ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Skew quantum Murnaghan-Nakayama rule

Matjaž Konvalinka

DOI: 10.1007/s10801-011-0312-6

Abstract

We extend recent results of Assaf and McNamara on a skew Pieri rule and a skew Murnaghan-Nakayama rule to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara's original proof, and one via Lam-Lauve-Sotille's skew Littlewood-Richardson rule. We end with some conjectures for skew rules for Hall-Littlewood polynomials.

Pages: 519–545

Keywords: keywords Pieri rule; murnaghan-Nakayama rule; Schur functions; Hall-Littlewood polynomials

Full Text: PDF

References

1. Assaf, S., McNamara, P.: A Pieri rule for skew shapes. J. Comb. Theory, Ser. A 118(1), 277-290 (2011) (with an appendage by T. Lam)
2. Assaf, S., McNamara, P.: A Pieri rule for skew shapes, slides from a talk at FPSAC (2010). Available at
3. Konvalinka, M.: Combinatorics of determinental identities. Ph.D. thesis. MIT, Cambridge, Massachusetts (2008), 129 pp.
4. Lam, T., Lauve, A., Sottile, F.: Skew Littlewood-Richardson rules from Hopf algebras. Int. Math. Res. Not. 2011, 1205-1219 (2011).
5. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1999)
6. Ram, A.: Frobenius formula for the characters of the Hecke algebras. Invent. Math. 106(3), 461-488




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition