Gröbner bases of contraction ideals
Takafumi Shibuta
Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo, 171-8501 Japan
DOI: 10.1007/s10801-011-0320-6
Abstract
We investigate Gröbner bases of contraction ideals under monomial homomorphisms. As an application, we generalize the result of Aoki-Hibi-Ohsugi-Takemura and Ohsugi-Hibi for toric ideals of nested configurations.
Pages: 1–19
Keywords: keywords Gröbner bases; toric ideal; nested configuration
Full Text: PDF
References
1. Aoki, S., Hibi, T., Ohsugi, H., Takemura, A.: Gröbner bases of nested configurations. J. Algebra 320(6), 2583-2593 (2008)
2. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Proceedings AAECC-9 (New Orleans). LNCS, vol. 539, pp. 130-139. Springer, Berlin (1991)
3. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (1992)
4. Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry. Springer, Berlin (1998)
5. De Negri, E.: Toric rings generated by special stable sets of monomials. Math. Nachr. 203, 31-45 (1999)
6. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26(1), 363-397 (1998)
7. Eisenbud, D., Reeves, A., Totaro, B.: Initial ideals, Veronese subrings, and rates of algebras. Adv.
2. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Proceedings AAECC-9 (New Orleans). LNCS, vol. 539, pp. 130-139. Springer, Berlin (1991)
3. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (1992)
4. Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry. Springer, Berlin (1998)
5. De Negri, E.: Toric rings generated by special stable sets of monomials. Math. Nachr. 203, 31-45 (1999)
6. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26(1), 363-397 (1998)
7. Eisenbud, D., Reeves, A., Totaro, B.: Initial ideals, Veronese subrings, and rates of algebras. Adv.
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition