ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Gelfand models and Robinson-Schensted correspondence

Fabrizio Caselli and Roberta Fulci
Dipartimento di Matematica, Universitá di Bologna, Bologna, Italy

DOI: 10.1007/s10801-011-0328-y

Abstract

In F. Caselli (Involutory reflection groups and their models, J. Algebra 24:370-393, 2010), a uniform Gelfand model is constructed for all nonexceptional irreducible complex reflection groups which are involutory. Such models can be naturally decomposed into the direct sum of submodules indexed by S n -conjugacy classes, and we present here a general result that relates the irreducible decomposition of these submodules with the projective Robinson-Schensted correspondence. This description also reflects, in a very explicit way, the existence of split representations for these groups.

Pages: 175–207

Keywords: complex reflection groups; characters and representations of finite groups; Clifford theory

Full Text: PDF

References

Adin, R., Postnikov, A., Roichman, Y.: A Gelfand model for wreath products. Isr. J. Math. 179, 381-402 (2010) CrossRef Baddeley, R.W.: Models and involution models for wreath products and certain Weyl groups. J. Lond. Math. Soc. 44, 55-74 (1991) CrossRef Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Models of representations of compact Lie groups. Funkc. Anal. Prilozh. 9, 61-62 (1975) (in Russian) CrossRef Caselli, F.: Projective reflection groups. Isr. J. Math. 185, 155-187 (2011) CrossRef Caselli, F.: Involutory reflection groups and their models. J. Algebra 24, 370-393 (2010) CrossRef Caselli, F., Fulci, R.: Refined Gelfand models for wreath products. Eur. J. Comb. 32, 198-216 (2011) CrossRef Inglis, N.F.J., Richardson, R.W., Saxl, J.: An explicit model for the complex representations of S $_{ n }$. Arch. Math. 54, 258-259 (1990) CrossRef Klyachko, A.A.: Models for complex representations of groups $GL(n.q)$. Mat. Sb. 120, 371-386 (1983) (in Russian) Marberg, E.: Automorphisms and generalized involution models of finite complex reflection groups. J. Algebra 334, 295-320 (2011) CrossRef Marberg, E.: Generalized involution models for wreath products, Isr. J. Math. (2011, in press). arXiv:1007.5078 Pfeiffer, G.: Character tables of Weyl Groups in GAP. Bayreuth. Math. Schr. 47, 165-222 (1994) Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274-304 (1954) CrossRef Stembridge, J.R.: On the eigenvalues of representations of reflection groups and wreath products. Pac. J. Math. $140(2)$, 353-396 (1989) Stanley, R.P.: Enumerative Combinatorics, vol.
2. Cambridge Studies in Advanced Mathematics, vol.
62. Cambridge University Press, Cambridge (1999) CrossRef Stanton, D.W., White, D.E.: A Schensted algorithm for rim hook tableaux. J. Comb. Theory, Ser. A 40, 211-247 (1985) CrossRef




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition