ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Generalized hook lengths in symbols and partitions

Christine Bessenrodt , Jean-Baptiste Gramain and Jørn B. Olsson
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany

DOI: 10.1007/s10801-011-0338-9

Abstract

In this paper we present, for any integer d, a description of the set of hooks in a d-symbol. We then introduce generalized hook length functions for a d-symbol, and prove a general result about them, involving the core and quotient of the symbol. We list some applications, for example to the well-known hook lengths in integer partitions. This leads in particular to a generalization of a relative hook formula for the degree of characters of the symmetric group discovered by G. Malle and G. Navarro in Trans. Am. Math. Soc. 363, 6647-6669, 2011.

Pages: 309–332

Keywords: symbols; hooks; hook lengths; partitions; core; quotient

Full Text: PDF

References

James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, vol.
16. Addison-Wesley, Reading (1981) Malle, G.: Unipotente Grade imprimitiver komplexer Spiegelungsgruppen. J. Algebra 177, 768-826 (1995) CrossRef Malle, G., Navarro, G.: Blocks with equal height zero degrees. Trans. Am. Math. Soc. 363, 6647-6669 (2011) CrossRef Olsson, J.B.: Combinatorics and Representations of Finite Groups. Vorlesungen aus dem FB Mathematik der Univ. Essen, vol. 20 (1993) (This book is freely available at the author's homepage)




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition