Foulkes characters, Eulerian idempotents, and an amazing matrix
DOI: 10.1007/s10801-012-0343-7
Abstract
John Holte (Am. Math. Mon. 104:138-149, 1997) introduced a family of “amazing matrices” which give the transition probabilities of “carries” when adding a list of numbers. It was subsequently shown that these same matrices arise in the combinatorics of the Veronese embedding of commutative algebra (Brenti and Welker, Adv. Appl. Math. 42:545-556, 2009; Diaconis and Fulman, Am. Math. Mon. 116:788-803, 2009; Adv. Appl. Math. 43:176-196, 2009) and in the analysis of riffle shuffling (Diaconis and Fulman, Am. Math. Mon. 116:788-803, 2009; Adv. Appl. Math. 43:176-196, 2009). We find that the left eigenvectors of these matrices form the Foulkes character table of the symmetric group and the right eigenvectors are the Eulerian idempotents introduced by Loday (Cyclic Homology, 1992) in work on Hochschild homology. The connections give new closed formulae for Foulkes characters and allow explicit computation of natural correlation functions in the original carries problem.
Pages: 425–440
Keywords: foulkes character; carry; Eulerian idempotent; symmetric group
Full Text: PDF
References
301. Springer, Berlin (1992). Appendix E by María O. Ronco Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1995). With contributions by A. Zelevinsky, Oxford Science Publications Novelli, J.-C., Thibon, J.-Y.: Noncommutative symmetric functions and an amazing matrix. ArXiv e-prints 1110.3209 (2011) Patras, F.: Construction géométrique des idempotents Eulériens. Filtration des groupes de polytopes et des groupes d'homologie de Hochschild. Bull. Soc. Math. Fr. 119, 173-198 (1991) Solomon, L.: A decomposition of the group algebra of a finite Coxeter group. J. Algebra 9, 220-239 (1968) CrossRef Stanley, R.P.: Enumerative Combinatorics, vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original CrossRef Stanley, R.P.: Enumerative Combinatorics, vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin CrossRef Stanley, R.P.: Alternating permutations and symmetric functions. J. Comb. Theory, Ser. A 114, 436-460 (2007). doi:10.1016/j.jcta.2006.06.008 CrossRef Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol.
38. Cambridge University Press, Cambridge (1994)