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Abstract A certain inequality is shown to hold for the values of the Möbius function
of the poset obtained by attaching a maximum element to a lower Eulerian Cohen–
Macaulay poset. In two important special cases, this inequality provides partial results
supporting Stanley’s nonnegativity conjecture for the toric h-vector of a lower Eule-
rian Cohen–Macaulay meet-semilattice and Adin’s nonnegativity conjecture for the
cubical h-vector of a Cohen–Macaulay cubical complex.

Keywords Eulerian poset · Cohen–Macaulay poset · Möbius function · Cubical
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1 Introduction

Let P be a finite poset which has a minimum element 0̂ (for background and any
undefined terminology on partially ordered sets we refer the reader to [12, Chap. 3]
and Sect. 2). Such a poset is called lower Eulerian [13, Sect. 4] if every interval
[x, y] in P is graded and satisfies μP (x, y) = (−1)ρ(x,y), where μP is the Möbius
function of P and ρ(x, y) is the common length of all maximal chains of [x, y].
Examples of lower Eulerian posets are the face posets of finite regular cell complexes;
see [4, Sect. 12.4], [12, Sect. 3.8]. The main result of this paper concerns the Möbius
function of a poset obtained by attaching a maximum element to a lower Eulerian
Cohen–Macaulay poset (here, the Cohen–Macaulay property is defined with respect
to an arbitrary field).

Theorem 1.1 Let P be a lower Eulerian Cohen–Macaulay poset, with minimum
element 0̂ and set of atoms A(P ). Let P̂ = P ∪ {1̂} be the poset obtained from P by
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attaching a maximum element 1̂ and let μ
P̂

denote the Möbius function of P̂ . Then
we have

∑

x∈A(P )

∣∣μ
P̂
(x, 1̂)

∣∣ ≥ αP

∣∣μ
P̂
(0̂, 1̂)

∣∣, (1)

where αP is the minimum cardinality of the sets {x ∈ A(P ) : x ≤P y} of atoms of P

in the interval [0̂, y], when y runs through all maximal elements of P .

To explain the motivation behind Theorem 1.1 and discuss some of its conse-
quences, we consider two important classes of lower Eulerian posets. We recall
that a finite poset P having a minimum element 0̂ is called simplicial [12, p. 135]
(respectively, cubical [3]) if for every x ∈ P , the interval [0̂, x] in P is isomor-
phic to a Boolean lattice (respectively, to the face poset of a cube). The h-vector
(h0(P ),h1(P ), . . . , hd(P )) is a fundamental enumerative invariant of a simplicial
poset P (see, for instance, [13, p. 113]) defined by the formula

d∑

i=0

hi(P )qi =
d∑

i=0

fi−1(P )qi(1 − q)d−i , (2)

where d is the largest length of a chain in P and fi−1(P ) is the number of ele-
ments x ∈ P such that the interval [0̂, x] is isomorphic to a Boolean lattice of rank i.
For a graded cubical poset P of rank d , Adin [1] introduced the cubical h-vector
(h

(c)
0 (P ),h

(c)
1 (P ), . . . , h

(c)
d (P )) of P as a cubical analog of the h-vector of a simpli-

cial poset. It can be defined by the formula

d∑

i=0

h
(c)
i (P )qi = 1

1 + q

(
2d−1 + q

d−1∑

i=0

fi(P )(2q)i(1 − q)d−i−1

+ (−2)d−1χ̃(P )qd+1

)
,

where fi(P ) denotes the number of elements of P of rank i + 1, for 0 ≤ i ≤ d − 1,
and χ̃ (P ) = −1 + ∑d−1

i=0 (−1)ifi(P ).

One of Stanley’s early results in f -vector theory (see [9, Corollary 4.3]) states that
the h-vector of P has nonnegative entries if P is the face poset of a Cohen–Macaulay
simplicial complex. This statement was extended to all Cohen–Macaulay simplicial
posets in [14] and, in fact, the h-vectors of Cohen–Macaulay simplicial complexes
and posets can both be completely characterized [10, 14] (see also Sects. II.3 and III.6
in [15]). On the contrary, far less is known about f -vectors of cubical complexes
and posets. Adin [1, Question 1] (see also [16, Problem 8(a)]) raised the question
whether the cubical h-vector of P has nonnegative entries if P is the face poset of
a Cohen–Macaulay cubical complex and gave an affirmative answer in the special
case of shellable cubical complexes [1, Theorem 5(iii)]. For the importance of Adin’s
question we refer the reader to [7], where an affirmative answer is given for cubical
barycentric subdivisions (implicitly defined in Sect. 2.4) of simplicial complexes.
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One can easily check directly that hd(P ) ≥ 0 (respectively, h
(c)
d (P ) ≥ 0) holds for

every simplicial (respectively, cubical) Cohen–Macaulay poset P of rank d . Using
the notation of Theorem 1.1, we claim (see Sect. 5) that

hd−1(P ) = (−1)d
∑

x∈A(P )

μ
P̂
(x, 1̂) − d(−1)d+1μ

P̂
(0̂, 1̂) (3)

and

h
(c)
d−1(P ) = (−1)d

∑

x∈A(P )

μ
P̂
(x, 1̂) − 2d−1(−1)d+1μ

P̂
(0̂, 1̂) (4)

holds for every simplicial (respectively, cubical) graded poset P of rank d . Thus,
Theorem 1.1 applies to both of these situations and gives the following partial infor-
mation on the nonnegativity of simplicial and cubical h-vectors. Since the proof of
Theorem 1.1 uses tools from topological combinatorics, it specializes to a new proof
that hd−1(P ) ≥ 0 holds for Cohen–Macaulay simplicial posets P of rank d . The case
of cubical posets yields a new result as follows.

Corollary 1.2 For every Cohen–Macaulay cubical poset P of rank d we have
h

(c)
d−1(P ) ≥ 0.

Motivated by results on the intersection cohomology of toric varieties, Stanley
[13, Sect. 4] defined the (generalized, or toric) h-vector (h0(P ),h1(P ), . . . , hd(P ))

for an arbitrary lower Eulerian poset P (where again, d is the largest length of a chain
in P ). For simplicial posets, this h-vector reduces to the one defined by (2). Stanley
[13, Conjecture 4.2(b)] conjectured that the generalized h-vector has nonnegative
entries for every lower Eulerian Cohen–Macaulay meet-semilattice. The following
partial result is also a consequence of Theorem 1.1 (see Sect. 5.1).

Corollary 1.3 For every lower Eulerian Cohen–Macaulay meet-semilattice P of
rank d we have hd−1(P ) ≥ 0.

This paper is organized as follows. Section 2 reviews basic definitions and back-
ground on the enumerative and topological combinatorics of partially ordered sets
and establishes some preliminary results on (lower Eulerian) Cohen–Macaulay
posets. Section 3 proves a certain statement (Corollary 3.4) on upper truncations of
lower Eulerian Cohen–Macaulay posets which will be essential in the proof of Theo-
rem 1.1. This statement follows from more general statements on rank-selections of
Cohen–Macaulay (or Buchsbaum) posets and balanced simplicial complexes (Theo-
rems 3.3 and 3.5), essentially established by Browder and Klee in [5]. Theorem 1.1
is proved in Sect. 4. The applications to cubical and toric h-vectors are discussed
in Sect. 5.

2 Preliminaries

This section reviews basic background on the enumerative and topological combina-
torics of simplicial complexes and partially ordered sets (posets), fixes notation and
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establishes some preliminary results which will be useful in the sequel. For more
information on these topics we refer the reader to [12, Chap. 3] and [4]. Basic back-
ground on algebraic topology can be found in [8].

2.1 Simplicial complexes

Given a finite set E, an (abstract) simplicial complex on the ground set E is a col-
lection Δ of subsets of E such that σ ⊆ τ ∈ Δ implies σ ∈ Δ. The elements of Δ

are called faces. The dimension of a face σ is defined as one less than the cardinality
of σ . A facet of Δ is a face which is maximal with respect to inclusion. The reduced
Euler characteristic of Δ is defined as

χ̃ (Δ) =
d∑

i=0

(−1)i−1fi−1(Δ), (5)

where d − 1 = dimΔ is the dimension (maximum dimension of a face) of Δ and
fi−1(Δ) denotes the number of faces of Δ of dimension i − 1, for 0 ≤ i ≤ d . By the
Euler–Poincaré formula we have

χ̃ (Δ) =
d∑

i=0

(−1)i−1 dimk H̃i−1(Δ;k), (6)

where H̃∗(Δ;k) stands for the reduced simplicial homology of Δ over the field k. The
link of a face σ ∈ Δ is defined as the subcomplex lkΔ(σ) = {τ � σ : τ ∈ Δ,σ ⊆ τ }
of Δ. The simplicial complex Δ is called Cohen–Macaulay over k if H̃i(lkΔ(σ);k) =
0 for every σ ∈ Δ (including σ = ∅) and all i < dim lkΔ(σ). Such a complex is pure,
meaning that every facet of Δ has dimension equal to dimΔ. All topological proper-
ties of Δ we mention in the sequel will refer to those of the geometric realization [4,
Sect. 9] of Δ, uniquely defined up to homeomorphism.

2.2 The Möbius function and the order complex

A poset P is called locally finite if every closed interval [x, y] in P is finite. The
Möbius function μP of such a poset is defined on pairs (x, y) of elements of P satis-
fying x ≤P y by the recursive formula

μP (x, y) =
{

1, if x = y,

−∑
x≤P z<P y μP (x, z), if x <P y.

(7)

Given a finite poset Q, we denote by Δ(Q) the simplicial complex on the ground set
Q whose faces are chains (totally ordered subsets) of Q, known as the order complex
of Q; see [12, p. 120] [4, Sect. 9]. The following proposition gives a fundamental
interpretation of the Möbius function of a locally finite poset.

Proposition 2.1 [12, Proposition 3.8.6] For every locally finite poset P and all x, y ∈
P with x <P y we have μP (x, y) = χ̃ (Δ(x, y)), where Δ(x,y) denotes the order
complex of the open interval (x, y) in P .
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2.3 Lower Eulerian posets

A locally finite poset P is called locally graded if for every closed interval [x, y] in
P there exists a nonnegative integer ρ(x, y), called the rank of [x, y], such that every
maximal chain in [x, y] has length equal to ρ(x, y). A locally graded poset which has
a minimum element will be called lower graded. For such a poset P with minimum
element 0̂, we will refer to the rank of [0̂, x] simply as the rank of x and will denote it
by ρ(x). A locally graded poset P is called locally Eulerian if μP (x, y) = (−1)ρ(x,y)

holds for all x, y ∈ P with x ≤P y. A lower Eulerian (respectively, Eulerian) poset
is a locally Eulerian poset which has a minimum (respectively, a minimum and a
maximum) element.

Given a finite poset P with a minimum element 0̂, we will denote by P̄ (respec-
tively, by P̂ ) the poset which is obtained from P by removing 0̂ (respectively, by
attaching a maximum element 1̂). We set

χ̃(P ) = μ
P̂
(0̂, 1̂) = χ̃

(
Δ(P̄ )

)
, (8)

where the second equality is due to Proposition 2.1. For a finite, lower graded poset
P we also set

ψ(P ) =
d∑

i=0

(−1)i−1fi−1(P ), (9)

where d is the maximum rank of an element of P and fi−1(P ) denotes the number
of elements of P of rank i, for 0 ≤ i ≤ d .

Lemma 2.2 We have χ̃(P ) = ψ(P ) for every lower Eulerian poset P .

Proof Using the defining recurrence (7) for the Möbius function and the fact that
each closed interval in P is Eulerian, we find that

μ
P̂
(0̂, 1̂) = −

∑

x∈P

μP (0̂, x) =
∑

x∈P

(−1)ρ(x)−1

and the proof follows. �

The rank of an Eulerian poset is defined as the rank of its maximum element. The
following elementary lemma will be used in Sect. 4.

Lemma 2.3 Let P be an Eulerian poset of rank d ≥ 2 with minimum element 0̂ and
maximum element 1̂ and let Q be the poset which is obtained from P by removing all
its atoms. Then we have

μQ(0̂, 1̂) = (−1)d−1(f0(P ) − 1
)
,

where f0(P ) is the number of atoms of P .

Proof This statement is a special case of [12, Proposition 3.14.5]. �
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2.4 The poset of intervals

We denote by int(P ) the set of (nonempty) closed intervals [x, y] of a locally fi-
nite poset P , partially ordered by inclusion. For the enumerative, order-theoretic and
topological properties of int(P ) we refer the reader to Exercises 7 and 58 of [12,
Chapter 3] and to [3, Sect. 2], [17, Sect. 4]. The following proposition (in the form of
[17, Theorem 4.1]) also appears as Theorem 2.3 in [3].

Proposition 2.4 [17, Theorem 6.1(a)] For every finite poset P , the order complex
Δ(int(P )) is homeomorphic to Δ(P ).

Proposition 2.5 For every locally Eulerian poset P , the poset which is obtained from
int(P ) by attaching a minimum element is lower Eulerian.

Proof Let Q be the poset in question. We denote by 0̂ the minimum element of Q and
choose any elements x, y ∈ Q with x <Q y. Assume first that x �= 0̂. Then we may
write x = [b, c] ∈ int(P ) and y = [a, d] ∈ int(P ) with a ≤P b ≤P c ≤P d . Clearly,
the interval [x, y] in Q is isomorphic to the direct product of the intervals [a, b]
and [c, d] in P and hence we have μQ(x, y) = μP (a, b)μP (c, d) by [12, Proposi-
tion 3.8.2]. Suppose now that x = 0̂ and let y = [a, d] ∈ int(P ), as before. Then y

(as a subposet of P ) is an Eulerian poset and the interval [x, y] in Q is the poset
obtained from int(y) by attaching a minimum element 0̂. By the result of [12, Excer-
cise 3.58(b)] we have μQ(x, y) = μQ(0̂, y) = −μP (a, d). The previous observations
and the fact that each closed interval in P is Eulerian imply that Q is locally Eulerian
as well. �

2.5 Cohen–Macaulay posets

A finite poset P is graded of rank d (respectively, Cohen–Macaulay over the field k)
if the order complex Δ(P ) is pure of dimension d (respectively, Cohen–Macaulay
over k). For the remainder of this section we assume that P has a minimum element 0̂.
Then P is Cohen–Macaulay over k if and only if P̄ is as well. Moreover, in that case
P̄ and P are graded of rank d − 1 and d , respectively, and by (6) and (8) we have

χ̃ (P ) = (−1)d−1 dimk H̃d−1(Δ(P̄ );k). (10)

Suppose now that P is graded of rank d ≥ 2 and let Q be the poset which is obtained
from P by removing the set M(P ) of maximal elements of P (to follow the proofs
in the present and the following two sections, it may be helpful for the reader to
keep in mind the special case in which P is the face poset of a regular cell complex).
Given y ∈ M(P ), the order complex Δ(0̂, y) of the open interval (0̂, y) of P is a sub-

complex of Δ(Q̄) and hence there is a map H̃d−2(Δ(0̂, y);k) → H̃d−2(Δ(Q̄);k), in-
duced by inclusion. We denote by Ω(y) the image of this map. Equations (8) and (10)
imply that if P is lower Eulerian and Cohen–Macaulay over k, then Ω(y) is a one-
dimensional k-vector space for every y ∈ M(P ). We will then denote by ω(y) any
basis (nonzero) element of Ω(y).
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Lemma 2.6 Suppose that P̄ is Cohen–Macaulay over k of rank d − 1 ≥ 1 and let
Q̄ be the poset which is obtained from P̄ by removing all maximal elements. Then
the k-vector space H̃d−2(Δ(Q̄);k) is equal to the sum of its subspaces Ω(y) for
y ∈ M(P̄ ).

Proof Let c be a (d − 2)-cycle in the chain complex of Δ(Q̄) over k. We will show
that c can be written as a sum of (d − 2)-cycles in the chain complexes of Δ(0̂, y)

over k, for y ∈ M(P̄ ). We observe that c is also a (d − 2)-cycle in the chain complex
of Δ(P̄ ) over k. Since Δ(P̄ ) is Cohen–Macaulay over k of dimension d − 1, we
have H̃d−2(Δ(P̄ );k) = 0 and hence c = ∂d−1(c̃) for some (d − 1)-chain c̃ in the
chain complex of Δ(P̄ ) over k, where ∂∗ denotes the boundary map of this complex.
Clearly c̃ can be written (uniquely) as the sum of (d − 1)-chains c̃y for y ∈ M(P̄ ),
where c̃y is a (d − 1)-chain in the chain complex of Δ(0̂, y] over k. Then c is equal
to the sum of the boundaries ∂d−1(c̃y). Since c is supported on Δ(Q̄), each chain
∂d−1(c̃y) is supported on Δ(0̂, y). Since ∂d−2∂d−1 = 0, this implies that ∂d−1(c̃y)

is a (d − 2)-cycle in the chain complex of Δ(0̂, y) over k. This proves the desired
statement for c. �

Corollary 2.7 Let P be a lower Eulerian Cohen–Macaulay poset of rank d ≥ 2 and
let Q denote the poset which is obtained from P by removing all maximal elements.
Then the k-vector space H̃d−2(Δ(Q̄);k) is spanned by the classes ω(y) for y ∈
M(P ).

Proof This statement is a special case of Lemma 2.6. �

3 Doubly Cohen–Macaulay and Buchsbaum* posets

This section proves a certain property (Corollary 3.4) of the first upper truncation
Q of a lower Eulerian Cohen–Macaulay poset which will be essential in the proof
of Theorem 1.1 in Sect. 4. This property follows from the Buchsbaum* condition,
recently introduced in [2], for the order complex Δ(Q̄), so we begin by recalling
the relevant definitions. Throughout this section, we write Hi(Δ,Γ ;k) for the rela-
tive simplicial homology of the pair of simplicial complexes (Δ,Γ ), where Γ is a
subcomplex of Δ.

A simplicial complex Δ is Buchsbaum over the field k if Δ is pure and
H̃i(lkΔ(σ);k) = 0 for every nonempty face σ ∈ Δ and all i < dim lkΔ(σ). Recall
that the contrastar of a face σ ∈ Δ is defined as the subcomplex costΔ(σ) = {τ ∈ Δ :
σ �⊆ τ } of Δ.

Proposition 3.1 (cf. [15, Theorem 8.1]) The following conditions on a simplicial
complex Δ are equivalent:

(i) Δ is Buchsbaum over k.
(ii) Δ is pure and lkΔ(σ) is Cohen–Macaulay over k for every σ ∈ Δ � {∅}.

(iii) Hi(Δ, costΔ(σ);k) = 0 holds for every σ ∈ Δ � {∅} and all i < dimΔ.



380 J Algebr Comb (2012) 35:373–388

The following definition of a Buchsbaum* simplicial complex is equivalent to [2,
Definition 1.2] (see Propositions 2.3 and 2.8 in [2]) and will be convenient for the
purposes of this section.

Definition 3.2 Let Δ be a (d − 1)-dimensional simplicial complex which is Buchs-
baum over k. The complex Δ is called Buchsbaum* over k if the canonical map

ρ∗ : H̃d−1(Δ;k) → Hd−1
(
Δ, costΔ(σ);k

)
,

induced by inclusion, is surjective for every σ ∈ Δ � {∅}.

Assume now that Δ is Cohen–Macaulay over k. Then Δ is called doubly Cohen–
Macaulay over k [15, p. 71] if for every vertex v of Δ, the complex Δ� v = {τ ∈ Δ :
v �∈ τ } (obtained from Δ by removing all faces which contain v) is Cohen–Macaulay
over k of the same dimension as Δ. Given that Δ is Cohen–Macaulay over k, it was
shown in [2, Proposition 2.5] that Δ is doubly Cohen–Macaulay over k if and only
if Δ is Buchsbaum* over k. A Cohen–Macaulay complex Δ over k is called Goren-
stein* over k [15, Sect. II.5] if for every σ ∈ Δ and for i = dim lkΔ(σ) we have
H̃i(lkΔ(σ);k) ∼= k. Every such complex is doubly Cohen–Macaulay over k (see, for
instance, Theorem II.5.1 and Proposition III.3.7 in [15]). A finite poset Q is Buchs-
baum (respectively, Buchsbaum* or doubly Cohen–Macaulay or Gorenstein*) over k
if Δ(Q) is a Buchsbaum (respectively, Buchsbaum* or doubly Cohen–Macaulay or
Gorenstein*) simplicial complex over k.

Part (i) of the next theorem follows from [6, Corollary 2.7] in the special case in
which P is the face poset of a regular cell complex with the intersection property and
from [18, Theorem 4.5] in the special case in which P is a simplicial poset.

Theorem 3.3 Let P be a graded poset of rank d ≥ 2 with a minimum element 0̂ and
let Q be the poset which is obtained from P by removing all maximal elements.

(i) If P is Cohen–Macaulay over k and the interval (0̂, y) in P is doubly Cohen–
Macaulay over k for every maximal element y of P , then Q̄ is doubly Cohen–
Macaulay over k.

(ii) If P̄ is Buchsbaum over k and the interval (0̂, y) in P is doubly Cohen–Macaulay
over k for every maximal element y of P , then Q̄ is Buchsbaum* over k.

Before we comment on the proof of Theorem 3.3, let us deduce the statement
which will be needed in Sect. 4. Let Γ be a simplicial complex of dimension d − 2.
Recall that the closed star of a vertex v in Γ is the subcomplex of Γ defined
as stΓ (v) = {σ ∈ Γ : σ ∪ {v} ∈ Γ }. Via the isomorphisms Hi(Γ, costΓ (v);k) ∼=
Hi(stΓ (v), lkΓ (v);k) ∼= H̃i−1(lkΓ (v);k), the canonical map ρ∗ : H̃d−2(Γ ; k) →
Hd−2(Γ, costΓ (v);k), considered in Definition 3.2, induces a map

ρv : H̃d−2(Γ ;k) → H̃d−3
(
lkΓ (v);k

)
.

One can check that ρv is induced by a chain map from the (augmented) chain complex
of Γ over k to that of lkΓ (v) which sends a face σ ∈ Γ to σ � {v} (with appropriate
sign), if v ∈ σ , and to zero otherwise. Suppose now that Γ = Δ(Q̄), where Q is a
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graded poset having a minimum element and rank d − 1, and let x ∈ Q be an atom.
Since lkΓ (x) = Δ(Q>x), where Q>x = {y ∈ Q : x <Q y} is considered as a subposet
of Q, we get a map

ρx : H̃d−2
(
Δ(Q̄);k

) → H̃d−3
(
Δ(Q>x);k

)
.

Corollary 3.4 Let P be a lower Eulerian Cohen–Macaulay poset (over k) of rank
d ≥ 2 and let Q̄ denote the poset which is obtained from P by removing the minimum
and all maximal elements. Then the map ρx : H̃d−2(Δ(Q̄);k) → H̃d−3(Δ(Q>x);k)

is surjective for every minimal element x of Q̄.

Proof Our assumptions imply that the interval (0̂, y) in P is Gorenstein*, and hence
doubly Cohen–Macaulay, over k for every maximal element y of P . Thus, Theo-
rem 3.3 implies that Δ(Q̄) is Buchsbaum* over k. In view of Definition 3.2, the
proof follows from the discussion preceding the statement of the corollary. �

Theorem 3.3 will be deduced from the following more general statement on sim-
plicial complexes. The proof of the latter will follow from that of [5, Theorem 3.1].
For a subset U of the set of vertices of Δ we write Δ � U for the subcomplex
{σ ∈ Δ : σ ∩U = ∅} of Δ, obtained from Δ by removing all faces which intersect U .

Theorem 3.5 (cf. [5, Theorem 3.1]) Let Δ be a pure simplicial complex of posi-
tive dimension and let U be a subset of the vertex set of Δ which has the following
property: every facet of Δ contains exactly one element of U .

(i) If Δ is Cohen–Macaulay over k and lkΔ(u) is doubly Cohen–Macaulay over k
for every u ∈ U , then Δ � U is doubly Cohen–Macaulay over k.

(ii) If Δ is Buchsbaum over k and lkΔ(u) is doubly Cohen–Macaulay over k for
every u ∈ U , then Δ � U is Buchsbaum* over k.

Proof By [2, Proposition 2.5(i)], it suffices to prove part (ii). Since Δ is pure, our as-
sumption on U implies that Δ � U is pure as well. It also implies that Δ is balanced
of type (d − 1,1), in the sense of [11], where d − 1 = dimΔ. Using the equivalence
(i) ⇔ (ii) in Proposition 3.1 and the rank-selection theorem [11, Theorem 4.3] for
balanced Cohen–Macaulay simplicial complexes, it follows as in the beginning of
[5, Sect. 3] that Δ � U is Buchsbaum over k. The proof of [5, Theorem 3.1] shows
(by induction on the cardinality of U ) that Δ � U satisfies the condition of Defini-
tion 3.2, using exactly the hypotheses that Δ is Buchsbaum over k and that lkΔ(u) is
doubly Cohen–Macaulay over k for every u ∈ U . Thus the proof follows from that of
[5, Theorem 3.1]. �

Proof of Theorem 3.3 The statement follows by applying the appropriate part of The-
orem 3.5 to the order complex Δ(P̄ ) and choosing U as the set of maximal elements
of P . �
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4 Proof of Theorem 1.1

Throughout this section, P is a (finite) lower Eulerian Cohen–Macaulay (over k)
poset of rank d . When d ≥ 2, we denote by Q the poset which is obtained from P

by removing all maximal elements and by R the poset which is obtained from Q by
removing all atoms. Thus Q is lower Eulerian and graded of rank d − 1 and R is
graded of rank d − 2. Moreover, by the rank-selection theorem for balanced Cohen–
Macaulay complexes [15, Theorem 4.5], both Q and R are Cohen–Macaulay over k.

Lemma 4.1 Under the assumptions and notation of Theorem 1.1, and assuming that
P has rank d ≥ 2, we have

∑

x∈A(P )

∣∣μ
P̂
(x, 1̂)

∣∣ − αP

∣∣μ
P̂
(0̂, 1̂)

∣∣

= (αP − 1)
∣∣χ̃ (Q)

∣∣ − ∣∣χ̃ (R)
∣∣ +

∑

y∈M(P )

(
α(y) − αP

)
,

where M(P ) is the set of maximal elements of P and α(y) is the number of atoms
x ∈ A(P ) satisfying x ≤P y, for y ∈ M(P ).

Proof Since P is Cohen–Macaulay over k, so is P̂ = P ∪ {1̂} and hence [12, Propo-
sition 3.8.11] we have (−1)dμ

P̂
(x, 1̂) ≥ 0 for every x ∈ A(P ). Using this fact and

Lemma 2.2, we find that
∑

x∈A(P )

∣∣μ
P̂
(x, 1̂)

∣∣ = (−1)d
∑

x∈A(P )

μ
P̂
(x, 1̂) = (−1)d

∑

x∈A(P )

∑

x≤P y

(−1)ρ(y)

= (−1)d
∑

x∈A(Q)

∑

x≤Qy

(−1)ρ(y) +
∑

y∈M(P )

α(y),

where ρ(y) is the rank of y in P . Similarly, we have
∣∣μ

P̂
(0̂, 1̂)

∣∣ = (−1)d−1χ̃ (P ) = (−1)d−1ψ(P ) = (−1)d−1ψ(Q) + fd−1(P )

= (−1)d−1χ̃ (Q) + fd−1(P ) = fd−1(P ) − ∣∣χ̃ (Q)
∣∣

and hence
∑

x∈A(P )

∣∣μ
P̂
(x, 1̂)

∣∣ − αP

∣∣μ
P̂
(0̂, 1̂)

∣∣

= (−1)d
∑

x∈A(Q)

∑

x≤Qy

(−1)ρ(y) + αP

∣∣χ̃ (Q)
∣∣ +

∑

y∈M(P )

(
α(y) − αP

)
.

Thus, it suffices to show that

(−1)d−1
∑

x∈A(Q)

∑

x≤Qy

(−1)ρ(y) = ∣∣χ̃ (Q)
∣∣ + ∣∣χ̃(R)

∣∣
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or, equivalently, that
∑

x∈A(Q)

∑

x≤Qy

(−1)ρ(y)−1 = χ̃ (Q) − χ̃ (R). (11)

Indeed, we have
∑

x∈A(Q)

∑

x≤Qy

(−1)ρ(y)−1 =
∑

0̂�=x≤Qy

(−1)ρ(y)−ρ(x) −
∑

0̂�=x≤Ry

(−1)ρ(y)−ρ(x)

= ψ
(
int(Q̄)◦

) − ψ
(
int(R̄)◦

)
,

where int(Q̄)◦ (respectively, int(R̄)◦) is the poset obtained from int(Q̄) (respectively,
int(R̄)) by adding a minimum element. Since Q̄ and R̄ are locally Eulerian, the posets
int(Q̄)◦ and int(R̄)◦ are lower Eulerian by Proposition 2.5. Thus, Lemma 2.2 implies
that ψ(int(Q̄)◦) = χ̃ (int(Q̄)◦) and ψ(int(R̄)◦) = χ̃ (int(R̄)◦). Finally, we note that
χ̃ (int(Q̄)◦) = χ̃ (Q) and χ̃ (int(R̄)◦) = χ̃ (R) by Proposition 2.4 and hence (11) fol-
lows. �

We now proceed with the proof of Theorem 1.1. We recall that for every atom x

of Q we have the natural map ρx : H̃d−2(Δ(Q̄);k) → H̃d−3(Δ(Q>x);k), shown to
be surjective in Corollary 3.4.

Proof of Theorem 1.1 Let d be the rank of P . We assume that d ≥ 2, since the result
is trivial otherwise. By Corollary 2.7, we may choose B(P ) ⊆ M(P ) so that the
classes ω(y) for y ∈ B(P ) form a basis of the k-vector space H̃d−2(Δ(Q̄);k). Since
Q is Cohen–Macaulay over k, it follows from (10) that the cardinality of B(P ) is
equal to |χ̃ (Q)|. Hence Lemma 4.1 implies that

∑

x∈A(P )

∣∣μ
P̂
(x, 1̂)

∣∣ − αP

∣∣μ
P̂
(0̂, 1̂)

∣∣

≥ (αP − 1)
∣∣χ̃ (Q)

∣∣ − ∣∣χ̃(R)
∣∣ +

∑

y∈B(P )

(
α(y) − αP

)

=
∑

y∈B(P )

(
α(y) − 1

) − ∣∣χ̃ (R)
∣∣.

Therefore, it suffices to show that
∣∣χ̃(R)

∣∣ ≤
∑

y∈B(P )

(
α(y) − 1

)
. (12)

For x ∈ A(Q) we consider the natural map ρx : H̃d−2(Δ(Q̄);k) → H̃d−3(Δ(Q>x);k)

and the map H̃d−3(Δ(Q>x);k) → H̃d−3(Δ(R̄);k), induced by inclusion. These
maps yield the sequence of linear maps

⊕

x∈A(Q)

H̃d−2
(
Δ(Q̄);k

) →
⊕

x∈A(Q)

H̃d−3
(
Δ(Q>x);k

) → H̃d−3
(
Δ(R̄);k

)
. (13)
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We observe that both maps in this sequence are surjective, the one on the left since
every map ρx is surjective by Corollary 3.4, and the one on the right by Lemma 2.6
(applied to the dual of Q̄). For y ∈ B(P ), let us denote by P(y) the poset which is
obtained from the open interval (0̂, y) of P by removing all its minimal elements.
Since there are exactly α(y) such elements and P(y) is Cohen–Macaulay of rank
d − 3, we have

dimk H̃d−3
(
Δ

(
P(y)

);k
) = α(y) − 1

by (10) and Lemma 2.3. Clearly, for x ∈ A(P ) and y ∈ B(P ) we may have
ρx(ω(y)) �= 0 only if x ≤P y. This implies that the image of the composition of the
two maps in (13) is contained in (the image of the map induced by the inclusion of)
the sum of the spaces H̃d−3(Δ(P (y));k) for y ∈ B(P ). This fact and the surjectivity
of the maps in (13) imply that

∣∣χ̃ (R)
∣∣ = dimk H̃d−3

(
Δ(R̄);k

) ≤
∑

y∈B(P )

dimk H̃d−3
(
Δ

(
P(y)

);k
)

=
∑

y∈B(P )

(
α(y) − 1

)
.

This shows (12) and completes the proof of the theorem. �

5 Applications

This section deduces Corollaries 1.2 and 1.3 from Theorem 1.1.

5.1 The toric h-vector

We first recall from [13] the definition of the toric h-vector of a (finite) lower Eulerian
poset P . We denote by 0̂ the minimum element of P , as usual, and by d the maximum
rank ρ(y) of an element y ∈ P . For y ∈ P we define two polynomials f (P,y;q) and
g(P,y;q) by the following rules:

(a) f (P, 0̂;q) = g(P, 0̂;q) = 1.
(b) If y ∈ P̄ and f (P,y;q) = k0 + k1q + · · · , then

g(P,y;q) = k0 +
m∑

i=1

(ki − ki−1)q
i, (14)

where m = �(ρ(y) − 1)/2�.
(c) If z ∈ P̄ , then

f (P, z;q) =
∑

y<P z

g(P,y;q)(q − 1)ρ(y,z)−1. (15)
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The toric h-vector of P is the sequence h(P ) = (h0(P ),h1(P ), . . . , hd(P )) defined
by

hd(P ) + hd−1(P )q + · · · + h0(P )qd =
∑

y∈P

g(P,y;q)(q − 1)d−ρ(y). (16)

For instance, we have h0(P ) = 1, h1(P ) = f0(P ) − d and hd(P ) = (−1)d−1χ̃ (P ),
where f0(P ) is the number of atoms of P (see [13, p. 198]). These formulas imply
that h1(P ) ≥ 0, if P is a meet-semilattice (meaning that any two elements of P have
a greatest lower bound) and hd(P ) ≥ 0, if P is Cohen–Macaulay over k. We will
write h(P ) ≥ 0 if we have hi(P ) ≥ 0 for 0 ≤ i ≤ d . The following conjecture is part
of [13, Conjecture 4.2].

Conjecture 5.1 [13, Conjecture 4.2(b)] For every lower Eulerian Cohen–Macaulay
meet-semilattice P we have h(P ) ≥ 0.

The generalized Dehn–Somerville equations [13, Theorem 2.4] assert that the
polynomial f (P, z;q) is symmetric of degree ρ(z)−1 for every z ∈ P̄ . Thus, writing
f (P, z;q) = ∑r

i=0 kiq
i with r = ρ(z) − 1, we have ki = kr−i for 0 ≤ i ≤ r .

We now deduce from Theorem 1.1 that hd−1(P ) ≥ 0 for every lower Eulerian
Cohen–Macaulay meet-semilattice P of rank d .

Proof of Corollary 1.3 We note that for every maximal element y ∈ P , the inter-
val [0̂, y] in P is an Eulerian lattice of rank d and therefore has at least d atoms
(this holds, more generally, for all graded lattices of rank d with nowhere vanishing
Möbius function). Thus, in the notation of Theorem 1.1, we have αP ≥ d . We claim
that

hd−1(P ) =
∑

x∈A(P )

∣∣χ̃ (P≥x)
∣∣ − d

∣∣χ̃(P )
∣∣, (17)

where P≥x := {y ∈ P : x ≤P y} is considered as a subposet of P . In view of (1)
and the inequality αP ≥ d , it suffices to prove the claim. For y ∈ P , let α(y) denote
the number of atoms of P in the interval [0̂, y]. The constant term of g(P,y;q) is
equal to 1 for every y ∈ P . Furthermore, it follows from (14) and (15) and from
the symmetry of the polynomials f (P, z;q) that the coefficient of q in g(P,y;q) is
equal to α(y) − ρ(y). Thus, (16) implies that

hd−1(P ) =
∑

y∈P

(−1)d−ρ(y)
(
α(y) − d

)
.

An easy computation, essentially already carried out in the proof of Lemma 4.1,
shows that the right-hand side of the previous equation is equal to the right-hand side
of (17). This completes the proof. �

5.2 The cubical h-vector

Cubical posets form an important class of lower Eulerian posets. As mentioned in the
introduction, a cubical poset is a (finite) poset having a minimum element 0̂, such that
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for every x ∈ P , the interval [0̂, x] in P is isomorphic to the poset of faces of a cube
(the dimension of which has to equal one less than the rank of x). We assume that P

is graded of rank d and denote by fi−1(P ) the number of elements of P of rank i for
0 ≤ i ≤ d , as usual. The cubical h-polynomial of P can be defined (see [1]) by the
formula

(1 + q)h(c)(P, q) = 2d−1 + qh(sc)(P, q) + (−2)d−1χ̃(P )qd+1, (18)

where

h(sc)(P, q) =
d−1∑

i=0

fi(P )(2q)i(1 − q)d−i−1 (19)

is the short cubical h-polynomial of P and χ̃(P ) = ψ(P ) = μ
P̂
(0̂, 1̂) (see Sect. 2.3).

The function h(c)(P, q) is a polynomial in q of degree at most d . The cubical h-vector
of P is defined as the sequence (h

(c)
0 (P ),h

(c)
1 (P ), . . . , h

(c)
d (P )), where

h(c)(P, q) =
d∑

i=0

h
(c)
i (P )qi .

Clearly, (18) implies that h
(c)
d (P ) = (−2)d−1χ̃(P ) and hence we have h

(c)
d (P ) ≥ 0,

if P is Cohen–Macaulay over k. By direct computation we also find that

h
(c)
d−1(P ) = (−2)d−1 +

d∑

i=1

(−1)d−i−1(2d−1 − 2i−1)fi−1(P ). (20)

For instance, we have

h
(c)
d−1(P ) =

⎧
⎪⎨

⎪⎩

f0(P ) − 2, if d = 2

2f1(P ) − 3f0(P ) + 4, if d = 3

4f2(P ) − 6f1(P ) + 7f0(P ) − 8, if d = 4.

We now deduce from Theorem 1.1 that h
(c)
d−1(P ) ≥ 0 for every Cohen–Macaulay

cubical poset P of rank d .

Proof of Corollary 1.2 Since the poset P is cubical (and graded) of rank d , in the
notation of Theorem 1.1 we have αP = 2d−1. Thus, in view of (1) and since P is
Cohen–Macaulay over k, it suffices to verify (4). Comparing the coefficients of xd in
the two sides of (18) we get

h
(c)
d−1(P ) = h

(sc)
d−1(P ) − h

(c)
d (P ) = h

(sc)
d−1(P ) − (−2)d−1χ̃ (P ), (21)

where h
(sc)
d−1(P ) denotes the coefficient of xd−1 in h(sc)(P, q). We next recall that for

x ∈ P̄ , the subposet P≥x := {y ∈ P : x ≤P y} of P is a simplicial poset and that, by a
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fundamental observation of Hetyei (see [1, Theorem 9]), we have

h(sc)(P, q) =
∑

x∈A(P )

h(P≥x, q), (22)

where h(Q,q) stands for the simplicial h-vector of a simplicial poset Q (as defined,
for instance, by the right-hand side of (2)). Equation (22) implies that

h
(sc)
d−1(P ) =

∑

x∈A(P )

(−1)d χ̃(P≥x). (23)

Finally, (21) and (23) imply (4) and the proof follows. �

Adin [1, Question 1] raised the question whether h(c)(P, q) ≥ 0 holds for every
Cohen–Macaulay cubical meet-semilattice P (where the inequality is meant to hold
coefficientwise). In view of Corollary 1.2, it is natural to extend this question as
follows.

Question 5.2 Does h(c)(P, q) ≥ 0 hold for every Cohen–Macaulay cubical poset P ?
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