ] for η,μ ∈ P n
B on each side, we see

that we must have
∑

λ∈P n
B

aλρbλσ = δρσ , i.e., (aλρ)T = (bμσ )−1. The proposition
follows. �

We now set

Ω
Bn

−1 := Ω−1 mod I (2n−1) (5.2)

=
∑

λ1≤2n−1

2p≥n(λ)Qλ1 [X]Qλ2 [X] · · ·2−p≥n(λ)mλ[Y ], (5.3)

so that Ω
Bn

−1 is the reproducing kernel for the pairing [·, ·] : Γ B
(n) × Γ

(n)
B → Z.

5.2 Type D reproducing kernel

The following analogs exist in type D (again, see [3, 7]).

Definition 5.5 The set of type Dn affine (colored) partitions is given by P n
D = {λ |

λ1 ≤ 2n−2 and λ has distinct parts of size smaller than n}, with the additional infor-
mation of a color, b (blue) or c (crimson), associated to each partition.

Lemma 5.6 If n is odd, there is a size-preserving bijection between P n
D and the set of

(uncolored) partitions P 2n−2
odd,n−1 := {λ | λ1 < 2n−2, λi is odd or λi = n−1 for all i}.
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Proof This is similar to the type B bijection, except we only act on one color: say, if
a partition is colored b, split up all even parts as in the type B case and if colored c,
then leave parts of size n − 1 alone. �

Note that if we split up all partitions regardless of color, then we get a 2-to-1 map
from P n

D onto P 2n−2
odd . Let (P n

D)(1) be the type D partitions of color b. The following
proposition is similar to the type B case.

Proposition 5.7 A basis of Γ D
(n) over Z is given by (q ′

λ)λ∈(P n
D)(1) .

Proof Similar to Proposition 5.3. �

As in the type B case, we have Γ
(n)
D ⊂ Γ ∗/〈mλ | λ1 ≥ 2n − 1〉. We also have a

reproducing kernel for the pairing [·, ·] : Γ D
(n) × Γ

(n)
D → Z given by

Ω
Dn

−1 =
∑

λ1≤2n−2

2p≥n(λ)Qλ1 [X]Qλ2[X] · · ·2−p≥n(λ)mλ[Y ]. (5.4)

5.3 Segments

Before describing type-specific generators of B, we borrow definitions and notation
from Billey and Mitchell [3].

Definition 5.8 Define the sets of affine Weyl group generators:

S = {s1, s2, . . . , sn}, S′ = {s0, s2, . . . , sn}, J = {s2, s3, . . . , sn}.
For each j ≥ 0, the length j elements of ((Waf)S′)J are known as 0-segments,

and denoted Σa
0 (j). In most cases, there is only one segment of a given length, in

which case a is omitted—otherwise, it is used to label which segment of length j

is being used. Similarly, the elements of ((Waf)S)J are called 1-segments, and are
denoted Σa

1 (j). Any 0-segment or 1-segment is known simply as a segment. (In [3],
these are segments corresponding to Type II Coxeter groups.)

Billey and Mitchell give explicit descriptions of the segments in types B and D,
from which it follows easily that any segment is in fact in Z . In type B , they describe

Σ1(j) =
{

sj · · · s3s2s1 1 ≤ j ≤ n,

s2n−j · · · sn−1snsn−1 · · · s3s2s1 n < j ≤ 2n − 1
(5.5)

and

Σ0(j) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s0 j = 1,

sj · · · s3s2s0 1 < j ≤ n,

s2n−j · · · sn−1snsn−1 · · · s3s2s0 n < j ≤ 2n − 2,

s0s2s3 · · · sn−1snsn−1 · · · s3s2s0 j = 2n − 1.

(5.6)
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In type D, 1-segments are given by

Σz
1(j) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sj · · · s3s2s1 1 ≤ j ≤ n − 2,

sn−1sn−2 · · · s3s2s1 j = n − 1 and z = b,

snsn−2 · · · s3s2s1 j = n − 1 and z = c,

s2n−j−1 · · · sn−2snsn−1sn−2 · · · s3s2s1 n ≤ j ≤ 2n − 2

(5.7)

and 0-segments are obtained from 1-segments by interchanging s0 and s1 and sn−1
and sn. There are two colors of length n−1 segments, and only one color for all other
lengths.

It also follows from their description that if w ∈ Z ∩W 0
af, then w is a segment (and

if w is 1-Grassmannian, then w is also a segment).

Theorem 5.9 ([3], Lemmas 3, 5) Given w ∈ W 0
af, where Waf is of type B or D, w

has a canonical length-decreasing factorization r(w) into segments, that is, a factor-
ization

r(w) = · · ·Σc3
0 (λ3)Σ

c2
1 (λ2)Σ

c1
0 (λ1)

such that λ1 ≥ λ2 ≥ λ3 ≥ · · · .

Such a factorization may be obtained recursively, by factoring ws0 as ws0 = uv,
where u ∈ W 0

af and v ∈ W ; the first segment of r(w) will be vs0. The next segment
is obtained by factoring us0, and continuing in this manner until w is completely
factored into segments.

5.4 Type B Pieri elements

Recalling the elements ρi defined in (2.1), we note that ρi is the unique Grassmannian
element in Z B of length i for each i, and define P

B
r = P

B
ρr

. Let Z B
i be the length i

elements of Z B .

Proposition 5.10 For 1 ≤ r ≤ 2n − 1,

P
B
r =

∑

w∈Z B
r

2cc(w)−χ(r<n)Aw. (5.8)

Proof See Sect. 5.8. �

We call the elements defined in Proposition 5.10 Pieri elements. By analogy to the
type A case, they are noncommutative k-Schur functions corresponding to the special
elements ρi , and the relations among Pieri elements are given in Proposition 5.11.

Proposition 5.11 The Pieri elements P
B
i ∈ B satisfy

∑

r+s=2m

(−1)r2−χ(r≥n)−χ(s≥n)
P

B
r P

B
s = 0. (5.9)
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Proof Suppose w ∈ ˜B0
n , �(w) ≤ 2n − 1. We analyze the coefficient of P

B
w in

P
B
2m−iP

B
i , for any i. To that end, suppose that w = uv with u ∈ Z2m−i and v ∈ Zi .

Since any right factor of a Grassmannian element is Grassmannian, we must find that
v = · · · s3s2s0 is a segment of length i. By [3], w has a length-decreasing factorization
into segments; if w = uv with u,v ∈ Z B , then the factorization of w into segments
can involve at most two segments. Suppose then that w = Σ1(k1)Σ0(k0).

On a case by case basis, depending on the relation of m, i, and k0, we can verify
that P

B
w appears in the product P

B
2m−iP

B
i if and only if k1 ≤ i ≤ k0. Furthermore, the

above obvious factorization of w into u,v with u ∈ Z2m−i , v ∈ Zi is the only such
factorization, since there is only one reduced word for Σ0(k0).

Similarly, a case analysis (depending on k0 ≥ n or k0 < n) of the coefficients that
appear in the left hand side of (5.9) and noting that

cc
(

Σ0(i)
) − 1 =

{−1 if i ≥ n

0 else
,

finishes the proof. �

Theorem 5.12 In type B , for 1 ≤ r ≤ 2n − 1,

φ
(2)
0

(

Δ
(

P
B
r

)) = 1 ⊗ P
B
r + P

B
r ⊗ 1 +

∑

1≤s<r

2χ(r≥n>r−s and n>s)
P

B
s ⊗ P

B
r−s . (5.10)

Proof See Sect. 5.9. �

5.5 Type B affine Stanley symmetric functions

Define ΩB−1 ∈ B ⊗̂Γ
(n)
B by taking the image of Ω

Bn

−1 under j0 ◦ �B : Γ B
(n) → B.

ΩB−1 =
∑

λ
λ1≤2n−1

P
B
λ1

P
B
λ2

· · · ⊗ 2−p≥n(λ)mλ[Y ] (5.11)

=
∑

α
αi≤2n−1

P
B
α1

P
B
α2

· · · ⊗ 2−p≥n(α)yα, (5.12)

where the second equality follows because B is a commutative algebra.
Define F̃

Bn
w [Y ] by

ΩB−1 =
∑

w∈˜Bn

Aw ⊗ F̃ Bn
w [Y ]. (5.13)

Recalling that P
B
r = ∑

w∈Z B
r

2cc(w)−χ(r<n)Aw , it is not hard to see that this defi-
nition matches that of Definition 2.2. We also note that

ΩB−1 =
∑

w∈˜B0
n

P
B
w ⊗ F̃ Bn

w [Y ] (5.14)

by Theorem 4.1.
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5.6 Type D Pieri elements

Recall the elements ρi ∈ ˜Dn defined in (2.2), as well as ρ
(1)
n−1 and ρ

(2)
n−1. Let P

D
r = Pρr

for 1 ≤ r ≤ 2n − 2, r �= n − 1, and let P
D
n−1 = 1

2 (PD

ρ
(1)
n−1

+ P
D

ρ
(2)
n−1

).

Given a reduced word for v ∈ Z D , let v+ be the element of ˜Dn with reduced word
given by the subword of v of letters with index greater than j , and let v− have reduced
word given by the subword of v of letters with index less than j .

Definition 5.13 We define the special element ε ∈ A0 by stating that the coefficient
of A

ρ
(1)
n−1

in ε is 1, the coefficient of A
ρ

(2)
n−1

is −1, and all other coefficients are given

by the following symmetries:

1. For any 2 � j � n − 2, ±Av−jv+ ∈ ε =⇒ ±Av+jv− ∈ ε.
2. For any 2 � j � n − 2, ±Av−v+j ∈ ε =⇒ ±Ajv−v+ ∈ ε.
3. If ±Aw ∈ ε and w′ is obtained from w by swapping n and n − 1 or swapping 0

and 1 in a reduced word for w, then ∓Aw′ ∈ ε.
4. ±Asnv ∈ ε =⇒ ∓Avsn ∈ ε.
5. ±Asn−1v ∈ ε =⇒ ∓Avsn−1 ∈ ε.

Thus the coefficients in ε are all ±1, and if ε = ∑

w cwAw , then cw �= 0 if and only
if Supp(w) = Iaf.

It is not clear from the definition that the element ε is well-defined. For w ∈ ˜Dn,
given a reduced word u = u1u2 · · ·u�(w) ∈ R(w), let ̂des(u) denote the number of i

such that ui > ui+1, and let ̂des(w) = min(̂des(u) | u ∈ R(w)). Then it is not hard to
see that knowing supp(w) and the parity of ̂des(w) is enough to give the sign of Aw

in ε (e.g., ̂des(w) is invariant under swaps of type (1) or (2), and changes parity under
swaps of type (4) or (5), while supp(w) changes under swaps of type (3)). Therefore,
ε is well-defined.

Note also that ε has only two Grassmannian terms, A
ρ

(1)
n−1

and A
ρ

(2)
n−1

. It follows

from Proposition 5.14 that ε = 1
2 (PD

ρ
(1)
n−1

− P
D

ρ
(2)
n−1

).

Proposition 5.14 For 1 ≤ r ≤ 2n − 2,

P
D
r =

∑

w∈Zr

2cc(w)−χ(r<n)Aw. (5.15)

Furthermore, the special element ε given by Definition 5.13 lies in B.

Proof See Sect. 5.8. �

The relations among the Pieri elements are given in the following proposition.

Proposition 5.15 The elements P
D
i ∈ B satisfy

∑

r+s=2m

(−1)r2−χ(r≥n)−χ(s≥n)
P

D
r P

D
s = 0 (5.16)
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and
(

P
D
n−1 + ε

)(

P
D
n−1 − ε

) − P
D
n−2P

D
n + · · · ± P

D
0 P

D
2n−2 = 0. (5.17)

Proof Equation (5.16) follows by a similar argument to Proposition 5.11, and (5.17)
follows from using the symmetry relations of ε (given in Definition 5.13) to find the
coefficients that appear in ε2. �

Theorem 5.16 In type D, for 1 ≤ r < 2n − 2, the following hold:

φ
(2)
0

(

Δ
(

P
D
r

)) = 1 ⊗ P
D
r + P

D
r ⊗ 1 +

∑

1≤s<r

2χ(r≥n>r−s and n>s)
P

D
s ⊗ P

D
r−s ,

(5.18)

φ
(2)
0

(

Δ
(

P
D
2n−2

)) = 1 ⊗ P
D
2n−2 + P

D
2n−2 ⊗ 1 +

∑

1≤s<2n−2,s �=n−1

P
D
s ⊗ P

D
2n−2−s

+ 2P
D
n−1 ⊗ P

D
n−1 + (−1)n−1 · 2ε ⊗ ε, (5.19)

φ
(2)
0

(

Δ(ε)
) = 1 ⊗ ε + ε ⊗ 1. (5.20)

Proof See Sect. 5.9. �

Based on the relations above and the scarcity of primitive elements, we conjecture
that the Pieri elements P

D
i and ε correspond with the σi and ε of Bott [5], respectively.

5.7 Type D affine Stanley symmetric functions

Similar to the type B case, define ΩD−1 ∈ B/〈ε〉 as the image of Ω
Dn

−1 under j0 ◦ �D .
By abuse of notation, let j0 also denote the isomorphism

H∗(GrD)/〈ξ
ρ

(2)
n−1

− ξ
ρ

(1)
n−1

〉 → B/〈ε〉

induced by j0. Then

ΩD−1 =
∑

λ1≤2n−2

P
D
λ1

P
D
λ2

· · · ⊗ 2−p≥n(λ)mλ[Y ]. (5.21)

As in type B , we define F̃
Dn
w [Y ] by

ΩD−1 =
∑

w∈˜Dn

Aw ⊗ F̃ Dn
w [Y ] (5.22)

=
∑

w∈˜D0
n

P
D
w ⊗ F̃ Dn

w [Y ]. (5.23)
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5.8 Proofs of Propositions 5.10 and 5.14

Propositions 5.10 and 5.14 are proved following the scheme laid out in [18]. Due
to the close similarities between the special orthogonal and symplectic Pieri factors,
many of the results have similar (and quite tedious) proofs; for brevity’s sake, we
briefly summarize only the main idea below, and refer the reader to [18, 30] for full
details.

The propositions are proved using Lemma 4.3. Because of that, we are mostly
concerned with the set of Pieri factors, and so we define the set of Pieri covers of
v ∈ Z to be Cv = {w ∈ Z | w � v}. Then Propositions 5.10 and 5.14 are proved by
showing the following:

Proposition 5.17 Let Waf = ˜Bn or ˜Dn, and Z = Z B or Z D , respectively. Let v ∈ Z
with �(v) < 2n − 1 (resp. �(v) < 2n − 2). Then

∑

w∈Cv

2cc(w)α∨
vw = 2cc(v)K, (5.24)

where K is the canonical central element.

For the type D case, we also need the following lemma.

Lemma 5.18 Let v ∈ Z D with �(v) = n − 2, and let Cv = {w ∈ Z D | w � v}. If
ε = ∑

w cwAw , then
∑

w∈Cv
cw = 0.

In general, the proof of Proposition 5.17 proceeds by analyzing very specifically
the types of reduced words that elements of Z may have. Given an element v of Z
of any type, it is possible to define a canonical reduced word for v. One can then
classify all possible Bruhat covers in Z of v, obtained by inserting “missing” letters
into the normal reduced word for v. Through lengthy, case-by-case calculations, it is
possible to verify Proposition 5.17 and Lemma 5.18. Given the approach in [18] and
Definitions 2.3 and 2.7, the necessary changes to prove the types B and D cases are
mostly clear. One small change is the necessary addition of an extra-special cover
when classifying the covers of a given element v (see [30]).

5.9 Proofs of Theorems 5.12 and 5.16

The coproduct formulas (Theorems 5.12 and 5.16) for type B and D Pieri elements
can also be proved using generalizations of the approach in [18]. In [30], we intro-
duced an additional sign-reversing involution to clean up the proof; however, this is
not strictly necessary. Therefore, again for brevity’s sake, we give only a very general
sketch of the proof immediately below. Readers who would like details are referred
to the references listed above.

In [18], a type-free coproduct rule for elements Aw of the nilCoxeter algebra is
given ([18], Proposition 7.1), involving operations on reduced words of w. By Propo-
sition 5.10 and Theorem 4.1, we can reduce to considering only Grassmannian ele-
ments, which allows us to classify terms that will appear in Δ(Aw). Again, careful
case-by-case analysis shows that the proper terms appear.
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6 Proofs of main theorems

6.1 Type B

Recall that a length-decreasing factorization of w is a factorization w = v1v2 · · ·vs

such that �(v1) ≤ �(v2) ≤ · · · ≤ �(vs) and �(v1) + · · · + �(vs) = �(w). A maximal
length-decreasing factorization is one such that each vi is as large as possible given
vi+1, . . . , vs .

Lemma 6.1 A maximal length-decreasing factorization of w ∈ ˜B0
n into elements of

Z B is a factorization of w into segments.

Proof Suppose w = v1v2 · · ·vs is a length-decreasing factorization of w ∈ ˜B0
n into

elements of Z B . The only elements in Z B ∩ ˜B0
n are the elements ρi , which are seg-

ments. Since w ∈ ˜B0
n , we must find that vs is a segment. Suppose by induction that

vi+1 is a segment, beginning with 0 (resp. 1). If vi = · · · sk for some k �= 1 (resp.
k �= 0), then either skv

i+1 ∈ Z B (so vi+1 was not maximal), skv
i+1 is not reduced,

skv
i+1 = vi+1sk , or skv

i+1 = vi+1sk+1 (there are only a limited number of cases to
check, given the precise form of segments). The last two cases imply that w /∈ ˜B0

n , a
contradiction. Therefore, vi is 1-Grassmannian (resp. 0-Grassmannian). There is only
one 1-Grassmannian (resp. 0-Grassmannian) element of Z B of each given length, and
these are exactly the segments. �

Remark 6.2 Billey and Mitchell give a bijection between w ∈ ˜B0
n and the affine type

B partitions, P n
B . Their bijection is given by taking a Grassmannian w and factor-

ing it into segments; the lengths of the segments give the associated partition. By
Lemma 6.1, this is the same as factoring a Grassmannian w into elements of Z B .

Proposition 6.3 The functions {F̃ Bn
w | w ∈ ˜B0

n} are linearly independent.

Proof
By Lemma 6.1, F̃

Bn
w = ∑

μ≤λ(w) aμ,λ(w)mμ, where λ(w) is the largest partition
associated to a factorization of w into Pieri factors, and ≤ is lexicographic ordering
on partitions. Further, if w �= v, then λ(w) �= λ(v), so A = (aμ,λ) is triangular. �

There is a surjective ring homomorphism θ : Λ → Γ∗ defined by θ(hi) = Qi (see
[26, Ex. III.8.10]). Let ι : Γ ∗ → Λ be the inclusion map.

Lemma 6.4 ([18], Lemma 2.1) Given f ∈ Γ ∗, g ∈ Λ, 〈ι(f ), g〉 = [f, θ(g)].

Proposition 6.5 Γ
(n)
B is spanned by {F̃ Bn

w | w ∈ ˜B0
n}.

Proof Given λ ∈ P n
B , consider g′ = 2p≥n(λ)hλ, so that θ(g′) = q ′

λ. Let w ∈ ˜B0
n be

such that the maximal factorization of w into segments corresponds to λ under the
bijection of [3] (see Remark 6.2). Then it is easy to see that the coefficient of mλ

in F̃
Bn
w is 2−p≥n(λ); by Lemma 6.4, [F̃ Bn

w , q ′
λ] = 〈F̃ Bn

w , g′〉 = 1. Furthermore, given
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ψ ≥ λ (in lexicographic order), with ψ ∈ P n
B and g′′ = 2p≥n(ψ)Qψ1Qψ2 · · · , we have

[F̃ Bn
w , g′′] = 0. Therefore, Γ

(n)
B = HomZ(Γ B

(n),Z) is spanned by {F̃ Bn
w | w ∈ ˜B0

n}. �

Recall Theorem 2.5, which states that there are dual Hopf algebra isomorphisms

Φ : Γ B
(n) → H∗(GrB) and Ψ : H ∗(GrB) → Γ

(n)
B

such that Φ(2χ(i≥n)Qi) = ξρi
for 1 ≤ i ≤ 2n− 1, and Ψ (ξw) = F̃

Bn
w for w ∈ ˜B0

n . The
following is a proof of Theorem 2.5.

Proof Given Proposition 5.11, Theorem 5.12, and Theorem 4.1, we may borrow the
proof of Theorem 1.3 of [18], and proceed analogously. We see that �B : Γ B

(n) →
H∗(GrSO2n+1(C)) is a bialgebra morphism. Since both are graded commutative and
cocommutative Hopf algebras, it must be a Hopf algebra morphism. We defined
�B : H ∗(GrSO2n+1(C)) → Γ

(n)
B by ξw → F̃

Bn
w for w ∈ ˜B0

n . We show that �B and �B

are dual with respect to the pairing 〈·, ·〉 : H∗(GrSO2n+1(C)) × H ∗(GrSO2n+1(C)) → Z

induced by the cap product and the pairing [·, ·] : Γ B
(n) × Γ

(n)
B → Z. We want to show

that 〈�B(f ), ξw〉 = [f,�B(ξw)], for all f in a spanning set of Γ B
(n). We have

[

2p≥n(λ)Qλ1 · · ·Qλl
,�B

(

ξw
)] = [

2p≥n(λ)Qλ1 · · ·Qλl
, F̃ Bn

w

]

(6.1)

= [

2p≥n(λ)Qλ1 · · ·Qλl
,
〈

ΩB−1, ξ
w
〉]

(6.2)

= 〈[

2p≥n(λ)Qλ1 · · ·Qλl
,ΩB−1

]

, ξw
〉

(6.3)

= 〈

P
B
λ1

· · ·PB
λ�

, ξw
〉

(6.4)

= 〈

�B

(

2p≥n(λ)Qλ1 · · ·Qλl

)

, ξw
〉

. (6.5)

The second equality holds by identifying B and H∗(GrG) and (5.14).
The fourth equality holds by (5.11) and (2.24) of [18], which states that

[2p≥n(λ)Qλ1 · · ·Qλ�
,f ] equals 2p≥n(λ) times the coefficient of mλ in f . The other

equalities hold by definition.
Therefore, �B is a Hopf algebra morphism. By Lemmas 6.3 and 6.5, �B is a

bijection; therefore, it is an isomorphism. �

6.2 Positivity of type B k-Schur functions

In [17], Lam offers a point of view relating geometric positivity to Schur-positivity (or
Schur P -positivity) of symmetric functions, based on the following theorem. Suppose
we have an embedding of affine Grassmannians, ι : H∗(GrG) → H∗(GrG′). Then we
have the following.

Theorem 6.6 ([17]) For any v ∈ W 0
af, the pushforward ι∗(ξv) ∈ H∗(GrG) of a Schu-

bert class is a nonnegative linear combination of Schubert classes {ξw | w ∈ (W ′
af)

0}
of H∗(GrG′).
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Letting G′ = SL(∞,C), we have H∗(GrG′) ∼= Λ, and the Schubert basis is iden-
tified with Schur functions.

For G = SL(n,C), the maps

H∗(GrG) ↪→ H∗(GrSL(n+1,C)) ↪→ H∗(GrSL(∞,C))

are inclusions, and it can be shown that every Schubert class is a Schur-positive sym-
metric function (similarly, the inclusions of H∗(GrSp(2n,C)) into H∗(GrSp(2n+2,C))

give Schur P -positivity of type C homology Schubert polynomials). Lam’s argu-
ments can be easily adapted to show that for G = Spin(2n + 1,C), homology Schu-
bert classes can be identified with Schur-positive and Schur P -positive symmetric
functions. By considering the natural inclusions SO(n) ↪→ SU(n) and SO(2n+1) ↪→
SO(2n + 3) and proofs analogous to those in [17], we have the following.

Proposition 6.7 The induced maps on homology

(1) H∗(Ω0SO(2n + 1)) → H∗(Ω0SO(2n + 3)) and
(2) H∗(Ω0SO(2n + 1)) → H∗(ΩSU(2n + 1))

are Hopf-inclusions. Furthermore, (1) is a Z-module isomorphism in degrees less
than 4n − 1.

Proposition 6.8 The symmetric functions G̃
Bn
w expand positively in terms of the

{G̃Bn+1
v } basis.

Proposition 6.9 Given w ∈ ˜B0
n , if n > �(w), then F̃

Bn
w is a Schur P -function. By

duality, the type B k-Schur functions G̃
Bn
w are Schur Q-functions.

Proof If n > �(w), then n /∈ supp(w). Given a component c of w (that is, a
subword with connected support), c can be written uniquely as a subword of
snsn−1 · · · s2s1s0s2 · · · sn−1sn; we say such a subword is a “V .” Furthermore, all dis-
tinct components commute. Therefore, write w = c1c2 · · · ck , where ci is the ith com-
ponent of w (suppose they are in order with respect to �, so that c1 is the component
with the largest indices). Then each ci has a reduced word that is a V given by c1

i mic
2
i ,

where mi is the minimum element in ci . One way to write w as a V is

w = c1
1m1c

1
2m2 · · · c1

k−1mk−1ckc
2
k−1 · · · c2

2c
2
1.

However, for each 1 ≤ i ≤ k − 1, we can move mi from immediately prior to c1
i+1

to immediately after c2
i+1 and still have a V . Therefore, there are 2c−1 possible ways

to write w as a V , where c is the number of components of w. Note that c = cc(w)

unless neither 0 nor 1 is in the support of w, in which case c = cc(w) − 1.
In [20], T.K. Lam defines type D Stanley symmetric functions (see also [1]) Hw(x)

by

D(x1)D(x2) · · · =
∑

w

Hw(x)w, (6.6)
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where D(x) = (1+xun−1) · · · (1+xu2)(1+xu1)(1+xu0)(1+xu2) · · · (1+xun−1),
and the ui are generators for the finite nilCoxeter algebra of type D such that 0 and
1 commute, with the action of ui on permutations as defined in the introduction. Re-
calling our definition of type B affine Stanley symmetric functions (Definition 2.2),
we see that F̃

Bn
w (x) = Hw(x), since the coefficient of a given vi in D(x) is cc(vi). By

[20, Theorem 4.35], Hw(x) expands as a nonnegative sum of Schur P -functions. �

Corollary 6.10 The type B k-Schur functions G̃
Bn
w expand positively in terms of

Schur Q-functions.

Proposition 6.11 The type B k-Schur functions G̃
Bn
w are k-Schur positive, with

k = 2n.

We now recall and prove Theorem 2.4.

Theorem 2.4 The functions F̃
Bn
w ,w ∈ ˜B0

n form a basis of Γ
(n)
B such that all product

and coproduct structure constants are positive, and all F̃
Bn
w with w ∈ ˜Bn are positive

in this basis.

Proof of Theorem 2.4 The proof of Theorem 2.4 may also follow its analog in [18],
after establishing the above results. The affine Stanley symmetric functions are sym-
metric by their alternative definition using the type B reproducing kernel and the
commutativity of B. They form a basis for w ∈ ˜B0

n because the Schubert classes
ξw for w ∈ ˜B0

n form a basis of H ∗(GrB). Graham [11] and Kumar [14] showed the
positivity of the structure constants. By duality, the coproduct structure constants of
{F̃ Bn

w | w ∈ ˜B0
n} equal the product structure constants of {ξw | w ∈ ˜B0

n}, which are
nonnegative by work of Peterson [28] and Lam and Shimozono [19] (see [18]). �

The type B Pieri rule (Theorem 2.6) follows immediately from Theorem 4.2 and
Proposition 5.10.

6.3 Main theorems—type D

The type D results are not as satisfying or complete, given the constraints discussed
in the introduction.

Proposition 6.12 Γ
(n)
D is spanned by {F̃ Dn

w | w ∈ ˜D0
n}. The functions {F̃ Dn

w | w ∈ ˜D0
n}

are linearly independent, except for F̃
Dn
w = F̃

Dn

w′ if there are reduced words for w and
w′ that differ only by swapping some occurrences of n and n − 1.

Proof The proof of the first statement is similar to the proof of Proposition 6.5. The
second statement also follows a similar proof to that of Proposition 6.3, except if ρ

(i)
n−1

occurs as a segment in the canonical decomposition of w into segments, in which case
swapping ρ

(1)
n−1 and ρ

(2)
n−1 in w will give another element w′ such that F̃

Dn
w = F̃

Dn

w′ . �
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Given the setup and results we have for type D, a proof of Conjecture 2.8 will
likely follow the same scheme as the type B proofs.

The type D Pieri rule (Theorem 2.9) follows immediately from Theorem 4.2 and
Proposition 5.14.

7 Type-free Pieri factors

Given the type-specific definitions of Pieri factors, it is easy to prove our type-free
description for the classical types.

Proposition 7.1 The Pieri factors given in Sect. 2.1 match with those of with the
corresponding set of affine Weyl group elements given in type A [16, Definition 6.2],
type C [18, Sect. 1.5], and types B and D (Definitions 2.3 and 2.7).

Proof We use computations done by Pittman-Polletta [29], although others may have
done similar computations [10]. Pittman-Polletta computes the reduced word in the
affine Weyl group corresponding to the image of the translation by ν(ω∨

1 ) for every
type (in his notation, this is the Weyl group element W1, and his w correspond to
our w−1). We can use that description to find a description of all length-maximal
Pieri factors. We proceed using the descriptions of Pieri factors given in [16] and [18]
for the type A and C cases, respectively.

− Type A: In this case, Pieri factors are the Bruhat order ideal generated by length-
maximal cyclically decreasing words [16]. The element in the affine Weyl group
corresponding to translation by ν(ω∨

1 ) is s0sn−1sn−2 · · · s3s2. It is not hard to com-
pute the Dynkin diagram automorphism τ such that tν(ω∨

1 ) = τs0sn−1 · · · s2 by
looking at the action of s0 · · · s2 on simple roots—it is the Dynkin diagram auto-
morphism that sends i to i + 1. Then for w ∈ W , we have

wtν(ω∨
1 )w

−1 = wτs0 · · · s2w
−1

= τ
(

τ−1wτ
)

s0 · · · s2w
−1

= τsw1−1 · · · sw�−1s0 · · · s2sw�
· · · sw1 ,

where w1 · · ·w� is a reduced word for w. One can check that given any
cyclically decreasing word sr sr−1 · · · s1s0sn−1 · · · sr+2, the result of multiplying
si−1sr · · · sr+2si is another cyclically decreasing word. For example, if i �= r + 1,
then we have

si−1sr sr−1 · · · s1s0sn−1 · · · sr+2si = sr · · · si+1si−1sisi−1sisi−2 · · · sr+2 (7.1)

= sr · · · si+1sisi−1 · · · sr+2, (7.2)

so the cyclically decreasing word is unchanged. If i = r + 1, then multiplication
by si−1 on the left and si on the right will rotate the reduced word. It is clear
that we can get any maximal-length cyclically decreasing word in this manner;
therefore, the elements {tw(ν(ω∨

1 )),w ∈ Sn} correspond to the type A Pieri factor
generators given in [16].
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− Type B: In this case, Pieri factors are given in Definition 2.3. For type B , the fun-
damental coweight ω∨

1 does not lie in the coroot lattice; therefore, translation by
ν(ω∨

1 ) must involve a nontrivial Dynkin diagram automorphism. There is only one
choice for such an automorphism—the map that exchanges 0 and 1. Therefore,
by [29], tν(ω∨

1 ) = τs0s2 · · · sn · · · s2s0, where τ exchanges 0 and 1, and we have

twν(ω∨
1 ) = τw′s0s2 · · · sn · · · s2s0w

−1, where w′ is obtained from w by switching
any occurrences of 0 into 1, and vice versa. These match with the description of
maximal-length Pieri factors of type B , via similar calculations to the type A case.

− Type C: In this case, maximal-length Pieri factors are given by conjugates of the
affine Weyl group element s1s2 · · · sn−1snsn−1 · · · s2s1s0 [18]. For type C, ν(ω∨

1 )

is in the span of the coroots; therefore, translation by ν(ω∨
1 ) lies in the affine

Weyl group, and acting on ν(ω∨
1 ) by finite Weyl group elements corresponds to

conjugation.
− Type D: In this case, Pieri factors are given in Definition 2.7. The transla-

tion tν(ω∨
1 ) corresponds to the affine Weyl group element v with reduced word

v = s0s2 · · · sn−2sn−1snsn−2 · · · s2s0. As in type A, a simple calculation shows that
tν(ω∨

1 ) = τv, where τ exchanges 0 and 1 and n and n − 1. As in the cases above,
this is easily seen to correspond to the description of type D Pieri factors in terms
of reduced words. �
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Appendix

The following are examples of affine Stanley symmetric functions and their duals for
w ∈ ˜B0

3 (they have been implemented in the Sage open-source mathematical soft-
ware package [33, 35]). Affine Stanley symmetric functions are expanded in terms of
monomial symmetric functions indexed by λ with λ1 ≤ 5, since we are working in the
quotient ring. Type B k-Schur functions are expanded in terms of Schur Q-functions.

w F̃
Bn
w G̃

Bn
w

s0 m1 Q1
s2s0 2m11 + m2 Q2
s1s2s0 2m111 + m21 Q21
s3s2s0 2m111 + m21 + 1

2m3 2Q3
s1s3s2s0 4m1111 + 2m211 + m22 + 1

2m31 2Q31
s2s3s2s0 4m1111 + 2m211 + m22 + m31 + 1

2m4 2Q4
s2s1s3s2s0 8m11111 + 4m2111 + 2m221 + m311 + 1

2m32 2Q32 + 2Q41
s1s2s3s2s0 4m11111 + 2m2111 + m221 + m311 + 1

2m32 + 1
2m41 2Q41 + 2Q5

s0s2s3s2s0 4m11111 + 2m2111 + m221 + m311 + 1
2m32 + 1

2m41 + 1
2m5 2Q5
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