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Abstract It is shown that the graph Γn that has the set of all n × n symmetric matri-
ces over a finite field as the vertex set, with two matrices being adjacent if and only
if the rank of their difference equals one, is a core if n ≥ 3. Eigenvalues of the graph
Γn are calculated as well.

Keywords Core · Adjacency preserver · Symmetric matrix · Finite field ·
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1 Introduction

A graph homomorphism between two undirected graphs Γ and Γ ′, with no loops and
multiple edges, is a map Φ : V (Γ ) → V (Γ ′) between the vertex sets such that the
following implication holds for any v,u ∈ V (Γ ):

{v,u} is an edge =⇒ {
Φ(v),Φ(u)

}
is an edge. (1)

In particular, Φ(v) �= Φ(u) for any edge {v,u}. A graph homomorphism is an en-
domorphism if Γ = Γ ′ and an automorphism if in addition Φ is bijective, and the
converse of (1) also holds (the last statement is redundant if the graph is finite).
A graph Γ is a core if the semigroup End(Γ ) of all its endomorphisms equals the
group Aut(Γ ) of all its automorphisms. If Γ is a graph, then its subgraph Γ ′ is called
a core of Γ if it is a core and there exists some homomorphism Φ : Γ → Γ ′.
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Let Sn(Fq) denote the set of all n × n symmetric matrices over a finite field Fq

with q elements. Let Γn be the graph with the vertex set V (Γn) = Sn(Fq) and the
edge set E(Γn) = {{A,B} : rk(A − B) = 1}, where rk is the rank of a matrix. It is
the main aim of this paper to characterize End(Γn) for n ≥ 3. Since the structure of
Aut(Γn) is well known [31, Theorem 5.56], it suffices to show that Γn is a core for
n ≥ 3. In the proof we first show that Γn is either a core or it has a complete core.
To prove that the latter cannot occur if n ≥ 3, we show that the chromatic number of
Γn is bigger than its clique number. This is done by computing the eigenvalues of Γn

and by using Hoffman’s lower bound for the chromatic number.
We now state the main results of this paper.

Theorem 1.1 If n ≥ 3, then Γn is a core. Unless both q = 2 and n = 3, End(Γn)

consists precisely of the maps of the form

Φ(A) = aPAσ P � + B, (2)

where a ∈ Fq is a fixed nonzero scalar, B ∈ Sn(Fq), P is an invertible n × n matrix,
and σ is an automorphism of Fq , which is applied entry-wise to A. If q = 2 and
n = 3, then End(Γn) is generated by the maps of the form (2) and by the map

⎛

⎝
a11 a12 a13
a12 a22 0
a13 0 a33

⎞

⎠ 	→
⎛

⎝
a11 a12 a13
a12 a22 0
a13 0 a33

⎞

⎠ ,

⎛

⎝
a11 a12 a13
a12 a22 1
a13 1 a33

⎞

⎠ 	→
⎛

⎝
a11 + 1 a12 + 1 a13 + 1
a12 + 1 a22 1
a13 + 1 1 a33

⎞

⎠ .

(3)

Theorem 1.2 Graph Γ2 is not a core. Its core is a complete graph on q vertices.

Theorem 1.3 will be used to establish Theorem 1.1, though it is interesting on its
own.

Theorem 1.3 Let n ≥ 2. The (distinct) eigenvalues of Γn are precisely the values
qj − 1, −1, and −qk − 1, where j = 
n

2 �, 
n
2 � + 1, . . . , n and k = 
n

2 �, 
n
2 � +

1, . . . , n − 1.

The characterization of Aut(Γn), where the underlying field is allowed to be infi-
nite, is known as Hua’s fundamental theorem of the geometry of symmetric matrices.
It was proved in [16] for fields of characteristic not two and in [9, 30] for fields
of characteristic two. We also refer to the book [31], which contains the analogous
results on hermitian, rectangular, and alternate matrices as well. The fundamental the-
orem of the geometry of symmetric and hermitian matrices was recently generalized
in [17, 18, 21], where bijective endomorphisms of the corresponding (possibly infi-
nite) graphs were classified. For complex hermitian matrices [20] and real symmetric
matrices [23], it was shown that any endomorphism of the corresponding graph is
either an automorphism or it has only pairwise adjacent vertices in its image. For a
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graph obtained from 2 × 2 symmetric matrices over a field that has odd character-
istic and at least seven elements, endomorphisms that have at least two nonadjacent
vertices in their image were classified in [19]. A similar result for 2×2 hermitian ma-
trices over some division rings was obtained in the same paper. The graph on n × n

hermitian matrices over a finite field is a core for any n [26]. The proof relies on the
fact that this graph is distance-regular. In [12] it was shown that any non-bipartite
distance-regular graph with no triangles is a core.

The rest of this paper is organized as follows. In Sect. 2 we recall definitions and
auxiliary theorems that are used in the proofs of the main results. These are contained
in Sect. 3. In Sect. 4 several remarks on the main results are listed.

2 Preliminaries

We split the preliminaries in two subsections.

2.1 Finite fields and quadratic forms

Let Fq denote the finite field with q elements, where q = pk is a power of a prime
p, and let Fp := {0,1,2, . . . , p − 1} be its prime subfield. Recall that Fp = {x ∈ Fq :
xp = x}. The trace map Tr : Fq → Fp , defined by Tr(x) := x + xp + · · · + xpk−1

, is
surjective (see e.g. [25, Theorem 2.23]), while

Tr(x) = 0 ⇐⇒ x = yp − y (4)

for some y ∈ Fq [25, Theorem 2.25]. Any Fp-linear map φ : Fq → Fp is of the form

φ(x) = Tr(yx) (5)

for some y ∈ Fq [25, Theorem 2.24].
A quadratic form in n indeterminates over Fq is a homogeneous polynomial

f ∈ Fq [x1, . . . , xn] of degree two or the zero polynomial, that is, f (x1, . . . , xn) =∑
i≤j cij xixj for some cij ∈ Fq . We often denote the column vector (x1, . . . , xn)

�
by x. We also define f (x) := f (x1, . . . , xn). Two quadratic forms f,g ∈ Fq [x1,

. . . , xn] are equivalent if there exists an invertible n × n matrix P with coeffi-
cients in Fq such that the forms f (x) and g(P x) are the same. A quadratic form
f (x1, . . . , xn) = ∑

1≤i≤j≤n cij xixj is nondegenerate if it is not equivalent to a form
with few indeterminates, i.e., it is not equivalent to a form

∑
1≤i≤j≤n dij xixj , where

dij = 0 if i > i0 or j > i0 for some i0 < n. We use the symbol N(f (x) = b) to
denote the number of column vectors x ∈ F

n
q such that f (x) = b. Clearly, if f and

g are two equivalent quadratic forms over Fq in n indeterminates x1, . . . , xn, then
N(f (x1, . . . , xn) = b) = N(g(x1, . . . , xn) = b). Moreover, if f is equivalent to a
quadratic form fr in r ≤ n indeterminates xi1, . . . , xir , then N(f (x1, . . . , xn) = b) =
qn−r · N(fr(xi1, . . . , xir ) = b).

The next lemma follows immediately from [25, Theorem 6.30 and Theorem 6.32].
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Lemma 2.1 Let f ∈ Fq [x1, . . . , xn] be a nondegenerate quadratic form and b ∈ Fq .
If q is even, then the number N(f (x) = b) equals

qn−1

if n is odd, whereas when n is even N(f (x) = b) equals

qn−1 + v(b)q(n−2)/2 or qn−1 − v(b)q(n−2)/2.

Here the map v : Fq → Z is defined by v(0) := q − 1 and v(b) := −1 if b �= 0.

The two possibilities for even n correspond to two different types of quadratic form:
hyperbolic type if N(f (x) = b) = qn−1 + v(b)q(n−2)/2 and elliptic type if N(f (x) =
b) = qn−1 − v(b)q(n−2)/2 (see [25] for all the details). If n = 2, then an example of
an elliptic form is given by x2

1 + x1x2 + ax2
2 , where Tr(a) = 1 [25, Theorem 6.32].

Therefore,

N
(
x2

1 + x1x2 + ax2
2 = 0

) = 1 (6)

and (6) has only trivial solution x1 = 0 = x2.
If q is odd, then the form f (x1, . . . , xn) = ∑

i≤j cij xixj can be written as f (x) =
x�Cx, where C is the n × n symmetric matrix whose (i, i)-entry is cii and (i, j)-
entry is cij /2. In odd characteristic we will rely on the determinant of a quadratic
form, which is defined by det(f ) := det(C). All nondegenerate quadratic forms sat-
isfy det(f ) �= 0. Moreover, if two quadratic forms f,g ∈ Fq [x1, . . . , xn] are equiva-
lent, then det(f ) = det(g)det(P )2 for some invertible P . In the sequel we are con-
cerned only whether a determinant of a given quadratic form is a square or not, so
equivalent forms have the ‘same’ determinant in this sense.

The next lemma is proved in [25, Theorem 6.26 and Theorem 6.27].

Lemma 2.2 Let f ∈ Fq [x1, . . . , xn] be a nondegenerate quadratic form and b ∈ Fq .
If q is odd, then

N
(
f (x) = b

) =
{

qn−1 + v(b)q(n−2)/2η((−1)n/2 det(f )) if n is even,

qn−1 + q(n−1)/2η((−1)(n−1)/2b det(f )) if n is odd.

Here the map v : Fq → Z is defined as in Lemma 2.1, while η : Fq → Z is defined by
η(0) := 0, η(c) := 1 if c is a nonzero square, and η(c) = −1 otherwise.

2.2 Graphs and symmetric matrices

From now on all graphs are finite, undirected, and without loops and multiple edges.
Given a graph Γ , we use χ(Γ ) to denote its chromatic number, that is, the small-
est integer m for which there exists a vertex m-coloring, i.e., a map C : V (Γ ) →
{x1, x2, . . . , xm} on the vertex set, which maps into a set of cardinality m and satisfies
C(v) �= C(u) whenever {v,u} is an edge. The next simple lemma is well known (see
e.g. [22, Proposition 1.20] or [14, Corollary 1.8]). It just observes that a composition
of a graph homomorphism and a vertex coloring is still a vertex coloring.
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Lemma 2.3 If Φ : Γ → Γ ′ is a graph homomorphism, then χ(Γ ) ≤ χ(Γ ′).

In the proof of the main result we rely on Theorem 2.4 [15], which gives a lower
bound for the chromatic number in terms of the maximal eigenvalue λmax and the
minimal eigenvalue λmin of a graph.

Theorem 2.4 If Γ has at least one edge, then χ(Γ ) ≥ 1 + λmax−λmin
.

Let (G,+) be a finite abelian group and suppose that a subset S ⊆ G\{0} satisfies
−S = S. The Cayley graph Cay(G,S) is the graph Γ with the vertex set V (Γ ) = G

and the edge set E(Γ ) = {{g,h} : g − h ∈ S}. A map ξ : G → C\{0} is a character
if ξ(g + h) = ξ(g)ξ(h) for all g,h ∈ G. A complex number λ is an eigenvalue of
Cay(G,S) if and only if

λ =
∑

s∈S

ξ(s) (7)

for some character ξ (see e.g. [10, Lemma 9.2, p. 246] or [2, Sect. 1.4.8]). If G =
Sn(Fq) is the abelian group of all n×n symmetric matrices over a finite field and the
subset S ⊆ G consists of all matrices of rank one, then Cay(G,S) = Γn. The graph Γn

is regular of valency |S| = qn − 1, but it is not distance-regular unless n ∈ {2,3} and
q is even (see [3, pp. 285–286] and [4]). The diameter of Γn equals n if n or q is odd,
whereas the diameter equals n+1 if both n and q are even [31, Proposition 5.55]. We
also mention that the distance d(A,B) between two matrices A and B equals rk(A−
B) if q is odd. However, if q is even, then d(A,B) = rk(A − B) + 1 if A − B is an
nonzero alternate matrix and d(A,B) = rk(A − B) otherwise [31, Proposition 5.5].
Any rank-one symmetric matrix can be written as axx� for some column vector x and
some scalar a. If q is even, then any scalar is a square, so we can assume that a = 1.
Let l be a maximum clique in Γn, that is, some set of pairwise adjacent matrices,
which is of the largest possible size. Then

l = {
axx� + A : a ∈ Fq

}
(8)

for some nonzero column vector x and some A ∈ Sn(Fq) [31, Proposition 5.8]. In
particular we see that the cardinality |l| equals q .

The next theorem is a special case of the fundamental theorem of the geometry
of symmetric matrices (see [9, 16, 30] or the book [31, Theorem 5.56]) for matrices
over a finite field.

Theorem 2.5 Suppose that n ≥ 2. Elements of Aut(Γn) are precisely the maps of
the form (2), unless q = 2 and n = 3. In this special case Aut(Γn) has an additional
generator given by the map (3).

3 Proofs

We first prove that the graph Γn is either a core or it has a complete core. It was
observed by Godsil and Royle [12] that such a property is possessed by many graphs
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with high degree of transitivity on pairs of vertices at distance two. Although their
results cannot be applied directly to Γn, the following lemma allows us to modify the
proof of [12, Theorem 4.1] suitably.

Lemma 3.1 Suppose that A,B ∈ V (Γn) = Sn(Fq) are such that d(A,B) = 2. Let
l be an arbitrary maximum clique in Γn and let C ∈ V (Γn)\l be adjacent to some
matrix in l. Then there exist a matrix D ∈ l and an automorphism Ψ of Γn such that
Ψ (C) = A and Ψ (D) = B .

Proof By (8), there exist a column vector x and a symmetric matrix X0 such that
l = {axx� + X0 : a ∈ Fq}. Since C is adjacent to some matrix in l, there exist scalars
a0, b0, where b0 �= 0, and a column vector y such that C = a0xx� + X0 + b0yy�.
The vectors x and y must be linearly independent, since C /∈ l. Hence, there ex-
ists an invertible matrix P with x as the first column and y as the second column.
Consequently, if Ejj denotes the matrix with 1 as the (j, j)-entry and zeros else-
where, then l = {aPE11P

� + X0 : a ∈ Fq} and C = P(a0E11 + b0E22)P
� + X0.

Since d(A,B) = 2, the difference A − B is a sum of two linearly independent
rank-one symmetric matrices. That is, there exist an invertible Q and nonzero
a′

0 and b′
0 such that A − B = Q(a′

0E11 + b′
0E22)Q

�. It is now easy to see that
the matrix D := (a0 − b0a

′
0/b

′
0)PE11P

� + X0 and the automorphism Ψ (X) :=
(b′

0/b0)(QP −1)(X − D)(QP −1)� + B have the required properties. �

In the proof of Lemma 3.2 we tacitly rely on the fact that any graph has a core,
which is always an induced graph and unique up to isomorphism [11, Lemma 6.2.2].

Lemma 3.2 Graph Γn is either a core or it has a complete core.

Proof Denote any subgraph of Γn that is a core of Γn by Γ ′. For any graph ho-
momorphism Φ : Γn → Γ ′, denote the composition (Φ|Γ ′)−1 ◦ Φ by Φ ′. Then,
Φ ′ : Γn → Γ ′ is a graph homomorphism that fixes the vertex set V (Γ ′). Suppose
that Γ ′ �= Γn, i.e., V (Γ ′) � V (Γn). Since Γn is connected, there exist X ∈ V (Γ ′)
and A ∈ V (Γn)\V (Γ ′), which are adjacent in Γn. Hence, B := Φ ′(A) is adjacent to
Φ ′(X) = X. Moreover, Φ ′(A) = Φ ′(B) and A �= B , since A /∈ V (Γ ′) = Φ ′(V (Γn)).
Hence, d(A,B) = 2. Let l be an arbitrary maximum clique of Γn, which is con-
tained in Γ ′. Suppose that Γ ′ contains two vertices at distance two. Since Γ ′ is
connected, there exist a matrix C ∈ V (Γ ′)\l that is adjacent to some matrix from l.
By Lemma 3.1, there exist a matrix D ∈ l and an automorphism Ψ of Γn such that
Ψ (C) = A and Ψ (D) = B . Consequently, Φ ′(Ψ (C)) = Φ ′(Ψ (D)), so the restriction
of composition Φ ′ ◦Ψ to V (Γ ′) is an element of End(Γ ′)\Aut(Γ ′). As Γ ′ is a core,
we get a contradiction. Hence, all vertices in Γ ′ are adjacent. �

The following lemma is the main step toward the proofs of Theorem 1.1 and The-
orem 1.3. A map φ : Sn(Fq) → Fp is called additive if φ(A+B) = φ(A)+φ(B) for
all A,B ∈ Sn(Fq).

Lemma 3.3 Let q be a power of a prime p and suppose that n ≥ 2 is an integer. If
Δ is the set of rank-one matrices in Sn(Fq) that are annihilated by an additive map
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φ : Sn(Fq) → Fp , then

|Δ| ∈
{
qn −1,

qn

p
−1,

qn

p
−1+qn−r/2

(
1− 1

p

)
,
qn

p
−1−qn−r/2

(
1− 1

p

)}
, (9)

where 2 ≤ r ≤ n is an even integer. Moreover, any value in the set (9) is attained by
some Δ.

Proof Since φ is additive, there exist additive maps φij : Fq → Fp such that
φ([aij ]) = ∑

1≤i≤j≤n φij (aij ). Maps φij are in fact linear over the subfield Fp , so
by (5) there exist scalars cij ∈ Fq such that φij (aij ) = Tr(cij aij ). Since the trace map
is additive as well, we see that

φ = Tr◦ψ, where ψ([aij ]) =
∑

i≤j

cij aij . (10)

If all cij are zero, then φ ≡ 0, and |Δ| = qn − 1 equals the number of all rank-
one matrices in Sn(Fq). Assume now that some cij is nonzero. Then, there exists
r ∈ {1,2, . . . , n} such that the quadratic form

f (x) =
∑

i≤j

cij xixj (11)

is equivalent to some quadratic form fr in r indeterminates xi1, . . . , xir , which is
nondegenerate if regarded as a quadratic form in Fq [xi1, . . . , xir ]. Recall that

N
(
f (x1, . . . , xn) = b

) = qn−r · N(
fr(xi1 , . . . , xir ) = b

)
(12)

for any b.
To proceed, consider the map x 	→ xp − x on Fq . It is p-to-1, since in a field of

characteristic p the equivalence

xp − x = yp − y ⇐⇒ (x − y)p = x − y ⇐⇒ x − y ∈ Fp

holds. Hence, the map x 	→ xp − x attains q/p distinct values d1, . . . , dq/p , where
one of them, say dq/p , is zero. From (4) it follows that

Tr(x) = 0 ⇐⇒ x ∈ {d1, . . . , dq/p} (13)

for all x ∈ Fq . To end the proof we separate two cases.

Case 1. Let q be even. Then for each i ∈ {1, . . . , q/p} define

Δi := {
xx� : ψ(

xx�) = di

}
. (14)

Set Δi contains matrices of rank one if i �= q/p, and in addition Δi contains the zero
matrix if i = q/p. Moreover, in a finite field of characteristic p = 2 any rank-one
symmetric matrix is of the form xx�. Hence, we can infer from (10) and (13) that the
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Table 1
r is odd

|Δi |, i �= q/p qn−1

|Δq/p\{0}| qn−1 − 1

r is even, fr is of hyperbolic type

|Δi |, i �= q/p qn−1 − q
n−1− r

2

|Δq/p\{0}| qn−1 + (q − 1)q
n−1− r

2 − 1

r is even, fr is of elliptic type

|Δi |, i �= q/p qn−1 + q
n−1− r

2

|Δq/p\{0}| qn−1 − (q − 1)q
n−1− r

2 − 1

matrices in the sets Δi are precisely those matrices of rank ≤ 1 that are annihilated
by φ. Since the characteristic equals 2, we also see that

x1 = x2 ⇐⇒ x1x�
1 = x2x�

2 ,

so |Δi | = N(f (x) = di). We can now use (12) and Lemma 2.1 to obtain the data in
Table 1. By definition (14), Δi ∩ Δj = ∅ for i �= j , so

|Δ| =
q/p−1∑

i=1

|Δi | + |Δq/p\{0}| = (q/p − 1)|Δ1| + |Δq/p\{0}|

∈
{

qn

p
− 1,

qn

p
− 1 + qn−r/2

(
1 − 1

p

)
,
qn

p
− 1 − qn−r/2

(
1 − 1

p

)}
.

Clearly, all values can be attained for a suitable f , i.e., for suitable scalars cij .

Case 2. Now let q be odd. Set

br :=
{

(−1)(r−1)/2 det(fr) if r is odd,
1 if r is even,

and pick an arbitrary non-square c ∈ Fq . From (12) and Lemma 2.2 we obtain the
data in Table 2. Denote the (nonzero) column vectors that satisfy f (x) = br by

x1, . . . ,xα,−x1, . . . ,−xα,

the (nonzero) column vectors that satisfy f (y) = brc by

y1, . . . ,yβ,−y1, . . . ,−yβ,

and some maximal selection of pairwise linear independent column vectors that sat-
isfy f (z) = 0 by

z1, . . . , zγ . (15)

Note that

α = N
(
f (x) = br

)
/2, (16)
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Table 2
r is odd

N
(
f (x) = br

)
qn−1 + q

n−1− r−1
2

N
(
f (x) = br c

)
qn−1 − q

n−1− r−1
2

N
(
f (x) = 0

)
qn−1

r is even, (−1)r/2 det(fr ) is a square

N
(
f (x) = br

)
qn−1 − q

n−1− r
2

N
(
f (x) = br c

)
qn−1 − q

n−1− r
2

N
(
f (x) = 0

)
qn−1 + (q − 1)q

n−1− r
2

r is even, (−1)r/2 det(fr ) is not a square

N
(
f (x) = br

)
qn−1 + q

n−1− r
2

N
(
f (x) = br c

)
qn−1 + q

n−1− r
2

N
(
f (x) = 0

)
qn−1 − (q − 1)q

n−1− r
2

β = N
(
f (y) = brc

)
/2, (17)

γ = (
N

(
f (z) = 0

) − 1
)
/(q − 1). (18)

In fact, to compute γ , that is, to achieve pairwise linear independence, we need to
exclude the zero column vector and consider only one multiple of any z.

Now, for i ∈ {1, . . . , q/p − 1} define

Δi,x := {(
dib

−1
r

) · xj x�
j : j ∈ {1, . . . , α}},

Δi,y := {(
dib

−1
r c−1) · yj y�

j : j ∈ {1, . . . , β}},
Δz := {

a · zj z�
j : j ∈ {1, . . . , γ }, 0 �= a ∈ Fq

}
.

All matrices in the sets Δi,x, Δi,y, Δz are of rank one. Moreover, from the definitions
of the vectors xj ,yj , zj and from (10), (11), and (13), it follows that any such matrix
is annihilated by φ. We claim that these are in fact the only rank-one matrices that
are annihilated by φ. Namely, let φ(aww�) = 0 for some nonzero a and w. Then
ψ(aww�) equals di for some i. If ψ(aww�) = dq/p = 0, then

0 = ψ
(
ww�) = f (w),

so w is a multiple of some column vector in (15), that is, aww� ∈ Δz. Assume now
that ψ(aww�) = di �= 0. Since q is odd, precisely half of the elements of Fq\{0}
are squares. Moreover, Fq = {0, t2

1 , . . . , t2
(q−1)/2, ct

2
1 , . . . , ct2

(q−1)/2} for suitable ti , so

one of the two scalars bra/di and cbra/di is a square, i.e., there exists a0 with a2
0 ∈

{bra/di, cbra/di}. Consequently,

f (a0w) = ψ
(
a2

0ww�) = a2
0di

a
∈ {br , brc},

which yields

aww� ∈ {
dib

−1
r (a0w)(a0w)�, dib

−1
r c−1(a0w)(a0w)�

} ⊆ Δi,x ∪ Δi,y.
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To continue observe that

|Δi,x| = α, (19)

|Δi,y| = β, (20)

|Δz| = (q − 1)γ. (21)

We now prove that the sets Δi,x, Δi,y, Δz (i = 1, . . . , q/p − 1) are all dis-
joint. In fact, ψ |Δi,x ≡ di , ψ |Δi,y ≡ di , and ψ |Δz ≡ 0, so we need only check that
Δi,x ∩ Δi,y = ∅. Assume otherwise, i.e., (dib

−1
r ) ·xj x�

j = (dib
−1
r c−1) ·yky�

k for some

j and k. Then (dib
−1
r ) · a2

1 = (dib
−1
r c−1) · a2

2 for some nonzero a1 and a2 by the con-
struction of xj x�

j . However, this is not possible, since c is non-square, so we get
a contradiction.

We are now able to end the proof. We can use (19)–(21), (16)–(18), and Table 2 to
deduce that

|Δ| =
q/p−1∑

i=1

|Δi,x| +
q/p−1∑

i=1

|Δi,y| + |Δz| = (q/p − 1)(α + β) + (q − 1)γ

∈
{

qn

p
− 1,

qn

p
− 1 + qn−r/2

(
1 − 1

p

)
,
qn

p
− 1 − qn−r/2

(
1 − 1

p

)}
.

Clearly, all values can be attained for a suitable f . �

We now prove Theorem 1.3 and Theorem 1.1.

Proof of Theorem 1.3 Suppose that λ is an arbitrary eigenvalue and ξ : Sn(Fq) →
C\{0} is a character that satisfies (7), that is,

λ =
∑

M∈S

ξ(M), (22)

where S ⊆ Sn(Fq) is the subset of all rank-one matrices. Since

ξ(A)p = ξ(pA) = ξ(0) = 1

for any A, there exists a map φ : Sn(Fq) → Fp such that

ξ(A) = e2πiφ(A)/p.

The equality ξ(A+B) = ξ(A)ξ(B) implies that φ(A+B) = φ(A)+φ(B). Hence, φ
is additive, that is, linear over Fp . In particular, the following two implications hold:

φ(A) = 0 =⇒ ξ(A) = 1, (23)

φ(A) �= 0 =⇒
∑

x∈Fp\{0}
ξ(xA) =

p−1∑

j=1

e2πij/p. (24)
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Now, let Δ := {M ∈ S : φ(M) = 0}. Since

p−1∑

j=1

e2πij/p =
p−1∑

j=0

e2πij/p − 1 = 0 − 1 = −1,

we can use (22), (23), (24), and the fact that |S| = qn − 1 to deduce that

λ =
∑

M∈Δ

ξ(M) +
∑

M∈S\Δ
ξ(M)

= |Δ| · 1 + (|S| − |Δ|) · (−1)

|Fp\{0}|

= |Δ| ·
(

1 + 1

p − 1

)
− qn − 1

p − 1
.

The proof is complete by Lemma 3.3. �

Proof of Theorem 1.1 By Theorem 2.4, χ(Γn) ≥ 1 + λmax−λmin
. By Theorem 1.3,

λmax = qn − 1 and λmin = −qn−1 − 1. Since n ≥ 3 by the assumption, it follows
that χ(Γn) > q . Let Γ ′ be a core of Γn, and let Φ : Γn → Γ ′ be any graph homo-
morphism. Then, we deduce that χ(Γ ′) > q by Lemma 2.3, which means that Γ ′ has
more than q vertices. By (8), the maximum clique in Γn contains precisely q vertices,
so the core Γ ′ is not complete. It now follows from Lemma 3.2 that Γn = Γ ′ is a core.
The addendum to Theorem 1.1 is now a corollary of Theorem 2.5. �

We need two more lemmas to prove Theorem 1.2.

Lemma 3.4 If q is odd and c ∈ Fq is any fixed non-square, then the set

Ω := {[
a b
b ca

] : a, b ∈ Fq

} ⊆ S2(Fq)

consists of q2 pairwise nonadjacent matrices.

Proof Obviously, there are q2 matrices in Ω . To prove that they are pairwise nonad-
jacent, assume that rk(A1 − A2) ≤ 1, where A1 = [ a1 b1

b1 ca1

]
and A2 = [ a2 b2

b2 ca2

]
. Then,

(a1 − a2)(ca1 − ca2) = (b1 − b2)
2. If a1 �= a2, then

c =
(

b1 − b2

a1 − a2

)2

,

a contradiction. Hence, a1 = a2 and consequently b1 = b2, that is, A1 = A2. �

Recall that the trace map Tr : Fq → Fp is surjective. If q is even, then any element in
Fq is a square, so there exists an nonzero c ∈ Fq such that Tr(1/c2) = 1.
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Lemma 3.5 If q is even and c ∈ Fq satisfies Tr(1/c2) = 1, then the set

Ω := {[
a b
b a+cb

] : a, b ∈ Fq

} ⊆ S2(Fq)

consists of q2 pairwise nonadjacent matrices.

Proof There are q2 matrices in Ω . To prove that they are pairwise nonadjacent, as-
sume that rk(A1 − A2) ≤ 1, where A1 = [ a1 b1

b1 a1+cb1

]
and A2 = [ a2 b2

b2 a2+cb2

]
. Then,

(a1 − a2)(a1 − a2 + cb1 − cb2) = (b1 − b2)
2. In a field of characteristic two we

deduce that

x2
a + xaxb + (

1/c2)x2
b = 0, (25)

where xa := a1 − a2 and xb := c(b1 − b2). By (6), (25) has the unique solution xa =
0 = xb . Hence, A1 = A2. �

Proof of Theorem 1.2. Let M ∈ S2(Fq) be of rank one, and let Ω be as in Lemma 3.4
if q is odd and as in Lemma 3.5 if q is even. We claim that the family {xM + Ω :
x ∈ Fq} is a partition of S2(Fq). In fact, if (xM + Ω) ∩ (yM + Ω) is nonempty,
then xM + A1 = yM + A2 for some A1,A2 ∈ Ω . This is possible only if x = y,
since rk(A1 − A2) �= 1. Hence, the sets xM + Ω;x ∈ Fq are pairwise disjoint. Since
|Ω| = q2, it follows that

∣∣∣
∣∣

⋃

x∈Fq

(xM + Ω)

∣∣∣
∣∣
=

∑

x∈Fq

|xM + Ω| = q|Ω| = q3 = |S2(Fq)|,

so {xM + Ω : x ∈ Fq} is truly a partition of S2(Fq), which means that the map C :
S2(Fq) → Fq , given by C|xM+Ω ≡ x, is well defined. Moreover, it is a q-coloring of
Γ2, since the two endpoints of any edge in Γ2 cannot be contained in the same set
xM + Ω . Consequently, if N ∈ S2(Fq) is of rank one, then the map Φ(A) = C(A)N

is an element of End(Γ2)\Aut(Γ2), so Γ2 is not a core. From Lemma 3.2 we infer
that its core is a complete graph, that is, a maximum clique with q vertices. �

4 Concluding remarks

Remark 4.1 In matrix theory, a preserver problem demands a classification of all
maps on some matrix space that leave certain subset, relation, or function invariant.
In this mathematical area endomorphisms of Γn are known as the adjacency pre-
servers. They have an important role, since their classification can be used to classify
several other preservers. In fact, if we want to classify additive preservers of cer-
tain relation, subset etc., one of the basic techniques is to first show that these maps
preserve the adjacency; this procedure is nicely described in [29, Sect. 2] (see also
e.g. [27, Sect. 5]). For some recent surveys on preserver problems and papers with
general introduction to this subject, see e.g. [13, 24, 28].
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Remark 4.2 It is not difficult to see that the graph Γ2 does not contain an independent
set with more than q2 vertices (this follows also directly from [5, remark to Corol-
lary 2.3]). Hence, the set Ω from Lemma 3.4/Lemma 3.5 is a maximum independent
set in Γ2.

Remark 4.3 Directly from the proof of Theorem 1.2 it follows that χ(Γ2) = q .

Remark 4.4 The coloring C , and consequently the map Φ(A) = C(A)N , from the
proof of Theorem 1.2, is additive. Namely, if B1 ∈ xM + Ω and B2 ∈ yM + Ω , then
B1 + B2 ∈ (x + y)M + Ω , since Ω is closed under addition. Hence, C(B1 + B2) =
C(B1) + C(B2). Since Φ ∈ End(Γ2), it follows that Φ is a rank-one preserver, that is,
Φ(A) �= 0 for any A ∈ S2(Fq) of rank one.

Remark 4.5 Theorem 1.3 implies that the graph Γn has n+2 distinct eigenvalues if n

is even and n+ 1 distinct eigenvalues if n is odd. Any connected graph with diameter
d has at least d + 1 distinct eigenvalues [1, Corollary 2.7]. In our case d = n if n

or q is odd, whereas d = n + 1 if n and q are both even. So the number of distinct
eigenvalues is minimal unless n is even and q is odd.

Remark 4.6 Corresponding results to Theorem 1.3 for graphs that are constructed
from alternate/rectangular matrices were obtained in [7] and [6]. These graphs,
as well as the graphs obtained from hermitian matrices, are distance-regular [3,
Sect. 9.5]. Hence, their eigenvalues can be computed from their intersection arrays
(see [3, pp. 128–129] or [1, Proposition 21.2]).

Remark 4.7 If q is even, then a recursive procedure to compute the eigenvalues given
by Theorem 1.3 can be deduced from [8, 32]. More precisely, in these two papers the
association scheme of symmetric matrices Sym(n, q) and the association scheme of
quadratic forms Qua(n, q) are studied. In [8], recursive formulas for entries of the
first eigenmatrix of Qua(n, q) are obtained if q is even. For example, Table A1 in [8]
represents the first eigenmatrix of Qua(2, q):

P =

⎛

⎜⎜⎜
⎝

1 q2 − 1 q(q2−1)
2

q(q−1)2

2
1 −1 q(q−1)

2
−q(q−1)

2
1 −1 −q

2
q
2

1 q2 − 1 −q(q+1)
2

−q(q−1)
2

⎞

⎟⎟⎟
⎠

.

Since Sym(2, q) is formally dual to Qua(2, q) [32], it follows that its first eigenmatrix
equals

Q = q3P −1 =

⎛

⎜⎜
⎝

1 q2 − 1v (q − 1)(q2 − 1) q − 1
1 −1 1 − q q − 1
1 q − 1 1 − q −1
1 −q − 1 q + 1 −1

⎞

⎟⎟
⎠ .

The second column of Q represents the eigenvalues of Γ2. Clearly, Theorem 1.3 gives
us the same values. For background on association schemes see e.g. [3, Chap. 2].
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