Galois groups of multivariate Tutte polynomials
DOI: 10.1007/s10801-011-0332-2
Abstract
The multivariate Tutte polynomial $\hat{Z}_{M}$ of a matroid M is a generalization of the standard two-variable version, obtained by assigning a separate variable v e to each element e of the ground set E. It encodes the full structure of M. Let v={v e } e\in E , let K be an arbitrary field, and suppose M is connected. We show that $\hat{Z}_{M}$ is irreducible over K(v), and give three self-contained proofs that the Galois group of $\hat{Z}_{M}$ over K(v) is the symmetric group of degree n, where n is the rank of M. An immediate consequence of this result is that the Galois group of the multivariate Tutte polynomial of any matroid is a direct product of symmetric groups. Finally, we conjecture a similar result for the standard Tutte polynomial of a connected matroid.
Pages: 223–230
Keywords: tutte polynomial; multivariate tutte polynomial; matroids; graphs; Galois theory
Full Text: PDF