Relative node polynomials for plane curves
DOI: 10.1007/s10801-011-0337-x
Abstract
We generalize the recent work of S. Fomin and G. Mikhalkin on polynomial formulas for Severi degrees.
The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves that, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined “relative node polynomial” in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ, and use it to present explicit formulas for δ\leq 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ.
Pages: 279–308
Keywords: enumerative geometry; floor diagram; Gromov-Witten theory; node polynomial; tangency conditions
Full Text: PDF
References
1994. Progr. Math., vol. 129, pp. 81-148. Birkhäuser Boston, Boston (1995) CrossRef Enriques, F.: Sui moduli d'una classe di superficie e sul teorema d'esistenza per funzioni algebriche di due variabilis. Atti R. Accad. Sci. Torino 47 (1912) Fomin, S., Mikhalkin, G.: Labeled floor diagrams for plane curves. J. Eur. Math. Soc. (JEMS) $12(6)$, 1453-1496 (2010) CrossRef Gathmann, A.: Tropical algebraic geometry. Jahresber. Dtsch. Math.-Ver. $108(1)$, 3-32 (2006) Göttsche, L.: A conjectural generating function for numbers of curves on surfaces. Commun. Math. Phys. $196(3)$, 523-533 (1998) CrossRef Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994). A foundation for computer science Harris, J.: On the Severi problem. Invent. Math. $84(3)$, 445-461 (1986) CrossRef Kleiman, S., Piene, R.: Node polynomials for families: methods and applications. Math. Nachr. 271, 69-90 (2004) CrossRef Mikhalkin, G.: Enumerative tropical geometry in $\Bbb R^{2}$. J. Am. Math. Soc. 18, 313-377 (2005) CrossRef Qviller, N.: The Di Francesco-Itzykson-Göttsche conjectures for node polynomials of $\Bbb P^{2}$. Int. J. Math. (2010). doi:10.1142/S0129167X12500498. arXiv:1010.2377 Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. In: Idempotent Mathematics and Mathematical Physics. Contemp. Math., vol. 377, pp. 289-317. Am. Math. Soc, Providence (2005) CrossRef Severi, F.: Vorlesungen über Algebraische Geometrie. Teubner, Leipzig (1921) Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. $4(3)$, 389-411 (2004) CrossRef Stanley, R.: Enumerative Combinatorics, Vol.
1. Cambridge Studies in Advanced Mathematics, vol.
49. Cambridge University Press, Cambridge (1997) CrossRef Tzeng, Y.-J.: A proof of Göttsche-Yau-Zaslow formula. Preprint (2010). arXiv:1009.5371 Vainsencher, I.: Enumeration of n-fold tangent hyperplanes to a surface. J. Algebr. Geom. $4(3)$, 503-526 (1995) Vakil, R.: Counting curves on rational surfaces. Manuscr. Math. $102(1)$, 53-84 (2000) CrossRef