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Abstract We construct and analyse interesting integer valued functions on the points
of a generalised quadrangle which lie in the orthogonal complement of a principal
eigenspace of the collinearity relation. These functions generalise the intriguing sets
introduced by Bamberg et al. (Combinatorica 29(1):1–17, 2009), and they provide
the extra machinery to give new proofs of old results and to establish new insight into
the existence of certain configurations of generalised quadrangles. In particular, we
give a geometric characterisation of Payne’s tight sets, we give a new proof of Thas’
result that an m-ovoid of a generalised quadrangle of order (s, s2) is a hemisystem,
and we give a bound on the values of m for which it is possible for an m-ovoid of the
four dimensional Hermitian variety to exist.
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1 Introduction

If one looks at the point graph of a generalised quadrangle G , one will find a strongly
regular graph. The associated Bose–Mesner algebra of this graph has an orthogonal
decomposition into three eigenspaces of the adjacency matrix, one of which is the
one-dimensional subspace consisting of the constant vectors (cf., [5]). The other two
eigenspaces are known as the principal eigenspaces of the point graph of G . If I is
a set of points of G such that its characteristic function X I is contained in the or-
thogonal complement of a principal eigenspace E, then there are constants h1 and h2
such that the number of points of I collinear to an arbitrary point p is h1 if p lies
in I , and h2 if p resides outside of I . Such sets were termed intriguing sets in [3],
and the points lying on a line of a generalised quadrangle is such an object where
h1 is the number of points on a line and h2 = 1. Eisfeld [8] asks whether intriguing
sets have a natural geometric interpretation, and it is shown in [3] that the intriguing
sets of a generalised quadrangle are precisely the m-ovoids and tight sets introduced
by J.A. Thas [16] and S.E. Payne [13], respectively. An m-ovoid and an i-tight set
intersect in mi points [3, Theorem 4.3], and from this observation, one can prove or
reprove interesting results about generalised quadrangles. We endeavour to extend
this principle further, by not only considering characteristic functions XS in the or-
thogonal complement of a principal eigenspace, but other maps in these subspaces.
One of the recurring themes of this paper is the use of “weighted” intriguing sets and
their combinatorial properties.

In 1965, Segre [15] showed that if M is an m-ovoid of Q−(5, q) then m = (q +
1)/2, that is, M is a hemisystem. J.A. Thas [16] generalised this result in 1989 by
proving the following, as a corollary of a much more general theorem on m-ovoids:

Theorem 1.1 [16] Let G be a generalised quadrangle of order (s, s2). If S is an
m-ovoid of G with 0 < m < s + 1, then S is a hemisystem of G .

Recently, Vanhove [18, Theorem 3] has generalised this result to m-ovoids of reg-
ular near polygons with a certain distance parameter. We also give an alternate proof
of Theorem 1.1 in the same vein as Vanhove’s proof in Sect. 8, with the view to un-
derstanding why generalised quadrangles with parameters (s, s2) = (s, t) have such
a restriction on the sizes of their m-ovoids. We show that the central reason for this is
that for every pair of non-collinear points x, y the hyperbolic line |{x, y}⊥⊥| has size
s2/t + 1 and that for each z not in the closure of x and y (see Sect. 4.7 for a defini-
tion), we have |{x, y, z}⊥| = t/s + 1. Notice that this condition is weaker than every
triad having a constant number of centres, as there are other generalised quadrangles
with different parameters that satisfy our condition, namely H(4, q2) and W(3, q).
Indeed, we also apply our result to H(4, q2), in Sect. 9.

It was proved in [3, Theorem 7.1] that an m-ovoid of H(4, q2) must satisfy
m2(q2 − 1)2 + 3m(q2 − 1) − q5 � 0, and it is not yet known whether a (non-trivial)
m-ovoid of H(4, q2) exists. In this paper we give an alternative proof of the afore-
mentioned bound on m, using a more insightful method.

Apart from these direct applications of our analysis of weighted intriguing sets, we
also provide background theory (Sects. 2 and 3) and theoretical material (Sects. 4, 5
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and 6) to support our results. In particular, we give a geometric characterisation of
weighted tight sets in terms of their intersection with weighted cones, in a similar
sense to the fact that a weighted m-ovoid is defined by its constant intersection prop-
erty with respect to lines (Lemma 4.3). We also give geometric descriptions of the
eigenspaces of the collinearity relation of a generalised quadrangle, and similarly for
a partial quadrangle arising from the derivation of a generalised quadrangle of order
(s, s2) (Sects. 5 and 6). These results generalise some of the known theory estab-
lished in [1]. In Sect. 7, we prove that certain Payne-derived generalised quadrangles
can be partitioned into ovoids, and hence they have m-ovoids for every possible m.
In the Appendix, we construct m-ovoids of the dual classical generalised quadrangle
H(4, q2)D .

2 Some basic algebraic combinatorics

Let A be the adjacency matrix of a strongly regular graph Γ (which is not null or
complete) with parameters (n, k,λ,μ). Then A has eigenvalues k, e+ and e− with
multiplicities 1, f + and f −, respectively [5, Sect. 1.3]:

e+ = λ−μ+
√

(λ−μ)2+4(k−μ)

2 f + = k(e−+1)(k−e−)
(k+e+e−)(e−−e+)

e− = λ−μ−
√

(λ−μ)2+4(k−μ)

2 f − = k(e++1)(k−e+)
(k+e+e−)(e+−e−)

.

Notice that e+ > 0 and e− < 0.
Consider the vector space C(V Γ ) of all functions from the set of vertices V Γ to

the complexes. Then A induces an endomorphism of this vector space:

f A := v �→
∑

A(v,w)=1

f (w).

Since A is symmetric, the three eigenspaces V 0, V + and V −, with associated eigen-
values k, e+ and e−, respectively, form a direct decomposition of C(V Γ ):

C(V Γ ) = V 0 ⊕ V + ⊕ V −.

Let j be the constant map with value 1, that is, j = XV Γ , and notice that V 0 = 〈j〉.
One of the themes of this paper is the study of subsets of geometries which have
their characteristic function in the orthogonal complement of one of the above direct
summands.

Lemma 2.1 Let f be a function in C(V Γ ) and let ε ∈ {−,+}. Then the following
statements are equivalent.

(a) f ∈ (V ε)⊥;
(b) There exists b ∈ C such that Af = e−εf + bj;
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(c) There exists a ∈ R and b ∈ C such that Af = af + bj, with a > 0 and a 
= k if
ε = − and with a < 0 if ε = +;

(d) There exists b ∈ C such that (e−ε − k)f + bj ∈ V −ε .

Proof Assume (a). So we have f ∈ V 0 + V −ε , so f = tj + v where t ∈ C and v ∈
V −ε . Thus Af = tkj + e−εv = tkj + e−ε(f − tj) = e−εf + t (k − e−ε)j. Taking
b = t (k − e−ε), (b) holds. Obviously (b) implies (c). Assume (c), so that Af = af +
bj. Then it is easy to check that (a − k)f + bj is an eigenvector corresponding to
the eigenvalue a. As a 
= k, it means either a = e+ if ε = −, or a = e− if ε = +.
Therefore, (d) holds. Assume (d), so that (e−ε − k)f + bj = v where v ∈ V −ε . Then
f = (−bj + v)/(e−ε − k) ∈ V 0 + V −ε = (V ε)⊥, so (a) holds. �

We can equip C(V Γ ) with a natural inner product, namely

f · g :=
∑

v∈V Γ

f (v)g(v).

Let S be a proper nonempty subset of vertices of Γ equipped with integral weights
(possibly negative). Then the characteristic vector XS is just a vector with integer
entries. We say that S is a weighted intriguing set if XS satisfies the equivalent con-
ditions of Lemma 2.1. Note that the condition a 
= k in (c) is automatically satisfied
if XS ∈ {0,1}V Γ , i.e., if S is an unweighted set.

Notation:

The size |f | of an element f of C(V Γ ) is f · j. We will often view a function f ∈
CΩ , where Ω is finite, as a |Ω|-tuple in C

|Ω|. In a point/line incidence geometry,
we will use the ⊥ symbol to describe the set S⊥ of points which are collinear with
every element of a set S of points. To be consistent, we will always assume that p lies
in p⊥ when we are working with a geometry, and use the notation p∼ for p⊥\{p}
to simulate the adjacency relation in a graph. We will also use the ⊥ symbol for
the orthogonal complement of a vector subspace, and its use will be clear from the
context.

We will exploit the following simple fact many times in this paper.

Lemma 2.2 Let f,g be two elements of C(V Γ ), where f ∈ (V +)⊥ and g ∈ (V −)⊥.
Then

f · g = |f ||g|
|V Γ | .

Proof By Lemma 2.1, there exist b+, b− ∈ C such that (e− − k)f + b−j ∈ V − and
(e+ − k)g + b+j ∈ V +. Since these elements are orthogonal, and j is orthogonal to
both, we have

(k − e−)(f · j) = b−(j · j), (k − e+)(g · j) = b+(j · j)
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Table 1 The classical generalised quadrangles and their parameters. The first and second are dual, and
the third and fourth are dual

Name W(3, q) Q(4, q) Q−(5, q) H(3, q2) H(4, q2)

Order (q, q) (q, q) (q, q2) (q2, q) (q2, q3)

and

(e− − k)
(
e+ − k

)
(f · g) = −b−(

e+ − k
)
(g · j) − b+(e− − k)(f · j) − b−b+(j · j)

= b−b+(j · j) + b+b−(j · j) − b−b+(j · j)

= b−b+(j · j).

Therefore, b−b+(j·j)2

(f ·j)(g·j) (f · g) = b−b+(j · j) and hence f · g = |f ||g|
j·j . �

3 Generalised quadrangles

Much of the material in this section can be found in [5] and [14]. A finite gener-
alised quadrangle is an incidence structure of points and lines such that: every pair
of different points lie on at most one line, there are constants s and t such that ev-
ery line contains exactly s + 1 points and every point lies on t + 1 lines, and given
a point p and a line � which are not incident, there is a unique line on p sharing a
point with �. The last of these conditions is sometimes known as the GQ axiom. With
the parameters above, we say that a generalised quadrangle has order (s, t). It has
(s + 1)(st + 1) points and (t + 1)(st + 1) lines. The dual structure is also a gener-
alised quadrangle, but of order (t, s). We often identify a line with the set of points
lying on that line. The point graph of a generalised quadrangle G of order (s, t) has
as vertices the points of G , and two vertices are adjacent if they are collinear and dis-
tinct. This graph is strongly regular with eigenvalues and multiplicities listed below
[5, pp. 203]:

Eigenvalue Multiplicity

s(t + 1) 1
e+ = s − 1 st (s+1)(t+1)

s+t

e− = −t − 1 s2(st+1)
s+t

We will always consider thick generalised quadrangles, where s and t are both
greater than 1. The Higman inequality stipulates that for s > 1, the conditions s � t2

and t � s2 hold for any generalised quadrangle of order (s, t) (see [14, Sect. 1.2.5]).
It is useful to also have a list of the classical generalised quadrangles for future ref-
erence (see Table 1).



154 J Algebr Comb (2012) 36:149–173

4 Some examples of (weighted) intriguing sets of generalised quadrangles

Let G be a generalised quadrangle of order (s, t), with point set P and line set L. Let
A be the adjacency matrix of the point graph of G . Recall that x⊥ denotes the cone
with vertex x, that is, the point set consisting of the points on all lines through a fixed
point x, including x, and x∼ denotes the same set of points but excluding x. Since
the set of all Xx , x ∈ P , forms an orthonormal basis of CP , for each f ∈ CP we can
write:

f =
∑

x∈P
(Xx · f )Xx, (1)

Af =
∑

x∈P
(Xx∼ · f )Xx =

∑

x∈P

(∑

��x

X�\{x} · f
)

Xx. (2)

Below we give some simple examples of weighted intriguing sets of generalised
quadrangles that we use throughout this paper.

4.1 Lines

We identify a line � with the set of points of G lying on �. Then by the definition of a
generalised quadrangle, we have

|p∼ ∩ �| =
{

s if p ∈ �

1 if p /∈ �

and hence

AX� = (s − 1)X� + j.

Therefore, X� ∈ (V −)⊥ by Lemma 2.1. This is an example of a 1-tight set.

4.2 Tight sets

A set of points T of a generalised quadrangle of order (s, t) is an i-tight set if for
every point p in T , there are s + i points of T collinear with p, and for every point p

not in T , there are i points of T collinear with p (see [13]). So

AX T = (s − 1)X T + ij

and therefore, X T ∈ (V −)⊥ by Lemma 2.1. We say that a set of points is tight if it is
i-tight for some i.

4.3 m-Ovoids

An m-ovoid M of G is a set of points such that every line meets M in m points (see
[16]). It is not difficult to see that

AX M = −(t + 1)X M + m(t + 1)j

and hence X M ∈ (V +)⊥. Moreover, we have the following result:
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Lemma 4.1 ([3, Theorem 4.1]) Let S be a set of points of G such that XS ∈ (V ε)⊥
(where ε ∈ {−,+})). Then S is an m-ovoid or a tight set.

The 1-ovoids are often called ovoids in the literature.

4.4 Weighted m-ovoids

We say that a weighted intriguing set S is a weighted m-ovoid if XS ∈ (V +)⊥, where
the number m arises from the geometric property: XS · X� = m for all lines �. Indeed
we have the following more general result:

Lemma 4.2 Let f ∈ CP . Then f ∈ (V +)⊥ if and only if there exists a constant
m ∈ C such that X� · f = m for any line � ∈ L. In that case

Af = −(t + 1)f + m(t + 1)j,

(s + 1)f − mj ∈ V −,

f · j = m(st + 1).

Proof Suppose first that we have a constant m ∈ C such that X� · f = m for any line
� ∈ L. Then, using (1) and (2), we obtain

Af =
∑

x∈P

(∑

��x

X�\{x} · f
)

Xx

=
∑

x∈P

(∑

��x

(m − Xx · f )

)
Xx

=
∑

x∈P

(
m(t + 1) − (t + 1)Xx · f )

Xx

= m(t + 1)
∑

x∈P
Xx − (t + 1)

∑

x∈P
(Xx · f )Xx

= m(t + 1)j − (t + 1)f.

Since −(t + 1) < 0, by Lemma 2.1, f ∈ (V +)⊥.
Now assume f ∈ (V +)⊥. Let � be a line. As seen in Sect. 4.1, X� ∈ (V −)⊥ Hence

by Lemma 2.2, X� ·f = |f |(s+1)
(s+1)(st+1)

= |f |
st+1 , which does not depend on the choice of �,

so we take m = |f |
st+1 . By Lemma 2.1, we also have (−t − 1 − k)f + m(t + 1)j =

−(t + 1)((s + 1)f − mj) ∈ V −. �

4.5 Weighted cones

Let x be a point of G . Let Cx be the set of all points collinear with x, and give every
point of Cx the weight 1, except the point x, which will have weight −s + 1. In other
words XCx = (−s + 1)Xx + Xx∼ . Then Cx is a weighted 1-ovoid by Lemma 4.2, as
clearly X� · XCx = 1 for any line �.
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4.6 Weighted tight sets

A weighted tight set S is defined in much the same way as a weighted m-ovoid:
XS ∈ (V −)⊥. By Lemma 2.1, a weighted tight set satisfies AXS = (s − 1)XS +bj for
some integer b, and we then call it a weighted b-tight set. A geometric characterisa-
tion of weighted tight sets follows from the following general result (weighted cones
are described in Sect. 4.5):

Lemma 4.3 Let f ∈ CP . Then f ∈ (V −)⊥ if and only if there exists a constant b ∈ C

such that XCx · f = b for any weighted cone Cx . In that case

Af = (s − 1)f + bj,

− (1 + st)f − bj ∈ V +,

f · j = b(s + 1).

Proof Suppose first that we have a constant b ∈ C such that XCx · f = b for any
weighted cone Cx . Then, using (1) and (2), we obtain

Af =
∑

x∈P
(Xx∼ · f )Xx

=
∑

x∈P

((
XCx + (s − 1)Xx

) · f )
Xx

=
∑

x∈P
(XCx · f )Xx + (s − 1)

∑

x∈P
(Xx · f )Xx

= bj + (s − 1)f.

Since (s − 1) > 0, by Lemma 2.1, f ∈ (V −)⊥.
Now assume f ∈ (V −)⊥ and let b = |f |

s+1 . Let Cx be a weighted cone. We can
easily compute that |Cx | = (−s + 1) + s(t + 1) = 1 + st . As seen in Sect. 4.5, XCx ∈
(V +)⊥. Hence by Lemma 2.2, XCx · f = |f |(st+1)

(s+1)(st+1)
= b, which does not depend on

the choice of Cx . By Lemma 2.1, we also have that (s −1−k)f +bj = −(1+ st)f −
bj ∈ V +. �

4.7 Linear combinations of a hyperbolic line and its perp

Here we generalise an example of a weighted tight set given in the appendix of [2].
Let x and y be two non-collinear points. It follows easily from the GQ axiom that
|{x, y}⊥| = t + 1 and that

2 � |{x, y}⊥⊥| � t + 1.

We call the set of points of {x, y}⊥⊥ the hyperbolic line on x and y (notice it contains
x and y).
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The closure of a pair (x, y) of distinct points is defined as the set cl(x, y) of points
which are collinear with a point in {x, y}⊥⊥ (see [14, p. 2]). In other words, for x, y

non-collinear, it consists of the points on the lines “between” {x, y}⊥ and {x, y}⊥⊥.
The following theorem will be very useful in Sect. 8 when we see how it applies to
m-ovoids of certain generalised quadrangles.

Theorem 4.4 Let x and y be two non-collinear points of a generalised quadrangle
G of order (s, t). Then αX{x,y}⊥⊥ + βX{x,y}⊥ is a weighted tight set if and only if

αs = βt , |{x, y}⊥⊥| = s2/t + 1, and for z not in cl(x, y), |{x, y, z}⊥| = t/s + 1.
Moreover, in that case, it is a weighted (α + β)-tight set.

Proof By Lemma 2.1, we know that XS := αX{x,y}⊥⊥ + βX{x,y}⊥ is in (V −)⊥ (that
is, S is a weighted tight set) if and only if AXS = (s − 1)XS + bj for some b ∈ C. We
can rewrite this as

AXS = (
α(s − 1) + b

)
X{x,y}⊥⊥ + (

β(s − 1) + b
)

X{x,y}⊥

+ b
(
j − X{x,y}⊥⊥ − X{x,y}⊥

)
.

It is not difficult to calculate geometrically that:

Xp∼ · XS = (t + 1)β , for p ∈ {x, y}⊥⊥,
Xp∼ · XS = |{x, y}⊥⊥|α, for p ∈ {x, y}⊥,
Xp∼ · XS = α + β , for p on a line between {x, y}⊥ and {x, y}⊥⊥ but not in one of
those two sets,

Xp∼ · XS = |{x, y,p}⊥|β , for the remaining points p (that is p /∈ cl(x, y)). Notice
that such points are not collinear with any point in {x, y}⊥⊥.

Assume first that S is a weighted tight set. Then we must have α(s−1)+b = (t +1)β ,
β(s − 1) + b = |{x, y}⊥⊥|α and b = α + β = |{x, y,p}⊥|β . It follows easily that
αs = βt , that |{x, y}⊥⊥| = 1+s2/t , and that |{x, y, z}⊥| = 1+ t/s for all z /∈ cl(x, y).

Now assume αs = βt , |{x, y}⊥⊥| = s2/t + 1, and for z /∈ cl(x, y), |{x, y, z}⊥| =
t/s + 1. Then

Xp∼ · XS =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(t + 1)β = α(s − 1) + (α + β) whenever p ∈ {x, y}⊥⊥,

|{x, y}⊥⊥|α = β(s − 1) + (α + β) whenever p ∈ {x, y}⊥,

α + β whenever p ∈ cl(x, y)\
({x, y}⊥⊥ ∪ {x, y}⊥),

|{x, y,p}⊥|β = α + β whenever p /∈ cl(x, y).

Therefore AXS = (s − 1)XS + (α + β)j, and S is a weighted (α + β)-tight set. �

By [14, Sect. 5.6.1], a generalised quadrangle of order (s, t) (with s 
= 1) satisfying
|{x, y}⊥⊥| � s2/t + 1 for all non-collinear pairs x and y must satisfy one of three
cases: (i) have t = s2, (ii) be isomorphic to W(3, q), or (iii) be isomorphic to H(4, q2).
Below we give some new proofs of two previously known results, and we provide one
new result which we will use in Sect. 9.
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Corollary 4.5 ([2, Lemma A.1]) Let x and y be two non-collinear points of a gen-
eralised quadrangle of order (q, q2), where q > 1. Then

qX{x,y} + X{x,y}⊥

is a weighted tight set.

Proof By Bose and Shrikhande [4], the size of {x, y, z}⊥ is q + 1, where x, y, z are
pairwise non-collinear. If there was a point z in {x, y}⊥⊥ \ {x, y}, then that point
would be non-collinear to x and y and such that |{x, y, z}⊥| = q2 + 1 
= q + 1. Thus
X{x,y}⊥⊥ = X{x,y}. The result follows by Theorem 4.4. �

The following corollary also follows from [13, II.4]. It applies in particular to
W(3, q), since for all pairs {x, y} of non-collinear points |{x, y}⊥⊥| = q + 1 (cf., [14,
3.3.1(i)]).

Corollary 4.6 Let x and y be two non-collinear points of a generalised quadrangle
of order (s, s), such that |X{x,y}⊥⊥| = s + 1. Then

X{x,y}⊥⊥ + X{x,y}⊥

is a 2-tight set.

Proof By simply counting the number of points on the lines between {x, y}⊥ and
{x, y}⊥⊥, we see that

cl(x, y) = ∣∣{x, y}⊥∣∣ + ∣∣{x, y}⊥⊥∣∣ +
∑

u∈{x,y}⊥⊥

∣∣{z : z ∈ u∼\{x, y}⊥}∣∣

= 2(s + 1) + (s + 1)(s + 1)(s − 1)

= (s + 1)
(
s2 + 1

)

and so cl(x, y) is the entire point set. Therefore, the condition on |{x, y, z}⊥| for a
point z not in cl(x, y) is vacuous and the result follows by Theorem 4.4. �

Corollary 4.7 Let x and y be two non-collinear points of H(4, q2). Then

qX{x,y}⊥⊥ + X{x,y}⊥

is a weighted tight set.

Proof Let z be a point not on a line between {x, y}⊥⊥ and {x, y}⊥. This condi-
tion on z ensures that the plane spanned by {x, y, z} is non-degenerate, since oth-
erwise, the line (x ∩ y)z is singular and the non-degenerate line containing x and y

meets (x ∩ y)z in a singular point. So 〈x, y, z〉⊥ is a non-degenerate line, and hence
|{x, y, z}⊥| = q + 1. Note also that every hyperbolic line of H(4, q2) has size q + 1,
which is s2/t + 1 for this generalised quadrangle. Finally, t = qs and so the result
follows by Theorem 4.4. �
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5 Some characterisations of the direct summands of the points module

In this section, we give characterisations of the direct summands of the module on
the points of a generalised quadrangle. As before, consider a generalised quadran-
gle G and let P and L be its sets of points and lines, respectively. Recall that CP
decomposes into three submodules:

CP = 〈j〉 ⊕ V + ⊕ V −.

Lemma 5.1 V + = 〈X�1 − X�2 : �1, �2 ∈ L, �1 ∩ �2 
= ∅〉.

Proof Let X = 〈X�1 − X�2 : �1 ∩ �2 
= ∅〉. We have seen in Sect. 4.1 that for a line
�, AX� = (s − 1)X� + j. If �1 and �2 are any two lines, then A(X�1 − X�2) = (s −
1)(X�1 − X�2). Hence

X ⊆ 〈X�1 − X�2 : �1, �2 ∈ L〉 ⊆ V +.

Now let f ∈ X⊥. Then f · X�1 = f · X�2 for any two intersecting lines �1 and �2.
Since the line graph of G is connected (it has diameter 2), it follows that f · X� = m

is independent of the choice of �. Then f ∈ (V +)⊥ by Lemma 4.2. Hence X⊥ ⊆
(V +)⊥, and so V + ⊆ X. This concludes the proof. �

Remark 5.2 Note that we have also proved that V + = 〈X�1 − X�2 : �1, �2 ∈ L〉. Also
for a fixed line �0 ∈ L, V + = 〈X� − X�0 : � ∈ L〉. This follows from the fact that
X�1 − X�2 = (X�1 − X�0) − (X�2 − X�0) for any �1, �2 ∈ L.

Lemma 5.3 (V −)⊥ = 〈X� : � ∈ L〉.

Proof We have seen in Sect. 4.1 that 〈X�〉 ⊆ (V −)⊥. We will now show that 〈X�〉⊥ ⊆
(V −). Suppose f ∈ 〈X�〉⊥. Then X� · f = 0 for any line �. By Lemma 4.2, Af =
−(t + 1)f and thus f ∈ V −. It follows that 〈X�〉⊥ ⊆ V −, and so (V −)⊥ ⊆ 〈X�〉. �

Remark 5.4 We could also prove Lemma 5.3 by using the incidence map ι : CP →
CL. That is, for every p ∈ P , we have (Xp)ι = ∑

�∼p X� and we extend ι linearly to
CP . Let ι∗ be the adjoint map of ι and let v be an eigenvector of A with eigenvalue
s − 1. Now A = ιι∗ − (t + 1)I and so (vι)ι∗ − (t + 1)v = (s − 1)v. This implies
that (s + t)v = (vι)ι∗ and hence v is in the image of ι∗. So V + ⊆ Im ι∗ and therefore
(V −)⊥ = 〈j〉 + V + ⊆ Im ι∗ (notice that j = ( 1

t+1

∑
�∈L X�)ι

∗ and hence j ∈ Im ι∗).

For what follows, recall that Cx denotes the weighted cone seen in Sect. 4.5, that
is, XCx = (1 − s)Xx + Xx∼ .

Lemma 5.5 V − = 〈XCx1
− XCx2

: x1, x2 ∈ P 〉.

Proof Let U = 〈XCx1
− XCx2

: x1, x2 ∈ P 〉. We have seen that for a cone Cx , AXCx =
−(t + 1)XCx + (t + 1)j. If Cx1 and Cx2 are any two cones, then A(XCx1

− XCx2
) =

−(t + 1)(XCx1
− XCx2

). Hence U ⊆ V −.
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Suppose f ∈ U⊥. Then there is a constant b such that XCx · f = b for any cone
Cx . By Lemma 4.3, it follows that f ∈ (V −)⊥. Hence U⊥ ⊆ (V −)⊥, and so V − ⊆ U .
This concludes the proof. �

Remark 5.6 Let C0 be a fixed cone. Then we also have V − = 〈XCx − XC0 : x ∈ P 〉.

Lemma 5.7 (V +)⊥ = 〈XCx : x ∈ P 〉.

Proof Let K = 〈XCx : x ∈ P 〉. We have seen in Sect. 4.5 that any cone Cx is a
weighted 1-ovoid, and so is in (V +)⊥. Thus K ⊆ (V +)⊥. Suppose f ∈ K⊥. Then
XCx · f = 0 for any cone Cx . By Lemma 4.3, Af = (s − 1)f . Thus f ∈ V +. It
follows that K⊥ ⊆ V +, and so (V +)⊥ ⊆ K . �

6 A generalised quadrangle minus a cone

A partial quadrangle, introduced by Cameron [6], is a point-line geometry such that
every two points are on at most one line, there are s + 1 points on a line, every point
is on t + 1 lines and satisfying the following two important properties:

(i) for a point P and every line � not incident with P , there is at most one point on
� collinear with P ;

(ii) there is a constant μ such that for every pair of non-collinear points (X,Y ) there
are precisely μ points collinear with X and Y .

In particular, the point graph of this object is strongly regular, so we can play the
same game and define intriguing sets for this situation.

From the perspective of partial quadrangles, the following problem arose in [1].
Suppose G = (P , L) is a generalised quadrangle of order (s, s2) and let p be a point
of G . If we consider the set P p of points not collinear with p and the set of lines not
incident with p, we produce a partial quadrangle PQ(G). The point graph of PQ(G)

has eigenvalues and multiplicities listed below in Table 2 (see [1]).
We set jp ∈ CP p as the constant map with value 1. For a set S of points we denote

by Sp the subset of S consisting of points not collinear with p. By considering the
adjacency matrices of both geometries, we have two direct decompositions

CP = 〈j〉 ⊕ V + ⊕ V − and CP p = 〈jp〉 ⊕ W+ ⊕ W−

in accordance with their eigenvalues.
Now CP p embeds naturally into CP , however, it is not guaranteed that the

eigenspaces W+ or W− will correspond in a natural way with V + or V −. It is known

Table 2 Eigenvalues for the
point graph of the partial
quadrangle PQ(G)

Eigenvalue Multiplicity

(s − 1)(s2 + 1) 1

s − 1 s(s − 1)(s2 + 1)

−s2 + s − 1 (s − 1)(s2 + 1)
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that for a quotient of an equitable partition of P the eigenspaces for the quotient are
the images of the eigenspaces for CP under the quotient map (see [10, Sect. 9.5]).
For derived structures such as the partial quadrangle arising from a generalised quad-
rangle, we do not have such strong information for how the eigenspaces correspond,
however, the parameters of our generalised quadrangle are such that there is a partial
correspondence between the two systems of eigenspaces. Let R : CP → CP p be the
restriction map (which is linear), and let R∗ be its adjoint map, that is, the inclusion
map from CP p to CP . In what follows, the actions of these operators on their asso-
ciated function spaces will always be assumed to be on the left of elements. Note that
R is surjective, R∗ is injective, and RR∗ is the identity map on CP p . Moreover R∗R
acts as the identity on the submodule CP p of CP , and zero on Cp⊥.

For the rest of the section, we examine improvements of results of Sect. 5
of [1]. For instance, we have generalised [1, Lemma 5.6] by showing that R(V −) =
〈jp〉 ⊕ W−.

Lemma 6.1 R(V −) = (W+)⊥ and R((V +)⊥) = (W+)⊥, with (kerR) ∩ V − = {0}
and (kerR) ∩ (V +)⊥ = 〈XCp 〉.

Proof We will think of R as the characteristic matrix for P p (within P ). Then the
adjacency matrix B of the partial quadrangle PQ(G) is just RART . Suppose f ∈ V −,
so Af = (−s2 − 1)f . Let fp⊥ be the map

fp⊥ : x �→
{

f (x) if x ∈ p⊥,

0 otherwise,

and let f p = Rf , that is, the restriction of f to P p . We claim that f p ∈ (W+)⊥.
By Corollary 4.5, sX{x,p} + X{x,p}⊥ ∈ (V −)⊥ for all x ∈ P p . Thus, for all x ∈ P p ,

(
sX{x,p} + X{x,p}⊥

) · f = 0

and therefore

X{x,p}⊥ · f = −sXx · f − sXp · f.

So for all x ∈ P p , we have Afp⊥ · Xx = Xx∼ ·fp⊥ = Xx⊥ ·fp⊥ = −sXx ·f − sXp ·f .
When we apply R to the left of Afp⊥ , we only have the values of it on P p:

RAfp⊥ =
∑

x∈P p

(−sXx · f − sXp · f )Xx = −sf p − s(Xp · f )jp.

So

Bf p = RA(RT R)f = RA(f − fp⊥)

= −(
s2 + 1

)
Rf − RAfp⊥

= −(
s2 + 1

)
f p + sf p + s(Xp · f )jp

= −(
s2 − s + 1

)
f p + s(Xp · f )jp.
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Since −(s2 − s + 1) is the negative eigenvalue of B , by Lemma 2.1, f p ∈ (W+)⊥.
Therefore, R(V −) ⊆ (W+)⊥. We will show that the dimensions of these spaces are
equal.

Now kerR is spanned by the Xz, where z ∈ p⊥. Moreover, the Xz form a basis
for kerR as dim kerR = s(s2 + 1) + 1 = |p⊥|. Consider an arbitrary element h :=∑

z∈p⊥ αzXz of kerR, and suppose that h ∈ V −. Then Ah = ∑
z∈p⊥ αzXz∼ and h is

annihilated by A + (s2 + 1)I :

∑

z∈p⊥
αz

(
Xz∼ + (

s2 + 1
)

Xz

) = 0.

We claim that the Xz∼ + (s2 + 1)Xz are linearly independent. Think of the square
matrix M of size |p⊥|, where rows correspond to the values of Xz∼ + (s2 + 1)Xz

restricted to p⊥. So M is equal to the sum of (s2 + 1)I and the adjacency matrix D

of the point graph of G restricted to p⊥. Notice that this point graph can be seen as a
single vertex (p) joined to all vertices of a graph isomorphic to (s2 +1)Ks (p⊥ \{p}).
This is called a complete product in Cvetković, Doob and Sachs [7]. Theorem 2.8 of
[7] gives us the characteristic polynomial PΓ1�Γ2(λ) of a complete product Γ1�Γ2 of
two regular graphs. It is very easy to substitute K1 into the formula to make it even
simpler:

PΓ �K1(λ) = PΓ (λ)

λ − k

(
λ(λ − k) − n

)

where Γ is a regular graph of degree k and order n. Now we take Γ = (s2 + 1)Ks .
By Theorem 2.4 of [7], we have

PΓ (λ) = PKs (λ)s
2+1 = (

(λ − s + 1)(λ + 1)s−1)s2+1
.

So putting it all together, we get the characteristic polynomial of D:

PΓ �K1(λ) = (λ − s + 1)s
2+1(λ + 1)(s−1)(s2+1)

λ − s + 1

(
λ(λ − s + 1) − s

(
s2 + 1

))

= (λ − s + 1)s
2
(λ + 1)(s−1)(s2+1)

(
λ2 + (1 − s)λ − s

(
s2 + 1

))
.

So D has full rank and in particular −s2 − 1 is not an eigenvalue of D. It follows
that M = D + (s2 + 1)I has full rank. So the Xz∼ + (s2 + 1)Xz are independent, as
claimed. Therefore h = 0 and (kerR) ∩ V − = {0}.

Now dimV − = s(s2 −s+1) and dim(W+)⊥ = 1+(s−1)(s2 +1) = s(s2 −s+1).
Therefore, R(V −) = (W+)⊥.

Recall that (V +)⊥ = 〈j〉 ⊕ V −. We also have that Rj = jp ∈ (W+)⊥, and so
R((V +)⊥) = (W+)⊥ too. Obviously kerR∩ (V +)⊥ is one-dimensional and RXCp =
0. Since XCp ∈ (V +)⊥ by Sect. 4.5, we have kerR ∩ (V +)⊥ = 〈XCp 〉. �

The following theorem is a significant improvement on [1, Theorem 5.10], which
we will explain in Remark 6.6. Recall that �p = �∩ P p and similarly C

p
z = Cz ∩ P p .
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Theorem 6.2 Let G be a generalised quadrangle of order (s, s2) and let PQ(G)

be the related partial quadrangle with point set P p = P \p⊥. Suppose we have a
function f ∈ CP p such that

f ∈ 〈
X�

p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉⊥
.

Then for any m ∈ C, there exists an element f of (V +)⊥ such that, for any line �, we
have X� · f = m and

f = Rf = f |P p .

Proof Let B be the adjacency matrix of PQ(G). Since f |P p is already determined,
we only need to consider the values of f |p⊥ . For z ∈ p⊥ \ {p}, we put f · Xz =
m − 1

s2 f · XC
p
z

. We also put f · Xp = m(1 − s) + 1
s2 f · X P p .

We need to prove that for every � ∈ L, f · X� = m. Notice that all lines of G are
either in p⊥ or intersect p⊥ in a single point, since G is a generalised quadrangle. Let
�1, �2 be two lines of G intersecting p⊥ in z. Notice that z cannot be p. By hypothesis,
f · (X�

p
1

− X�
p
2
) = 0, or in other words f · X�

p
1

= f · X�
p
2
. Since Cz

p is the disjoint

union of t = s2 (intersections with P p of) lines containing z, we have that f · XC
p
z

=
s2f · X�

p
1
. Thus f · X�1 = f · X�

p
1

+ f · Xz = 1
s2 f · XC

p
z

+ (m − 1
s2 f · XC

p
z
) = m.

Now let � be a line of G contained in p⊥. Then let � = {p, z1, z2, . . . , zs}. We get

f · X� =
(

m(1 − s) + 1

s2
f · X P p

)
+

s∑

i=1

(
m − 1

s2
f · XC

p
zi

)

= m(1 − s) + 1

s2
f · X P p + ms − 1

s2

s∑

i=1

f · XC
p
zi

= m + 1

s2
f ·

(
X P p −

s∑

i=1

XC
p
zi

)
.

Note that every point in P p is collinear with exactly one point of � (and that point
cannot be p), that is, the s “cones” C

p
zi

partition P p . Hence
∑s

i=1 XC
p
zi

= X P p , and

so f · X� = m. By Lemma 4.2, f ∈ (V +)⊥, and this concludes the proof. �

Corollary 6.3 W+ = 〈X�
p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉.

Proof Let �1, �2 be two lines of G intersecting in z ∈ p⊥. Then it is easy to see that
BX�

p
1

= (s−1)X�
p
1
+1.(jp − XC

p
z
). Similarly BX�

p
2

= (s−1)X�
p
2
+1.(jp − XC

p
z
), and

so B(X�
p
1
− X�

p
2
) = (s −1)(X�

p
1
− X�

p
2
). As s −1 > 0, it means that X�

p
1
− X�

p
2

∈ W+.

Hence 〈X�
p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉 ⊆ W+.

Suppose f ∈ CP p such that f ∈ 〈X�
p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉⊥ and choose a

constant m. Then by Theorem 6.2, f is the restriction to P p of a function f in
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(V +)⊥ = 〈j〉 ⊕ V − such that, for any line �, we have X� · f = m. By Lemma
6.1, f = Rf ∈ (W+)⊥. Thus 〈X�

p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉⊥ ⊆ (W+)⊥, and so

W+ ⊆ 〈X�
p
1

− X�
p
2

: �1 ∩ �2 ∈ p⊥〉. This concludes the proof. �

Corollary 6.4 R∗(W+) ⊆ V +.

Proof By Corollary 6.3, it is enough to prove that RT (X�
p
1
− X�

p
2
) ⊆ V + for all lines

�1, �2 such that �1 ∩ �2 ∈ p⊥. It is easy to see that RT (X�
p
1

− X�
p
2
) = X�1 − X�2 and

so the result follows directly by Lemma 5.1. �

Corollary 6.5 Suppose we have a weighted set S of P p such that X S ∈ (W+)⊥.
Then for any m ∈ Z, there exists a weighted m-ovoid S of G such that

X S = (X S )|P p .

Proof In Theorem 6.2, we constructed a function f satisfying X S = f |P p and, for
any line �, X� · f = m. We only have to show that f is the characteristic function of
a weighted set.

Since f |P p = X S , f has integral values on P p . For z ∈ p⊥ \ {p}, f · Xz = m −
1
s2 X S · XC

p
z

. Looking at the proof of Theorem 6.2, we see that f · Xz = m − X S · �1,

where �1 is one of the lines through z not in p⊥, thus this is an integer. Finally
f · Xp = f · X� − ∑s

i=1 f · Xzi
, where � = {p, z1, z2, . . . , zs} is a line through p.

Since each component of that sum is an integer, so is f · Xp . This concludes the
proof. �

Remark 6.6 To summarise Lemma 6.1, Theorem 6.2 and Corollary 6.5, we have the
following generalisation and simpler proof of [1, Theorem 5.10].

Corollary 6.7 Let G be a generalised quadrangle of order (s, s2). Let P be the point
set of G and let P p be the point set of the partial quadrangle PQ(G).

(i) If f ∈ (V +)⊥, then Rf = f p ∈ (W+)⊥.
(ii) For any m ∈ C, every element f ∈ (W+)⊥ lifts to an element f ∈ (V +)⊥ such

that for any line � we have X� · f = m. That is, f = f |P p . Moreover, suppose
we have an unweighted set of points S such that X S ∈ (W+)⊥. Then there exists
a weighted m-ovoid S of G such that

X S = (X S )|P p .

Remark 6.8 It was conjectured in [1, Conjecture 5.8] that if S is a weighted m-ovoid
of G such that Sp (whose characteristic vector is in (W+)⊥ by Theorem 6.1) is not
weighted, then S is a hemisystem or a union of cones. By computer, we have found a
counter-example in the dual of the Fisher–Thas–Walker–Kantor–Betten generalised
quadrangle of order (5,52). We do not know if a similar example exists in Q−(5, q).
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7 Payne-derived generalised quadrangles

Suppose we have two non-collinear points x and y of a generalised quadrangle G .
Recall that |{x, y}⊥| = t + 1, and 2 � |{x, y}⊥⊥| � t + 1. We say a point x is regular
if for every point y not collinear with x we have |{x, y}⊥⊥| = t + 1. For example,
every point of W(3, q) is regular, and no point of Q(4, q) is regular for q odd. Given
a generalised quadrangle G of order (s, s), and a regular point x of G , we can construct
the Payne-derived generalised quadrangle Gx as follows (cf., [14, Sect. 3.1.4]):

POINTS P x , the points of G not in x⊥
LINES (i) The lines of G not incident with x

(ii) The hyperbolic lines {x, y}⊥⊥
INCIDENCE Inherited from G

Clearly Gx has order (s − 1, s + 1), and thus the point graph has eigenvalues and
multiplicities as follows:

Eigenvalue Multiplicity

(s − 1)(s + 2) 1

s − 2 (s2−1)(s+2)
2

−s − 2 s
(s−1)2

2

Recall that ovoids are 1-ovoids, that is, they are sets of points of G intersecting
every line of G in a point.

Lemma 7.1 ([14, 3.4.3]) Consider a generalised quadrangle G of order (s, s) and
let x be a regular point. Let O be an ovoid of G containing x. Then O\{x} is an ovoid
of Gx .

Proof We have to show that all lines of Gx meet O\{x} in exactly one point. First let
� be a line of G not incident with x. Then � meets O in a unique point, and this point
is not in x⊥, so in Gx , � meets O\{x} in a unique point.

Now consider a hyperbolic line {x, y}⊥⊥, where y is some element of Gx . By
Corollary 4.6, {x, y}⊥ ∪ {x, y}⊥⊥ forms a 2-tight set. By [3, Theorem 4.3], this 2-
tight set meets the 1-ovoid O in two points, one of which is x. Let z be the other one.
If z was in x⊥, then the line xz would meet O in two points, a contradiction. Hence z

is not in x⊥ (and so it is in P x ). In particular, z is not in {x, y}⊥ and so z ∈ {x, y}⊥⊥.
Thus the hyperbolic line {x, y}⊥⊥ meets O\{x} in a unique point. �

Note that this proof is very similar to the one in [14]. We give it here for sake of
completeness and as an illustration of the usefulness of tight sets and m-ovoids.
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For generalised quadrangles that exhibit a certain degree of regularity, we can
partition their Payne derivation into ovoids, as the next result shows.1 Let � be a line
of a finite thick generalised quadrangle G of order (s, t) and let T � be a group of
automorphisms fixing � and its concurrent lines (in the action on lines). Let m be a
line concurrent but not equal to � and consider the s points of m not on �. Then T �

acts semiregularly2 on these points and we see that |T �| � s. If |T �| = s (i.e., T � acts
regularly on the points of m\�) then we say that � is an axis of symmetry.

Now if there is a regular point of G incident with an axis of symmetry � of G , then
s = t (by the results of [14, Sect. 1.3], � is a regular line and so s � t and t � s).

Lemma 7.2 Let G be a finite thick generalised quadrangle of order (s, s), and sup-
pose there is a regular point x incident with an axis of symmetry � of G . If there is an
ovoid of G containing x, then Gx can be partitioned into ovoids.

Proof Let T � be the full group of automorphisms fixing � and its concurrent lines,
and let O be an ovoid of G containing x. Let y 
= x be an element of O and m be the
unique line on y concurrent with �. Obviously, m∩� 
= {x}. Then T � acts regularly on
the s points of m minus the point on �. So there are s images of O under the action of
T �, and they form a partition of the points not collinear with x (n.b., |O| = s2 +1 and
there are s3 points not collinear with x). Therefore, by Lemma 7.1, we can partition
the points of Gx into ovoids. �

Since the disjoint union of m ovoids is an m-ovoid, we see that for a generalised
quadrangle G satisfying the hypotheses of Lemma 7.2, the Payne derivation Gx has
m-ovoids for every possible value m. Moreover, by [14, Sect. 3.4.3], Gx contains a
spread, that is, P x can be partitioned into lines, which are each 1-tight sets. Since the
disjoint union of i lines is an i-tight set, it follows that Gx contains i-tight sets for
every possible value i.

The known candidates for G are listed below:

W(3, q), where q is even. Every point is regular and all lines are axes of symmetry.
There exist ovoids of W(3,2h) for every positive integer h [14, Sect. 3.4.1].

Tits’ construction T2(C) where C is an oval of PG(2, q), q even. We take x to be the
translation point of T2(C), and all the lines incident with x are axes of symmetry.
There is an ovoid on x arising from a plane with no point in common with C (see
[14, Sect. 3.4.2]). Now T2(C) is isomorphic to W(3, q) only when C is a conic [14,
Sect. 3.2.2], however, there are many examples of ovals of PG(2, q), q even, which
are not conics.

Translation generalised quadrangles of order (q, q), q even. We can generalise the
above example by constructing a translation generalised quadrangle T (E ) from a
pseudo-oval E of PG(3n−1, q), q even (see [14, Sects. 8.7 and A.3]). All the known

1We are extremely grateful to the anonymous referee for observing this generalisation of a result in a
previous draft.
2By [12, Sect. 6.17], T � acts semiregularly on the lines not concurrent with �. Let P be a point on m\�
that is fixed by τ ∈ T �. Each line u concurrent with �, but not on m ∩ �, is concurrent with a unique line
w on P , which is fixed by τ as uτ = u; and this line is not concurrent with �. Hence τ = 1.
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examples of pseudo-ovals are elementary, that is, they arise by field reduction of an
oval C of PG(2, qn), and so by [17, Sect. 3.6], we only obtain the examples arising
from the construction T2(C).

8 m-ovoids of generalised quadrangles with restricted hyperbolic line size

This section was motivated by the forthcoming Sect. 9 on m-ovoids of H(4, q2), how-
ever, we found that our techniques could be extended to any generalised quadrangle
which had a restricted hyperbolic line size. In fact, a simple corollary of the following
theorem is Theorem 1.1 (see Corollary 8.3). Recall that Sx denotes S\x⊥.

Theorem 8.1 Let S be an m-ovoid of a generalised quadrangle of order (s, t), let x

be a point lying outside of S. Suppose that for every y ∈ S\x⊥, |{x, y}⊥⊥| = s2/t + 1
and |{x, y,u}⊥| = t/s + 1 for any u not in the closure of x and y. Then

∑

z∈Sx

∣∣S ∩ {x, z}⊥⊥∣∣ = m2(s2 − 2s − t
) + ms(t + 1).

Proof Fix a point x outside of S, and let c = s2/t + 1. We will use a double counting
argument, but because we will be working with multisets, we will explicitly state the
double counting argument as the two ways of calculating the sum of all elements of
a matrix M . For each y ∈ S\x⊥, define vy to be the vector

t X{x,y}⊥⊥ + sX{x,y}⊥ .

Recall that vy is a weighted tight set by Theorem 4.4. These vectors will give us the
rows of our matrix M , except we will restrict the columns of our matrix to S. There
are |S| = m(st + 1) columns and |S|− |S ∩ x⊥| = m(st + 1)−m(t + 1) = mt(s − 1)

rows.

COUNTING BY ROWS: The sum of the elements of each row is a constant as for
y ∈ Sx , each vy is a weighted tight set and hence we apply Lemma 2.2:

vy · XS = (XS · j)(vy · j)
|P | = |S|(vy · j)

(s + 1)(st + 1)
= m(st + 1)(tc + s(t + 1))

(s + 1)(st + 1)

= m(s + t)(s + 1)

s + 1
= m(s + t)

and the sum of the elements of M is m2t (s − 1)(s + t).

COUNTING BY COLUMNS: In this case, there are two possible values for the sum of
the elements of a column. Consider a point z ∈ S. Then the corresponding column
sum is

Nz :=
∑

y∈Sx

vy · Xz.
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If z ∈ x⊥, then

Nz∈x⊥ =
∑

y∈Sx

sX{x,y}⊥ · Xz = s
∣∣(Sx) ∩ z⊥∣∣ = (m − 1)st.

If z /∈ x⊥, then

Nz/∈x⊥ =
∑

y∈Sx

t X{x,y}⊥⊥ · Xz = t
∑

y∈Sx

X{x,z}⊥⊥ · Xy = t
∣∣S ∩ {x, z}⊥⊥∣∣.

We used here the fact that the hyperbolic line spanned by x and y is the same as the
hyperbolic line spanned by x and z.

So we have in total, that the sum of the elements of M is
∣∣S ∩ x⊥∣∣Nz∈x⊥ +

∑

z∈Sx

Nz/∈x⊥ = m(t + 1)(m − 1)st + t
∑

z∈Sx

∣∣S ∩ {x, z}⊥⊥∣∣.

DOUBLE COUNT: Now putting our two calculations together, we see that

∑

z∈Sx

∣∣S ∩ {x, z}⊥⊥∣∣ = m2(s − 1)(s + t) − m(m − 1)s(t + 1)

= m2(s2 − 2s − t
) + ms(t + 1). �

Corollary 8.2 Let S be an m-ovoid of a generalised quadrangle and let x be a point
outside of S. Then for the generalised quadrangles below, we have the following
values for

∑
z∈S\x⊥ |S ∩ {x, z}⊥⊥|:

W(3, q) GQ(s, s2) H(4, q2)

mq(m(q − 3) + q + 1) ms(s2 − 2m + 1) mq2(q + 1)(m(q − 2) + q2 − q + 1)

Proof It follows from the following table of values, where y is not collinear with x

and u is not in the closure of x and y. See Sect. 4.7 for details.

GQ s t |{x, y}⊥⊥| |{x, y,u}⊥|
W(3, q) q q q + 1 N/A
GQ(s, s2) s s2 2 s + 1
H(4, q2) q2 q3 q + 1 q + 1

�

This allows us to reprove Theorem 1.1.

Corollary 8.3 A (non-trivial) m-ovoid of a generalised quadrangle of order (s, s2)

is a hemisystem.
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Proof Let S be a non-trivial m-ovoid, that is m 
= 0 and m 
= s + 1. Then S does not
cover the whole point set, and so we can fix x /∈ S. Recall that for z non-collinear
with x, we have {x, z}⊥⊥ = {x, z}. So

|Sx | =
∑

z∈Sx

∣∣S ∩ {x, z}⊥⊥∣∣ = ms
(
s2 − 2m + 1

)
.

On the other hand, |Sx | = mt(s − 1) = ms2(s − 1). Hence s2 − 2m + 1 = s(s − 1).
This equation reduces to 2m − (s + 1) = 0, and so m = (s + 1)/2. �

Remark 8.4 If we suppose in Theorem 8.1 that t = s2 and {x, z}⊥⊥ = {x, z} (for all
z /∈ x⊥), the proof radically reduces to a simple direct proof of Corollary 8.3. By
Corollary 4.5, vy = sX{x,y} + X{x,y}⊥ is a weighted (s + 1)-tight set, and so

∣∣{x, y}⊥ ∩ S
∣∣ = X{x,y}⊥ · XS = (vy − sX{x,y}) · XS = m(s + 1) − sXy · XS.

Now we double count pairs (y, z) where y, z ∈ S, y /∈ x⊥, with the condition that z

lies in {x, y}⊥:

(i)
∑

y∈Sx |S ∩ {x, y}⊥| = |Sx |(m(s + 1) − s) = ms2(s − 1)(m(s + 1) − s);

(ii)
∑

z∈S∩x⊥ |(z⊥\�xz) ∩ S| = |S ∩ x⊥| · s2(m − 1) = m(m − 1)s2(s2 + 1), where
�xz is the line containing x and z.

So (s − 1)(m(s + 1) − s) = (m − 1)(s2 + 1), which reduces to 2m = s + 1.
This proof is similar (but proved independently) to that of Vanhove [18, Theo-

rem 3], if you consider generalised quadrangles of order (s, s2) as particular cases of
regular near polygons.

9 m-ovoids of the 4-dimensional Hermitian variety

Here we use counting arguments to give a non-existence result on m-ovoids of
H(4, q2). We obtain essentially the same bound as the one obtained in [3, Proof of
Theorem 7.1], whereby our lower bound is always larger but unfortunately does not
exclude more integers. It might be possible to improve on this bound by adjusting our
argument, however, so far no improvement has been found this way.

The quadrangle H(4, q2) has order (q2, q3) and its hyperbolic lines have size q +
1 (they are the non-degenerate lines relative to the Hermitian polarity defining the
quadrangle). Moreover it can easily be computed that the number of hyperbolic lines
through a point is q6 and the total number of hyperbolic lines is q6(q5 + 1)(q2 +
1)/(q + 1).

Theorem 9.1 Let S be a non-trivial m-ovoid of H(4, q2). If q 
= 2, then

m � 1

2

−3q − 3 + √
4q5 − 4q4 + 5q2 − 2q + 1

q2 − q − 2
,

while for q = 2 we have m � 2.
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Proof Let I be an index set for the hyperbolic lines of H(4, q2). For each hyperbolic
line hi , i ∈ I , define

yi := |S ∩ hi |.
Recall that Sp denotes the set of points in S not collinear with a given point p ∈ S.

By Lemma 4.2, |S| = m(q5 + 1) and |Sp| = |S| − (q3 + 1)(m − 1) − 1 = m(q5 −
q3) + q3 (which does not depend on p).

Counting the pairs (h,p) where h is a hyperbolic line and p ∈ S ∩ h, we obtain

∑

i∈I

yi = q6|S| = q6m
(
q5 + 1

)
.

Counting the triples (h,p1,p2) where h is a hyperbolic line and p1,p2 ∈ S ∩ h

with p1 
= p2, we obtain

∑

i∈I

yi(yi − 1) = |S|∣∣S′∣∣ = m
(
q5 + 1

)
q3(m

(
q2 − 1

) + 1
)
,

which implies that

∑

i∈I

y2
i = m

(
q5 + 1

)
q3(m

(
q2 − 1

) + q3 + 1
)
.

By Corollary 8.2, for a given x /∈ S, we have

∑

z∈Sx

∣∣S ∩ {x, z}⊥⊥∣∣ = mq2(q + 1)
(
m(q − 2) + q2 − q + 1

)
.

Therefore a double counting argument yields

∑

i

y2
i (q + 1 − yi) =

∑

x /∈S

∑

z∈S\x⊥

∣∣S ∩ {x, z}⊥⊥∣∣

= (
q5 + 1

)(
q2 + 1 − m

)
mq2(q + 1)

(
m(q − 2) + q2 − q + 1

)

and hence
∑

i

y3
i = (q + 1)

∑

i

y2
i −

∑

x /∈S

∑

z∈S\x⊥

∣∣S ∩ {x, z}⊥⊥∣∣

= mq2(q + 1)
(
q5 + 1

)(
(q − 2)m2 + 3

(
q2 − q + 1

)
m + q3 − 2q2 + 2q − 1

)
.

The fact that
∑

yi(yi − 1)(yi − 2) = ∑
i y

3
i − 3

∑
i y

2
i + 2

∑
i yi has to be positive

yields

0 � (q − 2)(q + 1)m2 + 3(q + 1)m − q3 − 2q − 1.

Hence, for q 
= 2, m � 1
2

−3q−3+
√

4q5−4q4+5q2−2q+1
q2−q−2

, while for q = 2 the condition
yields m � 13/9, and so m � 2. �
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Appendix: m-ovoids of H(4, q2)D

One of the most prominent open problems in finite geometry is whether a spread
exists of the generalised quadrangle H(4, q2). Currently, we only know of a computer
result by Brouwer (see [14, p. 47]) that there is no spread of H(4,22). We may also
ask the more general question of the existence of m-ovoids in the dual generalised
quadrangle H(4, q2)D ; the case m = 1 gives us precisely the question on the existence
of spreads of H(4, q2).

By computer, we have found many m-ovoids of H(4, q2)D which are stabilised
by a Singer type element, and we will describe how this was done in what follows.
Consider the field F := GF(q10) and let Trq10→q2 be the relative trace map from F to
GF(q2). Define the following map β from F × F → GF(q2):

β(x, y) := Trq10→q2

(
xyq5)

.

Notice that F can be written as a five-dimensional vector space V over GF(q2), and
β induces a Hermitian form on V . This is the model we will use for H(4, q2), so the
points P are the totally isotropic 1-spaces and the lines L are the totally isotropic
2-spaces relative to that Hermitian form. Let ζ be a primitive root of F and let ω =
ζ (q5−1)(q+1). The element ω is known as a Singer type element, that is, K := 〈ω〉 acts
irreducibly on V . Notice the stabiliser K� of a line is contained in the stabiliser of a
line in the group PΓ L(5, q2), and so has order dividing (q2)2 − 1. Therefore, |K�|
divides the greatest common divisor of q4 − 1 and (q5 + 1)/(q + 1), which is trivial.
Hence K acts semiregularly on lines of H(4, q2) and the orbits of K each have size
(q5 + 1)/(q + 1). Let O be the set of those orbits. We will look for m-spreads of
H(4, q2) which are K-invariant. An m-spread is a set of lines such that every point is
in exactly m lines of the set, so it is the dual notion of an m-ovoid.

Let A be the concurrency matrix3 of H(4, q2), so it is the adjacency matrix of
H(4, q2)D . Let P be the matrix whose rows are indexed by the lines of H(4, q2) and
whose columns are indexed by O, where Pij = 1 if the ith line lies in the j th orbit,
and 0 otherwise. That is, P is the characteristic matrix for the orbit partition induced
by the action of K on lines. Now q+1

q5+1
P T AP is the collapsed adjacency matrix C

for the K-quotient of the concurrency graph, that is (C)ij is the number of lines in
the j th orbit which are concurrent to a given line in the ith orbit. By [9, Lemma 2.2]
and since C is symmetric, C has the same eigenvalues as A.

3This is the symmetric matrix corresponding to the concurrency relation. The (i, j)-entry of A is equal to
1 if the ith line meets the j th line in just one point, and 0 otherwise.
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Now suppose S is an m-spread of H(4, q2) which is K-invariant. Then S is an
m-ovoid of H(4, q2)D , and by Lemma 4.2,

AXS = −(
q2 + 1

)
XS + m

(
q2 + 1

)
X L.

Since S is K-invariant, it follows that (PP T )XS = q5+1
q+1 XS . So

C(P T XS) =
(

q + 1

q5 + 1
P T A

)(
PP T

)
XS

= −(
q2 + 1

)
P T XS + m

(
q2 + 1

)
P T X L

= −(
q2 + 1

)
P T XS + m

(
q2 + 1

)(q5 + 1

q + 1

)
X O.

Now JP T XS = m(q5 + 1)X O , where J is the |O| × |O| “all ones” matrix, and so a
simple calculation shows that P T XS ∈ ker(N) where

N := (q + 1)C + (
q2 + 1

)
(q + 1)I − (

q2 + 1
)
J.

Thus x = q+1
q5+1

P T XS is a 0 − 1-vector in ker(N), such that |x| = x · X O = m(q + 1).

Therefore, to find an m-spread of H(4, q2) amounts to solving an integer linear
program:

maximise: bT x

subject to Nx = 0, |x| = m(q + 1).

where x is a {0,1}-vector. The first condition is superfluous so we take b = 0. There
exists much integer linear programming software that are freely available, and we
used Gurobi Optimizer 4.0 [11] in our search for K-invariant m-spreads of H(4, q2).
Moreover, we found the following interesting phenomenon:

Lemma 10.1 For q ∈ {2,3,4} there exist K-invariant m-spreads of H(4, q2) for all
m satisfying nq < m < q3 + 1 − nq , where n2 = n3 = 2 and n4 = 4. There exists a
K-invariant 5-spread of H(4,52), but no smaller K-invariant m-spread.
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