ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Cluster-additive functions on stable translation quivers

Claus Michael Ringel
Fakultät für Mathematik, Universität Bielefeld, P.O. Box 100 hinspace 131, 33 hinspace 501, Bielefeld, Germany

DOI: 10.1007/s10801-012-0346-4

Abstract

Additive functions on translation quivers have played an important role in the representation theory of finite-dimensional algebras, the most prominent ones are the hammock functions introduced by S. Brenner. When dealing with cluster categories (and cluster-tilted algebras), one should look at a corresponding class of functions defined on stable translation quivers, namely the cluster-additive ones. We conjecture that the cluster-additive functions on a stable translation quiver of Dynkin type $\mathbb{A}_{n}, \mathbb{D}_{n}, \mathbb{E}_{6}, \mathbb {E}_{7}, \mathbb{E}_{8}$ are non-negative linear combinations of cluster-hammock functions (with index set a tilting set). The present paper provides a first study of cluster-additive functions and gives a proof of the conjecture in the case $\mathbb{A}_{n}$ .

Pages: 475–500

Keywords: translation quiver; additive function; cluster-additive function; hammocks; cluster-hammocks; Dynkin quiver; cluster category; cluster-tilted algebra

Full Text: PDF

References

Assem, I., Reutenauer, C., Smith, D.: Friezes. Adv. Math. 225, 3134-3165 (2010) CrossRef Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors and Gabriel's theorem. Usp. Mat. Nauk 28, 19-33 (1973). Russ. Math. Surv. 29, 17-32 (1973) Brenner, S.: A combinatorial characterisation of finite Auslander-Reiten quivers. In: Dlab, V., Gabriel, P., Michler, G. (eds.) Representation Theory I. Finite Dimensional Algebras. LNM, vol. 1177, pp. 13-49. Springer, Berlin (1986) CrossRef Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572-618 (2006) CrossRef Buan, A.B., Marsh, R.J., Reiten, I.: Cluster-tilted algebras. Trans. Am. Math. Soc. 359, 323-332 (2007) CrossRef Butler, M.C.R.: Grothendieck groups and almost split sequences. In: Roggenkamp, K.W. (ed.) Integral Representations and Applications. LNM, vol. 882, pp. 357-368. Springer, Berlin (1981) CrossRef Calderon, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A $_{ n }$-case). Trans. Am. Math. Soc. 358, 1347-1364 (2006) CrossRef Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundation. J. Am. Math. Soc. 15, 497-529 (2002) CrossRef Gabriel, P.: Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory I. LNM, vol. 831, pp. 1-71. Springer, Berlin (1980) CrossRef Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. LMS Lecture Note Series, vol.
119. Cambridge (1988) Happel, D., Preiser, U., Ringel, C.M.: Vinberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules. In: Representation Theory II. LNM, vol. 832, pp. 280-294 (1980) CrossRef Ringel, C.M.: The minimal representation-infinite algebras which are special biserial. In: Skowroński, A., Yamagata, K. (eds.) Representations of Algebras and Related Topics, pp. 501-560. European Math. Soc. Publ. House, Zürich (2011) CrossRef Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv. 55, 199-224 (1980) CrossRef Ringel, C.M., Vossieck, D.: Hammocks. Proc. Lond. Math. Soc. $54(3)$, 216-246 (1987) CrossRef




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition