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Abstract The branching coefficients in the expansion of the elementary symmetric
function multiplied by a symmetric Macdonald polynomial Pκ(z) are known explic-
itly. These formulas generalise the known r = 1 case of the Pieri-type formulas for
the nonsymmetric Macdonald polynomials Eη(z). In this paper, we extend beyond
the case r = 1 for the nonsymmetric Macdonald polynomials, giving the full gener-
alisation of the Pieri-type formulas for symmetric Macdonald polynomials. The de-
composition also allows the evaluation of the generalised binomial coefficients

(
η
ν

)
q,t

associated with the nonsymmetric Macdonald polynomials.
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For each box s = (i, j) in a partition κ, the number of boxes to the right, left,
below and above s are the arm length aκ(s), arm colength a′

κ(s), leg length lκ (s) and
leg colength l′κ(s), respectively. These are formally defined by

aκ(s) := κi − j, a′
κ(s) := a′

κ(j) := j − 1, (1)

lκ (s) := #{k : k > i, j ≤ κk}, l′κ(s) := l′κ(i) := i − 1. (2)

For example, if we have the κ defined as above and take the box s = (2,3), we get

In 1988, Ian Macdonald [11] introduced the symmetric Macdonald polynomials
Pκ(z;q, t), polynomials generalising, for example, the Schur and symmetric Jack
polynomials. Six years later, a generalisation of the symmetric Macdonald polyno-
mials, the nonsymmetric Macdonald polynomials, were introduced [3, 13].

The symmetric Macdonald polynomials can be generated from the nonsymmetric
Macdonald polynomials by a process of symmetrisation. Consequently, properties
of the nonsymmetric Macdonald polynomials imply corresponding properties of the
symmetric polynomials, and can be used to both illuminate and simplify the theory
of the latter [14].

The converse, however, does not always hold. For example, the nonsymmetric
analogue of the Pieri-type formula [12, Sect. VI.6]

er(z)Pκ(z;q, t) =
∑

λ

ψλ/κPλ(z;q, t) (3)

giving the explicit form of the branching coefficients ψλ/κ , for the product of
Pκ(z;q, t) with the r th elementary symmetric function,

er(z) =
∑

1≤i1<···<ir≤n

zi1 · · · zir ,
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is only known in the cases r = 1 and r = n− 1 [2]. In (3), the sum is over λ such that
λ/κ is a vertical m-strip and ψλ/κ is given by

ψλ/κ := tn(λ)−n(κ) Pκ(tδ)

Pλ(tδ)

∏

1≤i<j≤n

1 − qκi−κj tj−i+θi−θj

1 − qκi−κj tj−i
,

where θλ − κ and n(λ) = ∑
i (i − 1)λi . We remark that the Pieri formulas have been

of recent interest in studies of certain vanishing properties of Macdonald polynomials
at tk+1qr−1 = 1 [4]. The dual of (3) has also found application in the study of certain
probabilistic models related to the Robinson–Schensted–Knuth correspondence [6].

In this work, we provide explicit formulas for the branching coefficients in the
general Pieri-type formulas

er(z)Eη

(
z;q−1, t−1) =

∑

λ:|λ|=|η|+r

A
(r)
ηλ Eλ

(
z;q−1, t−1). (4)

As in [2], the coefficients are obtained via exploitation of the theory of interpolation
polynomials [8, 19]. The theory of the latter is revised in Sect. 3, after an account of
the required theory of nonsymmetric Macdonald polynomials. Also given in Sect. 3 is
an alternative derivation of the known [7] extra vanishing properties of the interpola-
tion Macdonald polynomials that play a key role in the study of the general Pieri-type
formulas.

We commence our study of the general Pieri-type coefficients in Sect. 4 by deter-
mining the necessary conditions for the coefficients A

(r)
ηλ in (4) to be nonzero. Explicit

formulas for the branching coefficients are derived in Sects. 5 and 6. We begin with
an alternative derivation of the r = 1 case in Sect. 5 and proceed with the general
formulas in Sect. 6. The main results are stated in Theorem 7 and Proposition 8. As a
corollary of Proposition 8, we are able provide an explicit formula for the generalised
binomial coefficient

(
η
ν

)
. We conclude the paper by considering possible simplifica-

tions of the coefficient formulas and a discussion of yet another representation of the
coefficients in the case of r = 1 that could lead to more succinct expressions for the
coefficients in general r case.

2 The nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials Eη := Eη(z;q, t), labelled by composi-
tions η := (η1, . . . , ηn), are most commonly defined to be the simultaneous eigen-
functions of commuting Cherednik type operators [13]. Here we take an alternative
approach by introducing two elementary operators that allow the polynomials to be
generated, and consequently defined, recursively.

We first introduce the Demazure–Lustig operator, Ti , a switching type operator
that relates the polynomials Eη and Esiη. The operator si is a transposition operator
which acts on compositions

siη := (η1, . . . , ηi+1, ηi, . . . , ηn),
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and functions

(sif )(z1, . . . , zi , zi+1, . . . , zn) := f (z1, . . . , zi+1, zi , . . . , zn).

The operator Ti is defined by

Ti := t + tzi − zi+1

zi − zi+1
(si − 1), (5)

and is realisation of the type-A Hecke algebra

(Ti + 1)(Ti − t) = 0,

TiTi+1Ti = Ti+1TiTi+1, i = 2, . . . , n − 2, (6)

TiTj = TjTi, |i − j | > 1.

The operator Ti acts on Eη according to [16]

TiEη(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−1
1−δ−1

i,η (q,t)
Eη(z) + tEsiη(z) if ηi < ηi+1,

Eη(z) if ηi = ηi+1,

t−1
1−δ−1

i,η (q,t)
Eη(z) + (1−tδi,η(q,t))(1−t−1δi,η(q,t))

(1−δi,η(q,t))2 Esiη(z) if ηi > ηi+1.

(7)

In (7), δi,η(q, t) := η̄i/η̄i+1, with

η̄i := qηi t−l′η(i), (8)

where

l′η(i) := #{j < i;ηj ≥ ηi} + #{j > i;ηj > ηi}. (9)

The second operator 	q , a raising operator, transforms the polynomial Eη to E	η.

Here

	η := (η2, . . . , ηn, η1 + 1),

and the operator 	q is defined by [1]

	q := znT
−1
n−1 · · ·T −1

1 = t i−nTn−1 · · ·TiziT
−1
i−1 · · ·T −1

i .

The operator T −1
i is related to Ti by the quadratic relation in (6) and given explicitly

by

T −1
i := t−1 − 1 + t−1Ti.

The raising operator acts on Eη according to [1]

	qEη(z) = t−#{i>1;ηi≤η1}E	η(z). (10)

By defining the nonsymmetric Macdonald polynomial E(0,...,0)(z) := 1 and ob-
serving that every composition η can be recursively generated from (0, . . . ,0) using
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only si and 	, we can be assured that each Eη can be recursively generated using
only Ti and 	q .

A further alternative characterisation of the nonsymmetric Macdonald polynomi-
als is as multivariate orthogonal polynomials. This definition requires an inner prod-
uct and two partial orderings. Introduce the inner product

〈f,g〉q,t := CT
[
f (z;q, t)g

(
z−1, q−1, t−1)W(z)

]
(11)

where CT denotes the constant term in the formal Laurent expansion and

W(z) := W(z;q, t) :=
∏

1≤i<j≤n

(
zi

zj
;q)∞(q

zj

zi
;q)∞

(t
zi

zj
;q),∞ (qt

zj

zi
;q)∞

,

with the Pochhammer symbol defined by (a;q)∞ := ∏∞
j=0(1 − aqj ). Let |η| :=


n
i=1ηi denote the modulus of η. The dominance ordering <, a partial ordering on

compositions of the same modulus, is defined by

η < μ iff η �= μ and 

p

i=1(ηi − μi) ≥ 0 for all 1 ≤ p ≤ n.

A further partial ordering on compositions of the same modulus is ≺ is defined by

μ ≺ η iff μ+ < η+ or in the case μ+ = η+, μ < η

where η+ is the unique partition obtained by permuting the components of η. For a
given value of |η|, the Eη can be constructed via a Gram–Schmidt procedure with
respect to (11) from the requirements that [13]

〈Eη,Eμ〉q,t = δημ Nη, (12)

and that with zη := z
η1
1 z

η2
2 . . . z

ηn
n

Eη(z;q, t) = zη +
∑

μ≺η

bημzμ, bημ ∈ Q(q, t). (13)

We will have future use for the explicit value of Nη . To express this, we require a
number of quantities dependent on η. For each node s = (i, j) ∈ diag(η), we define
the arm length, aη(s) := ηi − j , arm colength, a′

η(s) := j − 1, leg length, lη(s) :=
#{k < i : j ≤ ηk + 1 ≤ ηi} + #{k < i : j ≤ ηk ≤ ηi} and leg colength l′η(s), given
by (9). From these we define [18]

dη := dη(q, t) =
∏

s∈diag(η)

(
1 − qaη(s)+1t lη(s)+1),

d ′
η := d ′

η(q, t) =
∏

s∈diag(η)

(
1 − qaη(s)+1t lη(s)

)
,

eη := eη(q, t) =
∏

s∈diag(η)

(
1 − qa′

η(s)+1tn−l′η(s)
)
,

e′
η := e′

η(q, t) =
∏

s∈diag(η)

(
1 − qa′

η(s)+1tn−1−l′η(s)
)
.
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In this notation, the explicit formula for Nη is given by (see, e.g., [3])

Nη = d ′
ηeη

dηe′
η

〈1,1〉q,t . (14)

We now introduce a generalisation of the nonsymmetric Macdonald polynomials,
the interpolation Macdonald polynomials.

3 Interpolation Macdonald polynomials

Although the interpolation Macdonald polynomials are not homogeneous, like the
Macdonald polynomials they exhibit a certain triangular structure, specified by

E∗
η(z) = zη +

∑

λ≺η

b′
ηλz

λ, b′
ηλ ∈ Q(q, t), (15)

where here λ ≺ η is extended to compositions λ of modulus less than |η| as well.
Moreover, also in analogy with the nonsymmetric Macdonald polynomials, they per-
mit a number of distinct characterisations which can be taken as their definition. Here
we present such definitions, important to our subsequent workings.

Let

�i := z−1
i + z−1

i Hi · · ·Hn−1	H1 · · ·Hi−1. (16)

In (16),

Hi := (t − 1)zi

zi − zi+1
+ zi − tzi+1

zi − zi+1
si (17)

= t + zi − tzi+1

zi − zi+1
(si − 1) (18)

(cf. (5)) is a Hecke operator and

	 := (
zn − t−n+1)�, (19)

where

�f (z1, . . . , zn) = f

(
zn

q
, z1, . . . , zn−1

)

is a raising operator. We note that the Hecke operator, like the Demazure–Lustig
operator is a realisation of the type-A Hecke algebra.

Definition 1 [7] With �i as given in (16) the interpolation Macdonald polynomials
can be defined, up to normalisation, as the unique simultaneous eigenfunctions of
each �i of the form (15) according to

�iE
∗
η(z;q, t) = η̄−1

i E∗
η(z;q, t), (20)

where η̄i is given by (8).
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In [7], Knop showed that the top homogeneous component of E∗
η(z;q, t) is

Eη(z;q−1, t−1) using a relationship between the corresponding eigenoperators. This
relationship is fundamental to our study, allowing us to use interpolation polynomial
theory to derive explicit formulas for the coefficients A

(r)
ηλ in (4).

Another defining characteristic of the E∗
η relates to the recursive generation (cf.

(7), (10)).

Definition 2 [7] With Hi given by (17) and 	 given by (19), we can recursively
generate E∗

η recursively from E∗
(0,...,0) = 1 using

E∗
siη

(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HiE
∗
η(z) − t−1

1−δ−1
iη (q,t)

E∗
η(z) if ηi < ηi+1,

E∗
η(z) if ηi = ηi+1,

(1−δi,η(q,t))2

(1−tδi,η(q,t))(t−δi,η(q,t))

(
HiE

∗
η(z) − t−1

1−δ−1
iη (q,t)

E∗
η(z)

)
if ηi > ηi+1,

(21)

	E∗
η(z) = q−η1E∗

	η(z). (22)

The final definition characterises the polynomials according to their vanishing
properties.

Definition 3 [7] With η̄i as given in (8), we define η̄ := (η̄1, . . . , η̄n). The interpo-
lation Macdonald polynomials can be defined, up to normalisation, as the unique
polynomial of degree ≤ |η| satisfying

E∗
η(μ̄) = 0, |μ| ≤ |η|, μ �= η,

and E∗
η(η̄) �= 0.

It is well known [7] that the interpolation Macdonald polynomials E∗
η(z) vanish

on a larger domain than λ ∈ 
 with |λ| ≤ |η|, λ �= η. These extra vanishing prop-
erties, that play an imperative role in the derivation of our coefficients, will now be
considered in some detail.

3.1 Successors and the extra vanishing theorem

To state the larger vanishing domain of the interpolation polynomials, a further partial
ordering is required. We write η �′ λ, and say λ is a successor of η, if there exists a
permutation σ such that

ηi < λσ(i) if i < σ(i) and ηi ≤ λσ(i) if i ≥ σ(i).

We call σ a defining permutation for η �′ λ and write η �′ λ;σ. It is important
to note that defining permutations are not unique. For example, (1,2,1) ≺′ (1,2,2)

has defining permutations (1,2,3) and (3,2,1). However, there is only one defining
permutation such that for all i such that σ(i) = i we have ηi = λi ; this defining
permutation is to be denoted σ̂ .
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In [7], Knop showed that if η ��′ λ then E∗
η(λ̄) = 0, using the eigenoperator and

the defining vanishing properties of the interpolation polynomials. In this section, we
prove this extra vanishing property using an alternative method that employs all three
defining properties of the interpolation polynomials. The alternative method allows
us to extend Knop’s result as it can be used to show the converse is also true, that is,
if E∗

η(λ̄) = 0 then η ��′ λ.
We begin as in [7] introducing the minimal elements lying above η, the λ such

that η �′ λ and |λ| = |η|+ 1. Such compositions are denoted by cI (η) and defined by

(
cI (η)

)
j

=

⎧
⎪⎨

⎪⎩

ηtk+1 if j = tk, for k = 1, . . . , s − 1,

ηt1 + 1 if j = ts ,

ηj if j /∈ I,

(23)

where I = {t1, . . . , ts} ⊆ {1, . . . , n} with 1 ≤ t1 < · · · < ts ≤ n. More explicitly,

cI (η) = (η1 · · ·ηt1−1, ηt2 , ηt1+1 · · ·ηt2−1, ηt3, ηt2+1 · · ·
ηts−1−1, ηts , ηts−1+1 · · ·ηts−1, ηt1+1, ηts+1 · · ·ηn),

(the 1 added to ηt1 has been set in bold to highlight its location). We now show how
each successor can be recursively generated from η using the switching and raising
operators.

Proposition 1 With cI (η) defined as above we have

cI (η) = σt1+1 · · ·σn	s1 · · · st1−1η,

where

σi =
{

1 if i ∈ I,

si−1 if i /∈ I.

Proof The operators to the right of 	 move ηt1 to the first position, thus enabling 	

to increase its value by 1. Each sj−1 on the left-hand side moves each ηj , for j /∈ I,

back to its original position, automatically placing the ηi with i ∈ I into the correct
position. �

Example 1 Take η = (1,3,5,7,9,11,13,15) and I = {3,4,5,7}
s2η = (1,5,3,7,9,11,13,15),

s1s2η = (5,1,3,7,9,11,13,15),

	s1s2η = (1,3,7,9,11,13,15,6),

s7	s1s2η = (1,3,7,9,11,13,6,15),

s5s7	s1s2η = (1,3,7,9,13,11,6,15).
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By the definition of cI (η), it is clear that η ≺′ cI (η). The following lemma con-
siders the other direction.

Lemma 1 [7] If |λ| = |η| + 1 and η ≺′ λ then there exists a set I = {t1, . . . , ts} ⊆
{1, . . . , n} with 1 ≤ t1 < · · · < ts ≤ n such that cI (η) = λ.

Proof Since |λ| = |η|+1 and η ≺′ λ, the defining permutation σ̂ must satisfy λσ̂(i) =
ηi for all but one i, say i = k, in which case λσ̂(k) = ηk + 1. By the definition of ≺′,
we must have i ≥ σ̂ (i) for i �= k. It follows that with I = {i; σ̂ (i) �= i} = {t1, . . . , ts}
we must have σ̂ specified by

σ̂ (i) =

⎧
⎪⎨

⎪⎩

i if i /∈ I,

tj−1 if i = tj ∈ I, j = 2, . . . , s,

ts if i = t1 ∈ I.

(24)

Combining (24) with (23) shows λ = cI (η). �

This lemma, in addition to the knowledge of the action of permutations on com-
positions

ση = (ησ−1(1), . . . , ησ−1(n)), (25)

can be used to show that one does not need to check all permutations to establish
that η �′ λ. Before stating the result—due to Knop [7] but to be derived differently
below—we define ωη to be the shortest permutation such that

ω−1
η (η) = η+. (26)

Lemma 2 For λ such that |λ| = |η| + 1 the defining permutation σ̂ of η �′ λ is
σ̂ = ωλω

−1
η .

Proof From the previous lemma, we can replace λ by cI (η) and specify the defining
permutation σ̂ by (24). From the definition of cI (η), it is clear that

(
η+)

i
≤ (

cI (η)+
)
i
, for all i ∈ {1, . . . , n}.

Manipulating this using (26) and (25) shows

ηi ≤ cI (η)
ωcI (η)ω

−1
η (i)

, for all i ∈ {1, . . . , n}.

By (26) it can be deduced that tj−1 = ωcI (η)ω
−1
η (tj ) for j = {2, . . . , s}, ts =

ωcI (η)ω
−1
η (t1) and ωcI (η)ω

−1
η (i) = i if ηi = (cI (η))i . These properties of ωcI (η)ω

−1
η

show it to be identically equal to (24), thus concluding the proof. �

From Lemma 2, we have the following corollaries.

Corollary 1 If η �′ cI1(η);σ and cI1(η) �′ cI2cI1(η);ρ then ⇒ η �′ cI2cI1(η);
ρ ◦ σ .
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Corollary 2 [7] For λ such that |λ| = |η| + r the defining permutation of η �′ λ

where σ(i) = i if ηi = λi is σ = ωλω
−1
η .

Corollary 3 If |λ| = |η| + r and η ≺′ λ then there exist sets {I1, . . . , Ir}, Ik =
{kt1, . . . ,

kt s} ⊆ {1, . . . , n} with 1 ≤ kt1 < · · · < kts ≤ n such that cIr · · · cI1(η) = λ.

We now work towards showing the main theorem of the section, Proposition 3
below, by first considering λ such that |λ| = |η| + 1.

Proposition 2 For λ such that |λ| = |η|+1, we have E∗
η(λ̄) = 0 if and only if η ��′ λ.

Proof Rewriting the eigenoperator �i as

zi�i − 1 = Hi · · ·Hn−1	H1 · · ·Hi−1

and making note of the recursive generation formulas (22) and (21) shows us that

(zi�i − 1)E∗
η(z) = Hi · · ·Hn−1	H1 · · ·Hi−1E

∗
η(z),

(27)(
λ̄i η̄

−1
i − 1

)
E∗

η(λ̄) =
∑

ν:ν=cI (η)

cηνE
∗
ν (λ̄), cην ∈ Q(q, t),

where the summation restriction to ν = cI (η) in (27) is a consequence of Proposi-
tion 1. The vanishing conditions of E∗

ν imply that E∗
η(λ̄) = 0 if and only if λ �= cI (η),

that is, if and only if η ��′ λ. �

Proposition 3 We have E∗
η(λ̄) = 0 if and only if η ��′ λ.

Proof Here we prove the equivalent statement E∗
η(λ̄) �= 0 if and only if η �′ λ. We

begin with λ such that |λ| = |η| + 2. By Corollary 3, we know that λ = cI2cI1(η) for
some sets {I1, I2}, Ik = {kt1, . . . ,

kts} ⊆ {1, . . . , n} with 1 ≤ kt1 < · · · < kts ≤ n.
Taking i = 1t1 in (27) gives

(
λ̄1t1

η̄−1
1t1

− 1
)
E∗

η(λ̄) =
∑

ν:ν=cI (η)

c̃ηνE
∗
ν (λ̄), c̃ην ∈ Q(q, t).

Proposition 1 can be used to show EcI1 (η) is in the summation, and by Proposition 2

we know EcI1 (η)(λ̄) �= 0. We can be sure that (λ̄1t1
η̄−1

1t1
− 1) �= 0 since even if λ1t1

=
η1t1

we would still have either λ̄ = η̄/t or λ̄ = η̄/t2 due to the increased value of
l′η(1t1). These results together show E∗

η(λ̄) �= 0 if η �′ λ. For the converse, we again
use (27), this time, however, taking i to be the position of the leftmost component of
η that does not occur with the same frequency in λ,

(
λ̄i η̄

−1
i − 1

)
E∗

η(λ̄) =
∑

ν:ν=cI (η)

ĉηνE
∗
ν (λ̄), ĉην ∈ Q(q, t). (28)

By assumption, E∗
η(λ̄) �= 0 and as before (λ̄i η̄

−1
i − 1) �= 0; therefore, there exists

an Eν(λ̄) on the RHS of (28) that does not vanish, and by Proposition 2 we have
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ν �′ λ. Since ν = cI (η) implies η �′ ν, we can use Corollary 1 to show η �′ λ, which
completes the proof for the case |λ| = |η| + 2. Applying this procedure iteratively
shows the result holds for general λ. �

We now move onto the major goal of the paper, deriving explicit formulas for the
Pieri-type coefficients.

4 Structure of the Pieri-type expansions for the nonsymmetric Macdonald
polynomials

Before focusing on the Pieri-type formulas for the nonsymmetric Macdonald poly-
nomials, we consider a more general situation.

Take a linear basis of polynomials {Pη(z); η ∈ Nn} of degree |η|, satisfying

Pη(μ̄) = 0, for all |μ| ≤ |η|, μ �= η.

The interpolation Macdonald polynomials are clearly such a basis, further examples
are the Schubert polynomials [10] and the interpolation Jack polynomials for appro-
priate meaning of μ̄. If we take a polynomial fr(z) of degree r such that fr(η̄) = 0,
we have

fr(z)Pη(z) =
∑

|η|+1≤|λ|≤|η|+r

aηλPλ(z).

We seek the most simplified expressions for the coefficients in the expansion in the
case that fr(z) = (er (z) − er(μ̄)) and Pη(z) = E∗

η(z;q, t). Following the strategies
of [15], we then use the fact that the top homogeneous component of E∗

η(z;q, t) is

Eη(z;q−1, t−1) to conclude that the coefficients A
(r)
η,λ(q, t) in

(
er(z) − er(η̄)

)
E∗

η(z;q, t) =
∑

|η|+1≤|λ|≤|η|+r

A
(r)
ηλ (q, t)E∗

λ(z;q, t). (29)

are the same as those in (4). The theories of both the nonsymmetric Macdonald poly-
nomials and the interpolation polynomials are employed to simplify the coefficients
A

(r)
ηλ .
We begin using the interpolation polynomials to restrict the summation in

both (29) and (4). The extra vanishing conditions of the interpolation polynomials
state that E∗

η(λ̄) = 0 if η ��′ λ, allowing us to write

(
er(z) − er(η̄)

)
E∗

η(z;q, t) =
∑

|η|+1≤|λ|≤|η|+r

η�′λ

A
(r)
ηλ (q, t)E∗

λ(z;q, t) (30)

and

er(z)Eη

(
z;q−1, t−1) =

∑

|λ|=|η|+r

η�′λ

A
(r)
ηλ (q, t)Eλ

(
z;q−1, t−1),
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respectively. Following the methods of Forrester and McAnally [5], we exploit the
orthogonality of the nonsymmetric Macdonald polynomials to identify further zero
coefficients in the expansions.

Proposition 4 We have

A
(r)
ηλ (q, t) = A

(n−r)
λ,η+(1n)

(
q−1, t−1) Nη

Nλ

, (31)

where Nη is given by (14) and η + (kn) := (η1 + k, . . . , ηn + k).

Proof With λ such that |λ| = |η| + r and η �′ λ by (4) and the orthogonality and
linearity properties of 〈·, ·〉q,t (12), we have

〈
er(z)Eη

(
z;q−1, t−1),Eλ

(
z;q−1, t−1)〉

q,t

= A
(r)
ηλ (q, t)

〈
Eλ

(
z;q−1, t−1),Eλ

(
z;q−1, t−1)〉

q,t
. (32)

Using (11) we can write the left-hand side of (32) as

CT
[
er(z)Eη

(
z;q−1, t−1)Eλ

(
z−1;q, t

)
W(z)

]
.

Replacing z with z−1 and then multiplying er(z
−1) by (z1 · · · zn) and Eη(z

−1;
q−1, t−1) by (z1 · · · zn)

−1 gives

CT
[
en−r (z)Eη+(1n)

(
z−1;q−1, t−1)Eλ(z;q, t)W

(
z−1)],

This can be recognised as

〈
en−r (z)Eλ(z;q, t),Eη+(1n)(z;q, t)

〉
q,t

.

Again, by linearity and orthogonality we have

A
(n−r)
λ,η+(1n)

(
q−1, t−1)〈Eη+(1n)(z;q, t),Eη+(1n)(z;q, t)

〉
q,t

.

Since Nη(q, t) = Nη(q
−1, t−1) and Nη(q, t) = Nη+(1n)(q, t), it follows that (31) is

true. �

Corollary 4 We have

A
(r)
ηλ (q, t) = 0 if η ��′ λ or λ ��′ η + (

1n
)
,

and therefore

er(z)Eη

(
z;q−1, t−1) =

∑

|λ|=|η|+r

η�′λ�′η+(1n)

A
(r)
ηλ (q, t)Eλ

(
z;q−1, t−1). (33)
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In [5], Forrester and McAnally gave further structure to the λ in (33), showing that
compositions λ satisfying η �′ λ �′ η + (1n) are characterised by the properties that
there are sets {i1, . . . , ir} ⊂ {1, . . . , n} and {j1, . . . , jn−r} = {1, . . . , n} \ {1, . . . , n}
such that

λσ(ip) = ηip + 1 for ip ≤ σ(ip), p = 1, . . . , r,

λσ(jp) = ηjp for jp ≤ σ(jp), j = 1, . . . , n − r,

for some defining permutation σ .

5 An alternative derivation of the Pieri-type formulas for r = 1

The methods used to determine the general Pieri-type coefficients are motivated by
those of Lascoux [9], and in particular are quite different from those used in [2].
Lascoux computed the Pieri-type coefficients for the case r = 1 by observing that

(
z1 + · · · + zn − |η̄|)E∗

η(z) =
∑

λ

cλ
ηE∗

λ(z)

could be evaluated at λ̄ to give

cλ
η = (|λ̄| − |η̄|)E∗

η(λ̄)

E∗
λ(λ̄)

.

Then an explicit formula for

E∗
η(λ̄)

E∗
λ(λ̄)

(34)

was found using an inductive proof stemming from the recursive generation of E∗
λ

from E∗
η . We first present an alternative derivation of the evaluation of (34), where in

contrast to Lascoux’s inductive proof we use the recursive generation of the λ from
η specified by Proposition 1 and also the eigenoperator properties of the E∗

η . This
strategy will further be used to give a derivation of the general Pieri-type coefficients.

We begin by giving a more explicit description of compositions in the summation
of (33) for the case r = 1. Let I = {t1, . . . , ts} with 1 ≤ t1 < · · · < ts ≤ n and I �= ∅.

The set I is said to be maximal with respect to η iff

(i) ηj �= ηtu, j = tu−1 + 1, . . . , tu − 1 (u = 1, . . . , s; t0 := 0);
(ii) ηj �= ηt1 + 1, j = ts + 1, . . . , n.

For example, with η = (1,1,1) the sets {1}, {1,2} and {1,2,3} are maximal, and
all other subsets of {1,2,3} are not. Knop [7] showed that the compositions in the
summation of (33) with r = 1 can be specified as

{
λ : λ = cI (η), I maximal

}
.
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With this in place, we are now ready to give the first step in determining an explicit
formula for (34).

Proposition 5 With I = {t1, . . . , ts} maximal with respect to η and λ = cI (η)

Ht1 · · ·Hn	H1 · · ·Ht1−1E
∗
η(λ̄) = q−ηt1 δ(η, I )β(η, I )(λ̄t1 η̄

−1
t1

− 1)

(t − 1)
E∗

η(λ̄), (35)

where

δ(η, I ) :=
s∏

u=1

t − 1

1 − λ̄tu η̄
−1
tu

and

β(η, I ) :=
∏

i

(X(i) − t)(tX(i) − 1)

(X(i) − 1)2
, (36)

with X(i) := η̄tu(i)η̄
−1
i , where tu(i) is the first element in I above i and if i > ts then

ηtu(i) = ηt1 + 1. The product (36) is over all i /∈ I with ηi > ηtu(i).

Proof With I maximal with respect to η, Proposition 1 can be used to show the
polynomial E∗

λ occurs exactly once in the expansion of

Ht1 · · ·Hn	H1 · · ·Ht1−1E
∗
η(z). (37)

Since all polynomials E∗
ν (z) appearing in the full expansion of (37) are of size |η|+1,

by the vanishing conditions of E∗(z), evaluating (37) at λ̄ will reduce it to some
multiple of E∗

λ(λ̄).

We begin by expanding (37) from the right, using the recursive generation formu-
lae to determine the coefficient of each E∗

μ(j)(z), where μ(j) represents the trans-
formed η after the j th step in the transformation from η to λ. Since the operators
Hi and 	 commute through constants, we consider the coefficient contribution of
each operator on the E∗

μ(i)(z) to observe the result more easily. First, consider the
expansion of

H1 · · ·Ht1−1E
∗
η(z).

We know from Proposition 1 that we require the si to act on η at every stage to move
ηt1 to the first position before acting upon by 	. Therefore, we must take the coeffi-
cient of E∗

siμ(t1−i)(z) when Hi acts on each E∗
μ(t1−i)(z). At each stage the switching

operator swaps ηj with ηt1 , where j runs from t1 − 1 to 1. By (21) the coefficient
contribution will be 1 if ηj < ηt1 , and

(X(j) − t)(tX(j) − 1)

(X(j) − 1)2

where X(j) = η̄t1 η̄
−1
j if ηj > ηt1 . Multiplying these terms together gives the coeffi-

cient of E∗
μ(t1−1)(z) where

μ(t1 − 1) = (ηt1 , η1, . . . , ηt1−1, ηt1+1, . . . , ηn).
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Next we act upon H1 · · ·Ht1−1E
∗
η(z) with 	. By (22) when 	 acts on E∗

μ(t1−1)(z)

the coefficient contribution is q−ηt1 and the new polynomial is E∗
μ(t1)

(z) where

μ(t1) = (η1, . . . , ηt1−1, ηt1+1, . . . , ηn, ηt1 + 1).

We proceed by considering the coefficients of E∗
μ(j) for j > t1 in the expansion of

Ht1 · · ·Hn−1E
∗
μ(t1)

(z).

At this stage, particular attention must be payed to the set I to know whether we want
to extract the coefficient and polynomial of E∗

μ(t1+j)(z) or E∗
sn−j μ(t1+j)(z) from the

action of Hn−j on E∗
μ(t1+j)(z). First, consider the action of Hk−1 for k ∈ I, k > t1.

From Proposition 1, we know that if k ∈ I we do not require the switch sk−1 in the
generation of λ. Therefore, when Hk−1 acts on E∗

μ(t1+n−k+1), we take the coefficient
of E∗

μ(t1+n−k+1)
. By (21) this is given by

t − 1

1 − δ−1
μ(t1+n−k+1),k−1

.

To determine the value of δ−1
μ(t1+n−k+1),k , we consider the (k − 1)th and kth value

of μ(t1 + n − k + 1). Since we do not need to swap the components, we must have
μ(t1 + n − k + 1)k = λk. Also, at this stage μ(t1 + n − k + 1)k−1 is equal to ηk since
the (k − 1)th component has not changed since μ(t1). Hence the coefficient of the
polynomial E∗

μ(t1+n−k+1) in Hk−1E
∗
μ(t1+n−k+1) with k ∈ I is

t − 1

1 − λ̄kη̄
−1
k

. (38)

It is important to note here that λ̄k �= η̄k for k ∈ I since even if λk = ηk we have
λ̄k = η̄k/t . The total contribution of these terms is the product of (38) as k runs from
2 to s.

Lastly, we consider the case where k /∈ I, where we take the coefficient of the
E∗

sk−1μ(t1+n−k+1) in the expansion of Hk−1E
∗
μ(t1+n−k+1). For k > ts we use sk−1 to

move ηt1 + 1 to the ts th position, each time swapping ηt1 + 1 with ηk. For t1 < k < ts
each sk−1 is used to move ηtu to the tu−1th position, swapping ηk and ηtu(k), where
tu(k) is the first element of I above k. By (21) when either ηk > ηt1 + 1, for j =
ts + 1, . . . , n or ηk > ηtu(k), for t1 < k < ts we have the coefficient

(X(k) − t)(tX(k) − 1)

(X(k) − 1)2

where X(i) = η̄tu(k)η̄
−1
k . Combining all coefficients gives (35). �

Proposition 6 With I = {t1, . . . , ts} maximal with respect to η and λ = cI (η)

E∗
η(λ̄)

E∗
λ(λ̄)

= q−ηt1 δ(η, I )β(η, I )

(1 − t)
. (39)
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Proof By (16) and (20) we have
(
zt1 η̄

−1
t1

− 1
)
E∗

η(z) = Ht1 · · ·Hn−1	H1 · · ·Ht1−1E
∗
η(z). (40)

By the previous proposition and the vanishing properties of the E∗, evaluating (40)
at λ̄ gives (39). �

Corollary 5 We have

e1(z)Eη

(
z;q−1, t−1) =

∑

λ:λ=cI (η)

(|λ̄| − |η̄|)q−ηt1 δ(η, I )β(η, I )

(1 − t)
Eλ

(
z;q−1, t−1).

It is straightforward to check that this formula and that obtained in Proposition 8
of [2] are equivalent. We now show how this procedure can be extended to determine
the general Pieri-type coefficients.

6 The general Pieri-type formula coefficients

To determine explicit formulas for the A
(r)
ηλ (q, t) in (33), we once again return to the

theory of the interpolation polynomials. We begin by rewriting (30) as

er(z)E
∗
η(z;q, t) =

r∑

i=1

∑

η�′λi

A
(r)

ηλi (q, t)E∗
λi (z;q, t), (41)

where we have introduced the notation λi to denote a composition of modulus |η|+ i.
Since the sum in (41) is over compositions of varying modulus, we cannot just

evaluate at each λ̄ to obtain the coefficient of E∗
λ(z) like we did in the proof of Propo-

sition 5. Here, the coefficients must be generated recursively beginning with λ such
that |λ| = |η| + 1. The details are provided in the following result.

Theorem 7 For η �′ λi the coefficients A
(r)

ηλi in (41) are recursively generated as

A
(r)

ηλ1 = (er (λ̄1) − er(η̄))E∗
η(λ̄1)

E∗
λ1(λ̄

1)
, (42)

A
(r)

ηλ2 = (er (λ̄2) − er(η̄))E∗
η(λ̄2)

E∗
λ2(λ̄

2)
−

∑

λ1:η�′λ1�′λ2

A
(r)

ηλ1

E∗
λ1(λ̄

2)

E∗
λ2(λ̄

2)
(43)

and, in general,

A
(r)

ηλi = (er (λ̄i) − er(η̄))E∗
η(λ̄i)

E∗
λi (λ̄

i )
−

i−1∑

k=1

∑

λk :η�′λk�′λi

A
(r)

ηλk

E∗
λk (λ̄

i)

E∗
λi (λ̄

i )
. (44)

If η ��′ λi we have A
(r)

ηλi = 0.
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Proof We first consider the structure of the coefficients. By the vanishing properties
of E∗

λi , evaluating (41) at λ̄1 gives (42). When we evaluate (41) at λ̄2, we obtain

(
er

(
λ̄2

) − er(η̄)
)
E∗

η

(
λ̄2

) = A
(r)

ηλ2E
∗
λ2

(
λ̄2

) +
∑

λ1:η�′λ1�λ2

A
(r)

ηλ1E
∗
λ1

(
λ̄2

)
, (45)

since any Eλ1 such that λ1 � λ2 will not vanish when evaluated at λ̄2. Rearrang-
ing (45) gives (43). The general coefficient formula (44) is derived using the same
methods, recursively generating A

(r)

ηλ1 , . . . ,A
(r)

ηλi−1 to determine A
(r)

ηλi .

The claim that for η ��′ λi we have A
(r)

ηλi = 0 is a due to the vanishing properties

of E∗
λi and Corollary 1. If η ��′ λi , the vanishing properties would cause the leading

term of (44) to vanish and by Corollary 1 there would be no such λk that satisfied
η �′ λk �′ λi . �

Corollary 6 The coefficients A
(r)
ηλr in (33), where η �′ λr �′ η + (1n), satisfy the

recursion (44) with i = r,

A
(r)
ηλr = (er (λ̄r ) − er(η̄))E∗

η(λ̄r )

E∗
λr (λ̄r )

−
r−1∑

k=1

∑

λk :η�′λk�′λr

A
(r)

ηλk

E∗
λk (λ̄

r )

E∗
λr (λ̄r )

.

To use this to obtain explicit formulas for the coefficients A
(r)

ηλi , we require for-

mulas for the evaluation of E∗
λi (λ̄

j ), where i < j . The evaluation of E∗
λi (λ̄

i) follows
from the general formula [2]

E∗
η(η̄) = d ′

η

(
q−1, t−1)

n∏

i=1

η̄
ηi

i .

Proposition 8 Let DIk
(η) := σk · · ·σn−1	σ1 · · ·σk−1(η) where Ik ⊆ {1, . . . , n − 1}

and σj = sj if j ∈ Ik . With Dk(λ
i) := {ν : ν = DIk

(η)} for some Ik ⊆ {1, . . . , n − 1},
and λi �′ λj with i < j − 1, we have

E∗
λi

(
λ̄j

) =
∑

ν∈Dk(λ
i ),

ν�′λj

ν̄kλ̄i
−1
k − 1

λ̄j
kλ̄i

−1
k − 1

E∗
λi (ν̄)

E∗
ν (ν̄)

E∗
ν

(
λ̄j

)
,

where k is the position of the leftmost component of λi that does not occur with the
same frequency in λj .

Proof The case where j = i + 1 is given in Proposition 6, and so we begin with
j = i + 2. Manipulating (16) and acting on E∗

λi gives

(zk�k − 1)E∗
λi (z) = Hk · · ·Hn−1	H1 · · ·Hk−1E

∗
λi (z)

=
∑

ν∈Dk(λ
i )

ck
η,νE

∗
ν (z), (46)
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where k is specified above. Evaluating at ν̄ for ν a particular composition in the sum
shows

ck
η,ν = (

ν̄kλ̄i
−1
k − 1

)E∗
λi (ν̄)

E∗
ν (ν̄)

.

Substituting back in (46) shows

E∗
λi (z) =

∑

ν∈Dk(λ
i )

(ν̄kλ̄i
−1
k − 1)

(zkλ̄i
−1
k − 1)

E∗
λi (ν̄)

E∗
ν (ν̄)

E∗
ν (z). (47)

We compute E∗
λi (λ

i+2) as follows. With k as specified, we can be sure there is at

least one ν ∈ Dk(λ
i) such that E∗

ν ( ¯λi+2) �= 0. Evaluating (47) at ¯λi+2 gives

E∗
λi

(
λi+2

) =
∑

ν∈Dk(λ
i )

ν�′λi+2

ν̄kλ̄i
−1
k − 1

¯λi+2
kλ̄i

−1
k − 1

E∗
λi (ν̄)

E∗
ν (ν̄)

E∗
ν

(
λi+2

)
, (48)

where the further restriction on the summation to ν � λi+2 is due to the vanishing
conditions of E∗

ν . Since Proposition 6 gives an explicit formula for each E∗
ν ( ¯λi+2),

(48) does indeed give us an explicit formula for E∗
λi (

¯λi+2).

One can then evaluate (47) at ¯λi+3 and use E∗
λi (

¯λi+2) to find an explicit formula

for E∗
λi (

¯λi+3). This process can be extended to allow any E∗
λi (λ̄

j ) where i < j − 1

to be broken down into a combination of evaluations of the form E∗
λl (

¯λl+1), which in
turn can be explicitly evaluated using (39). �

This result leads us very nicely to a consequence for the generalised binomial
coefficients

(
ν
η

)
q,t

. These coefficients are due to Sahi and Okounkov [17, 18, 20] and

are given in terms of the interpolation Macdonald polynomials by

(
η

ν

)

q,t

:= E∗
η(ν̄)

E∗
ν (ν̄)

.

In [2], an explicit formula for the case where |ν| = |η| + 1 was given; however, in
general there is no known explicit formula.

Corollary 7 With i < j − 1 we have

(
λi

λj

)

q,t

= E∗
λi (λ̄

j )

E∗
λj (λ̄

j )
=

∑

ν∈Dk(λ
i )

ν�′λj

ν̄kλ̄i
−1
k − 1

λ̄j
kλ̄i

−1
k − 1

E∗
λi (ν̄)

E∗
ν (ν̄)

E∗
ν (λ̄j )

E∗
λj (λ̄

j )
,

where k is the position of the leftmost component of λi that does not occur with the
same frequency in λj .
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Clearly, the explicit formulas for the Pieri-type coefficients are rather complex.
We complete the study by considering possible simplifications.

7 Simplifying the Pieri coefficients

First, a coefficient of unity in each Pieri-type formula is identified. An analogous
result was observed earlier by Forrester and McAnnaly [5] within Jack polynomial
theory, and identical principles apply for Macdonald polynomials.

Forrester and McAnnaly found that with η + χr given by

(η + χr)i :=
{

ηi if l′η(i) ≥ r,

ηi + 1 if l′η(i) < r,

we have

A
(r)
η,η+χr

= 1.

We first give an explicit derivation in the case r = 1 and then state their reasoning in
the general case.

Proposition 9 We have

A
(1)
η,η+χ1

= 1. (49)

Proof Let ηi be such that l′η(i) = 0. By (21) and (22), the coefficient of E∗
η+χ1

(z) in
the expansion of Hi · · ·Hn−1	H1 · · ·Hi−1E

∗
η(z) will be q−ηi . Using the vanishing

properties of E∗ and

zi�i − 1 = Hi · · ·Hn−1	H1 · · ·Hi−1,

we have

E∗
η( ¯η + χ1)

E∗
η+χ1

( ¯η + χ1)
= 1

(q − 1)qηi
= 1

e1(λ̄1) − e1(η̄)
,

which upon substitution in (42) implies (49). �

Proposition 10 [5] We have

A
(r)
η,η+χr

= 1.

Proof By definition of the Macondald polynomials, the coefficient of zη in Eη(z) is
unity, and consequently the coefficient of zη+χr in er(z)Eη(z) is unity also. Since
λr ≺ η + χr for all λr �= η + χr such that η �′ λr �′ η + (1n), the triangular structure
of Macdonald polynomials (13) ensures that the monomial zη+χr will only occur in
Eη+χr (z), forcing A

(r)
η,η+χr

to be unity. �
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We can also greatly simplify the coefficients Ar
ηλr (q, t) in the case where r > �n

2 �.
By (31) we can reduce Ar

ηλr (q, t) to

A
(n−r)
λr ,η+(1n)

(
q−1, t−1) Nη

Nλr
.

This is a simplification as there are fewer steps required to obtain A(r−n) than A(r)

when r > �n
2 �.

There is some freedom in the implementation of the recurrences, and we have
investigated ways to reduce the required number of calculations. For example, the k

specified in the formulas of Proposition 8 is not the only such k that will provide a
pathway to the explicit formula of E∗

λi (λ̄
j ), where i < j . The only requirement on k

is that Dk(λ
i) contains a ν such that ν � λj . If one was to compute E∗

λi (λ̄
j ) it would

be most efficient to choose k such that the number of ν ∈ Dk(λ
i) such that ν ��′ λj

is maximised, and thus minimising the number of computations by increasing the
number of vanishing terms. At this stage, there does not seem to be an obvious way
of choosing such a k and the problem remains open.

It is clear from trial computations that the Pieri-type coefficients can sometimes
be expressed as a product. This is always true for the case r = 1. Unfortunately, our
recursive formulas shed no light on the general requirement for a product formula to
hold true.

With this last point in mind, we conclude our discussion by giving one further
expression for the Pieri-type coefficients in the case r = 1. These formulas are anal-
ogous to those given in [5] for the Jack polynomials. We are aware of some Ansatz
analysis into generalisations of these formulas for cases beyond r = 1, and include
these formulas to hopefully motivate further investigations. We note also that the
formulas given in [5] contain some typographical errors. They can be corrected fol-
lowing the derivation provided here.

Earlier we stated that the formulas for A
(1)
ηλ obtained in Proposition 6 were equiv-

alent to those found in [2]. Here we state the latter formulas and then show how they
can be expressed in a form suitable for generalisation. Define

â(x, y) := (t − 1)x

x − y
, b̂(x, y) := x − ty

x − y
,

and with I = {t1, . . . , ts} such that 1 ≤ t1 < · · · < ts ≤ n, define

AI (z) := â

(
zts

q
, zt1

) s−1∏

u=1

â(ztu , ztu+1),

B̃I (z) :=
s∏

u=1

tu−1∏

j=tu−1+1

b̂(ztu , zj )

n∏

j=ts+1

b̂(qzt1 , zj )

× (
qzt1 − t−n+1), t0 := 0.
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In this notation, it was shown in [2] that

e1(z)Eη

(
z; , q−1, t−1) =

∑

λ=cI (η)

(1 − q)d ′
η(q

−1, t−1)AI (η̄)B̃I (η̄)

d ′
λ(q

−1, t−1)qt1+1(t − 1)
Eλ

(
z; , q−1, t−1).

(50)
By introducing the sets G0 and G1,

G0 := G0(η,λ) = {
i ∈ {1, . . . , n};λσ(i) = ηi

}
,

G1 := G1(η,λ) = {
i ∈ {1, . . . , n};λσ(i) = ηi + 1

}
,

where σ is the defining permutation of η �′ λ, we can rewrite AI (η̄) and B̃I (η̄) as

AI (η̄)BI (η̄) =
∏

σ(j)<j

(t − 1)η̄σ (j)

η̄σ (j) − η̄j

(
∏

j∈G1

(t − 1)η̄σ (j)

η̄σ (j) − qη̄j

(
qη̄j − t−n+1)

)

×
∏

σ(j)<k<j

η̄j − t η̄k

η̄j − η̄k

∏

j∈G1,k<j

η̄j − t η̄k

η̄j − t η̄k

∏

k∈G0,j∈G1
σ(j)<k

qη̄j − t η̄k

qη̄j − η̄k

.

These formulas can be substituted in (50) to give a new viewpoint on the Pieri-type
coefficients for r = 1.
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