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Abstract A characterization is given of the class of edge-transitive Cayley graphs of
Frobenius groups Zpd :Zq with p,q odd prime, of valency coprime to p. This char-
acterization is then used to study an isomorphism problem regarding Cayley graphs,
and to construct new families of half-arc-transitive graphs.
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1 Introduction

A graph Γ = (V ,E) is called X-edge-transitive if X ≤ AutΓ is transitive on the edge
set E. A graph Γ = (V ,E) is a Cayley graph if there exists a group G and a subset
S ⊂ G with S = S−1 = {s−1 | s ∈ S} such that the vertex set V can be identified with
G and x is adjacent to y if and only if yx−1 ∈ S. A circulant is a Cayley graph of a
cyclic group. Edge-transitive circulants have been characterized by Kovács [6] and Li
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[12] independently. It would be a natural next step toward a characterization of edge-
transitive metacirculants (which admit a vertex transitive metacyclic group), see [7]
for the study of arc-regular dihedrants. In this paper, we characterize a special class
of metacirculants.

A group X with PSL(d, q) ≤ X ≤ P�L(d, q) naturally acts on the set Ω of 1-
subspaces of the vector space F

d
q . Then a point ω ∈ Ω is a 1-dimensional subspace,

and a point stabilizer of X has the form [qd−1]. 1
(d,q−1)

GL(d − 1, q).o, where o =
X/PSL(d, q), called a parabolic subgroup and denoted by P1.

Theorem 1.1 Let G = Zpd :Zq be a Frobenius group, with p,q odd primes. Let Γ

be an X-edge-transitive Cayley graph of G of valency coprime to p, where G < X ≤
AutΓ . Then one of the following statements holds:

(i) X is almost simple and quasiprimitive on V , and either Γ = Kpdq or d = 1;

(ii) Γ = Cq [Kpd ] − pdCq , and X = PGL(q, rq).q , and Xα = P1 ∩ PGL(q, rq), or
Γ = Kpd × Cq , and X is as in Lemma 2.7(iii);

(iii) G is normal in X;
(iv) X has a normal subgroup which is cyclic and regular on the vertex set, and the

valency of Γ is divisible by q;
(v) Γ = Σ[Kq ], and X has a minimal normal subgroup which is not simple, where

Σ is an edge-transitive circulant of order pd and of valency divisible by q .

Remarks on Theorem 1.1

(1) Edge-transitive graphs of order pq are characterized in [17], and thus the graphs
in (i) are known.

(2) A graph is called a normal Cayley graph if AutΓ contains a normal regular sub-
group. In particular, if the normal regular subgroup is cyclic, then Γ is called
normal circulant. For normal Cayley graph Γ, AutΓ is determined by Aut(G),

see Lemma 4.1. Thus in part (iii)–(iv), the group X is well-characterized.

A graph Γ = (V ,E) is called half-arc-transitive if AutΓ is transitive on V and E

but intransitive on the arcs (recall that an arc is an ordered pair of adjacent vertices).
In the literature of algebraic graph theory, studying half-arc-transitive graphs is a hot
topic, see [2, 14, 15, 18] for references. The characterization given in Theorem 1.1
enables us to construct half-arc-transitive graphs.

Theorem 1.2 Let G = Zpd :Zq be a Frobenius group, where p,q are odd primes.
Then for each integer k such that k > 1, 2k | (p − 1) and (k, q) = 1, there are exactly
q−1

2 non-isomorphic connected edge-transitive Cayley graphs of G of valency 2k,
which are all half-arc-transitive.

Next we apply Theorem 1.1 to study an isomorphism problem of Cayley graphs,
that is, Problem 6.3 of the survey [10]. This was one of the main motivations for
this work. The isomorphism problem for graphs is fundamental and difficult. One
way to study the isomorphism problem for Cayley graphs is to determine whether the
isomorphism between two Cayley graphs is determined by an automorphism of the
defining group.
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Table 1 AutΓ with an
insoluble subgroup X G Xα val(Γ ) AutΓ

PSL(2,p) p:p−1
2 Dp+1

p+1
2 PGL(2,p)

p+1
4 X

PGL(2,p) p:p−1
2 D2(p+1)

p+1
2 X

PSL(2,11) 11:5 A4 4, 6 PGL(2,11)

PGL(2,11) 11:5 S4 4, 6, 8 X

PSL(2,23) 23:11 S4 4, 6, 8, 12 X

PSL(2,29) 29:7 A5 12 X

PSL(2,59) 59:29 A5 6, 10, 12, 20, 24, 30 X

A Cayley graph Cay(G,S) is called a CI-graph of G if, for any Cayley graph
Cay(G,T ), whenever Cay(G,S) ∼= Cay(G,T ) we have Sσ = T for some σ ∈
Aut (G). (CI stands for a Cayley isomorphism.)

Let G be a group and q the smallest prime divisor of |G|. It was shown in [8]
that each connected Cayley graph of G of valency less than q is a CI-graph, and then
in [9] examples were constructed to show that connected Cayley graphs of valency
q are not necessarily CI-graphs. Problem 6.3 in [10] proposed to characterize such
Cayley graphs. Theorem 1.1 enables us to construct another type of example, given
in the following theorem.

Theorem 1.3 Let G = Zpd :Zq be a Frobenius group, where p,q are odd primes. Let
Γ be a connected undirected Cayley graph of G of valency at most 2q . Then one of
the following occurs:

(i) G is a Hall normal subgroup of AutΓ , and Γ is a CI-graph of G;
(ii) Γ is arc-transitive of valency 2q , and AutΓ ∼= (Zpd :Z2q) × Zq ; furthermore, if

q ≥ 5, Γ is not a CI-graph of G.
(iii) G = Zp:Zq , and lies in Table 1.

Comparing with Theorem 1.2, the next result is somehow a bit surprising.

Corollary 1.4 All connected edge-transitive Cayley graphs of valency 2q of the
Frobenius group Zpd :Zq with p,q odd primes are isomorphic and arc-transitive cir-
culants.

2 Transitive permutation groups of degree pdq

Let X be a transitive permutation group on Ω . If Ω has a non-trivial X-invariant
partition B say, then X is called imprimitive, and X induces a transitive permutation
group on B, denoted by XB . On the other hand, if Ω has no non-trivial X-invariant
partition then X is said to be primitive. An X-invariant partition B is called minimal
if for a block B ∈ B, the induced action XB

B is primitive.
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Lemma 2.1 Let X ≤ Sym(Ω) be transitive. Let B be a minimal X-invariant partition
of Ω , and let K be the kernel of X acting on B. Assume that soc(XB

B) is simple for
B ∈ B, and K �= 1. Then the following statements hold:

(i) K acts on B faithfully if and only if soc(K) is simple.
(ii) soc(K) is a characteristically simple group.

(iii) In the case where soc(K) is not simple, for each C ∈ B, the action of K(B) on C

is trivial or transitive, and there exists at least one C on which K(B) is transitive.

Proof Since B is a minimal X-invariant partition of Ω , the induced permutation
group XB

B is primitive. Let N = soc(K). Then N �= 1, and it follows that NB �= 1,
that is, NB is a non-trivial normal subgroup of XB

B . Since soc(XB
B) is simple, so is

NB .
Suppose that N = soc(K) is simple. Since N is normal in X, the actions of N on

all blocks in B are equivalent. Thus, if N acts trivially on B , then N is trivial on every
block in B, which is not possible. So N is non-trivial on B , and it follows that K is
faithful on B . Suppose on the other hand that N is not simple. Since NB is simple,
we have K(B) ≥ N(B) �= 1, as in part (i).

Let S be a simple direct factor of N . Then S � N � X, and S acts non-trivially on
some block C ∈ B. Thus, S ∼= SC � NC � XC

C . Since soc(XC
C) ∼= soc(XB

B) is simple,
it follows that S is isomorphic to soc(XC

C). Hence N = soc(K) is a direct product of
isomorphic simple groups, that is, N is characteristically simple, as in part (ii).

Suppose that for a block C ∈ B, the action N(B) on C is non-trivial. Then NC
(B) �

NC � XC
C . Since soc(XC

C) is simple, it follows that NC
(B) ≥ soc(XC

C) and NC
(B) is

transitive, and so is KC
(B).

Since N(B) �= 1, there exists at least one block B ′ ∈ B on which N(B) acts non-
trivially, as in part (iii). �

If N � X, a normal subgroup of X, then either N is transitive on Ω , or the set of
N -orbits on Ω is an X-invariant partition of Ω , called a normal partition. It follows
that any non-identity normal subgroup of a primitive permutation group is transitive.
For any permutation group X, if each non-trivial normal subgroup of X is transitive
then X is called quasiprimitive. Hence primitive groups are quasiprimitive; however,
the converse statement is not true.

Next we assume that X contains a metacyclic regular subgroup

G = 〈a〉:〈b〉 ∼= Zpd :Zq,

where p,q are odd primes. Then |Ω| = pdq . Assume further that G is a Frobenius
group, equivalently in this case, the center Z(G) = 1.

The primitive case is known by a recent publication [13]. The following lemma
gives a list of triples (X,G,Xω) where ω ∈ Ω , which is read out of Tables 16.1–16.3
of [13].

Lemma 2.2 If X is primitive on Ω , then either G ≤ X ≤ AGL(1,p) or (X,G,Xω)

is one of the triples in Table 2.
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Table 2 Primitive group X

with subgroup G X G Xω condition

PGL(q, r) rq−1
(r−1)q

:q P1 r prime, q
∣
∣ (r − 1)

PGL(2,11) 11:5 S4

PGL(2,23) 23:11 S4

PSL(2,29) 29:7 A5

PSL(2,59) 59:29 A5

PSL(5,2) 31:5 P2

M11 11:5 M9.2

M23 23:11 M21.2

23:11 24:A7

Ap p:p−1
2 Sp−2 q = p−1

2

Table 3 Primitive group X of
order pd P Pω pd Condition

Apd ,Spd Apd−1,Spd−1

PGL(n, r) P1
rn−1
r−1 n, r prime

PGL(n, rn),PGL(n, rn).n P1
rn2 −1
rn−1 n, r prime

PSL(2,11) A5 11

M11 M10 11

M23 M22 23

Next, we assume that X is imprimitive on Ω . The following result is a special case
in [5] and [11], which will be frequently used.

Lemma 2.3 Let P be a quasiprimitive permutation group on Ω that contains a reg-
ular subgroup Zpd with p prime. Then P is primitive on Ω , and further, either d = 1
and P ≤ AGL(1,p), or P is almost simple and 2-transitive, listed in Table 3.

Let B be a non-trivial X-invariant partition of Ω , and let K be the kernel of X

acting on B.

Lemma 2.4 Using the above notation, either

(i) |B| = pd and 〈a〉 is regular on B, or
(ii) 1 �= K ∩ G ≤ 〈a〉, and GB or 〈a〉B is regular.

Proof Since K �X, we have K ∩G�G. Since G is transitive on Ω , the factor group
G/(K ∩ G) is a transitive Frobenius group on B. If K ∩ G �= 1, then since K ∩ G is
a proper normal subgroup of G and G is a Frobenius group, we have K ∩ G ≤ 〈a〉.
Since GB ∼= G/(K ∩ G) is transitive, it follows that GB

B = 1 or Zq , and hence 〈a〉B

or GB is regular, respectively.
Suppose that K ∩ G = 1. Then G is faithful on B, and G ∼= GB . Thus, the point

stabilizer GB
B of G acting on B is core free. Since the only core free subgroups of G
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Table 4 Quasiprimitive and not primitive group X

X G Xω Comments

PGL(q, r) rq−1
r−1 :q [qq−1]: 1

q GL(q − 1, r)

PGL(q, rq ) rq2 −1
rq−1 :q [qq−1]: 1

q GL(q − 1, rq ) r prime, q
∣
∣ (r − 1)

PGL(q, rq ).q rq2 −1
rq−1 :q [qq−1]: 1

q GL(q − 1, rq ).q

PSL(2,11) 11:5 A4

are isomorphic to Zq , we conclude that GB
∼= Zq , and thus 〈a〉 ∼= Zpd acts regularly

on B. �

The following lemma determines the quasiprimitive case.

Lemma 2.5 If X is quasiprimitive and imprimitive on Ω , then (X,G,Xω) is one of
the triples in Table 4.

Proof Let B be a non-trivial X-invariant partition of Ω . Since X is quasiprimitive
on Ω, X ∼= XB is faithful, and by Lemma 2.4, we have |B| = pd and XB has a
cyclic regular subgroup. By Lemma 2.3, X ∼= XB lies in Table 3, and G ≤ NX(〈a〉).
Furthermore, for B ∈ B, we have XB = GBXω with GB = Zq . It then follows that
(X,G,Xω) lies in Table 4. �

We next consider minimal block systems. Assume that B is a minimal X-invariant
partition of Ω . Take a block B ∈ B. Then the induced permutation group XB

B is
primitive.

Lemma 2.6 Assume that K �= 1 and K ∩ G = 1. Then |B| = q , and either soc(K)

is non-simple and acts on B unfaithfully, or K = Zq and 〈a〉 × K ∼= Zpdq is regular
on Ω .

Proof By Lemma 2.4, |B| = q , and 〈a〉 is regular on B. Hence Zq
∼= 〈b〉 ≤ GB , and

soc(XB
B) is simple. If soc(K) is not simple, then by Lemma 2.1, soc(K) is unfaithful

on B .
Assume that soc(K) is simple. Then by Lemma 2.1, K ∼= KB . By Lemma 2.3,

either K ∼= KB � XB
B ≤ AGL(1, q), or K is almost simple. It follows that KG =

K × G. Since G is regular on Ω , we conclude that K ∼= Zq , and K is semiregular on
Ω . So 〈a〉 × K is regular on Ω . �

Lemma 2.7 Assume that K ∩ G �= 1. Then soc(K) is characteristically simple, and
one of the following holds:

(i) soc(K) is not simple and acts on B unfaithfully;
(ii) X = PGL(q, rq).q, G = Z

rq
2 −1

rq−1

:Zq , and Xω = P1 ∩ PGL(q, rq), where r is

prime;
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Table 5

X G Xω Condition

(A
pd × Zq ).o Z

pd :Zq A
pd−1.o q

∣
∣ (p − 1), o = 1 or 2

PGL(q, r) × Zq Z rq−1
r−1

:Zq

PGL(q, rq ) × Zq Z
rq

2 −1
rq−1

:Zq P1 (parabolic) r prime

PGL(q, rq ).q × Zq Z
rq

2 −1
rq−1

:Zq

PSL(2,11) × Z5 11:5 A5

M11 × Z5 11:5 A5

M23 × Z11 23:11 M22

(iii) (X,G,Xω) is a triple of Table 5;
(iv) G = Zp:Zq , and X = Zp:Zqk ≤ AGL(1,p);
(v) K ∼= Zp .

Proof The primitive permutation group XB
B contains a regular subgroup GB

B , which
is cyclic or Frobenius. By Lemmas 2.2 and 2.3, the socle of XB

B is simple. Since
K �= 1, by Lemma 2.1, soc(K) is characteristically simple; furthermore, if soc(K) is
not simple, then soc(K) acts on B unfaithfully, as in part (i).

Assume next that soc(K) is simple. By Lemma 2.1, we have K(B) = 1, and K ∼=
KB � XB

B . Then by Lemmas 2.2 and 2.3, either K = Zp:Zl with l
∣
∣ (p − 1), or K ∼=

KB is almost simple and lies in Table 2 or 3.
If K = Zp , then part (v) is satisfied. Assume that K = Zp:Zl ≤ AGL(1,p) with

l �= 1. Then K ∩ G = Zp , K = (K ∩ G):Kω , with Kω
∼= Zl , and K ∩ G � X since

K ∩ G is a characteristic subgroup of K . Suppose that d > 1. Then 〈a〉 ≤ CX(K ∩
G) � X, and so (K〈a〉)/(K ∩ G) ∼= 〈a〉 × Kω, where 〈a〉 = 〈a〉/K ∩ G. It follows
that Kω centralizes a, and hence KωcharK �X, which is not possible. So d = 1, and
G = Zp:Zq and X = Zp:Zqk ≤ AGL(1,p), as in part (iv).

Thus, we may assume that K is almost simple.
Case 1. Suppose CX(K) = 1.
Then X ≤ Aut (K), and X is almost simple of which the socle equals soc(K).

Since K ∼= KB � XB
B , the primitive group XB

B is almost simple and lies in Table 2 or
Table 3, and so is KB (∼= K). Since K ∩ G is normal in G, it follows that K lies in
Table 3. As K is the kernel of a minimal invariant partition of Ω , K is intransitive on
Ω , and thus K ∩ G is a proper subgroup of G. Now |B| = |K : Kα|, |Ω| = |X : Xα|,
and |B| divides |Ω|. Noticing that |K : Kα| = |B| divides |X : Xα| = |Ω|, we have
|B| = |X:Xα |

|K:Kα | = |X|
|K| · |Kα |

|Xα | . Furthermore, as |Ω| = pdq and (pq, |Xα|) = 1, p or q

divides |X|
|K| = |X/K|. Since p,q are odd primes, by Table 2 and Table 3, we conclude

that soc(K) = PSL(n, r) or PSL(n, rn), where n, r are primes. For the former, X ≤
K.Out(K) = PSL(n, r).(n, r − 1), or PSL(n, r).(n, r − 1).2. Thus X = PSL(n, r),
PSL(n, r).2, PSL(n, r).n, or PSL(n, r).n.2 with pd = rn−1

r−1 . Since Zpd :Zq
∼= G ≤ X,

we have n = q . Similarly, for the latter case for which soc(K) = PSL(n, rn), we
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have n = q . On the other hand, XB
B lies in Table 2 or Table 3, and XB

B ≤ X. Thus
X = PGL(q, rq).q satisfying part (ii).

Case 2. Let C := CX(K) �= 1.
Then X = (KC).H = (K × C).H , where H ≤ Out(K). If C ∩ G �= 1, then (K ∩

G) × (C ∩ G) is a normal subgroup of G, which is not possible. Thus, C ∩ G = 1,
and by Lemma 2.4, an orbit of C on V is of length q . Let C be the set of C-orbits on
V , and let L be the kernel of X acting on C . By Lemmas 2.4, 2.2 and 2.3, either L is
almost simple which contains a regular cyclic group Zq , and has the form in Table 3,
or L ≤ AGL(1, q). Since G = Zpd :Zq , the intersection L ∩ G = 1. Moreover, as
L � LG, we have LG = L:G. In both cases, there is no automorphism of L of order
q or p. Thus LG = L × G, that is, G centralizes L, and since G is regular on V , we
conclude that L = C = Zq . Thus, X = (K × Zq).H , and XC ∼= X/L ∼= K.H . Now
|C| = pd , and XC is a permutation group on C and contains a cyclic regular subgroup.
Since K is almost simple, so is XC . By [11, Corollary 1.4], XC acts on C primitively,
and thus XC satisfies Lemma 2.3. Now X is an extension of Zq by XC . Noticing that
Zpd ≤ G ≤ XC , it is easily shown that X satisfies part (iii). �

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. We first study some examples appearing in the
theorem.

For graphs Δ = (U,E) and Σ = (W,F ) with vertex sets U and W , respectively,
we define lexicographic product Δ[Σ] and direct product Δ×Σ , both with vertex set
V = U × W = {(u,w) | u ∈ U,w ∈ W }. The adjacency is defined as follows: given
two vertices v1 = (u1,w1) and v2 = (u2,w2) in V ,

(a) for Δ[Σ], two vertices (u1,w1) and (u2,w2) are adjacent if and only if either
u1, u2 are adjacent in Δ or u1 = u2 and w1,w2 are adjacent in Σ ;

(b) for Γ × Σ , two vertices (u1,w1) and (u2,w2) are adjacent if and only if
{u1, u2} ∈ E and {w1,w2} ∈ F .

Example 3.1 Let X = PGL(q, rq).q where q is an odd prime, let Xω = P1 ∩
PGL(q, rq) = [rq(q−1)]:GL(q − 1, rq), and let Ω = [X : Xω]. Then |Ω| = rq2−1

rq−1 ,
and X has a subgroup G = Z

rq
2 −1

rq−1

:Zq which is regular on Ω .

Assume that rq2−1
rq−1 = pd for some prime p. Let K = PGL(q, rq)�X. Since Xω <

K , the normal subgroup K is intransitive and has exactly q orbits on Ω . Let B be the

set of K-orbits on Ω , and let B = {B1,B2, . . . ,Bq}. Then |B| = q , and |B| = rq2−1
rq−1 .

Let Γ be a connected orbital graph. Then the quotient graph ΓK is a circulant of
order q .

Since q ≥ 3, the linear group K has exactly two inequivalent 2-transitive permu-

tation representations of degree rq2−1
rq−1 . Suppose that KBi and KBj are not equivalent

for some blocks Bi and Bj . Then, relabeling if necessary, assume that KB1 , . . . ,KBt

are equivalent to KBi , and KBt+1 , . . . ,KBq are equivalent to KBj . Thus, the quotient
ΓK is bipartite, which is not possible. So the actions of K on Bi are all equivalent.
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Let B1 and Bj be such that the induced subgraph [B1 ∪ Bj ] has at least one edge.
Let α ∈ B1 and β ∈ Bj be such that Kα = Kβ . Suppose that α is adjacent to β . Since
Γ is X-edge-transitive and Kα = Xα , it follows that Kα fixes Γ (α) pointwise. Since
Γ is connected, it follows that Kα fixes all vertices of Γ , and thus K is semiregular
on Ω , which is a contradiction. Thus α is not adjacent to β . Since K is 2-transitive
on Bj , the stabilizer Kα = Kβ is transitive on Bj \ {β}. It follows that [B1,Bj ] =
Kpd,pd − pdK2. On the other hand, since Kα = Xα and Γ is X-edge-transitive, we

conclude that ΓK = Cq , and Γ = Cq [Kpd ] − pdCq .

Example 3.2 Let Γ = Kpd × Cq , where q divides p − 1. Then AutΓ = Spd × D2q .
Let P ≤ Spd be a 2-transitive group which contains a regular subgroup R ∼= Zpd

such that NP (R) contains a Frobenius group R:〈z〉 where 〈z〉 ∼= Zq . Let X = P × C,
where C = 〈c〉 = Zq . Then Γ is X-edge-transitive, and the subgroup R:〈zc〉 < X is a
Frobenius group and regular on V Γ .

To prove Theorem 1.1, we refine a result for edge-transitive circulants.

Lemma 3.3 Let Γ = (V ,E) be a connected X-edge-transitive circulant of order pd

with p prime such that X contains a regular cyclic subgroup G. Assume that the
valency of Γ is coprime to p. Then either Γ = Kpd and X is almost simple and
2-transitive, or G is normal in X.

Proof If X is primitive on V , then either X is almost simple and 2-transitive, so Γ is
a complete graph, or X ≤ AGL(1,p). Then the lemma holds.

Thus, we next assume that X is imprimitive. Suppose that X has two minimal nor-
mal subgroups M,N . Let B and C be the sets of M-orbits and N -orbits, respectively,
on V . Let K,L be the kernels of X acting on B, C , respectively. By [11, Lemma 3.1],
we have K ∩ G �= 1, and L ∩ G �= 1. Hence (K ∩ G) × (L ∩ G) ≤ G ∼= Zpd , which
is not possible. Thus, X has a unique minimal normal subgroup, say M .

Let B be a minimal X-invariant partition of V , and let B ∈ B. Let K be the kernel
of X acting on B, and let X = X/K . Then XB

B is primitive, and by Lemma 2.3,
soc(XB

B) is simple.
Suppose that soc(K) is not simple. By Lemma 2.1, soc(K) is characteristically

simple and acts non-trivial on B , and there exists B ′ ∈ B on which K(B) is transitive.
It follows that the induced subgraph [B,B ′] = Kpc,pc , where pc = |B|. Thus, Γ =
ΓB[Kpc ], which is not possible since the valency of Γ should be coprime to p.

Hence soc(K) is simple. Then K ∼= KB �XB
B . Hence either K is almost simple or

K = Zp:Zl ≤ AGL(1,p). Let C = CX(K). Then X = (CK).H , where H ≤ Out(K).
If C = 1, then either X is almost simple, or X = Zp:Zl ≤ AGL(1,p), and H has
order coprime to p. So X is primitive, which is a contradiction. Hence C �= 1.

Suppose that K is not abelian. Then CK = C × K , and hence X has a minimal
normal subgroup that is contained in C, which contradicts the previous conclusion
that X has only one minimal normal subgroup. Thus, K ∼= Zp .

By the inductive assumption, ΓB and X satisfy the lemma. Suppose that X is al-
most simple. By Lemma 2.3, X lies in Table 3. It follows that K × soc(X) � K.X,
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and G has two minimal normal subgroups. This is not possible since X has no sub-
group which is isomorphic to Z

2
p . Thus, G/K is normal in X = X/K , and so G is

normal in X, as claimed. �

The following conclusion is a consequence of Lemma 3.3.

Lemma 3.4 Let Γ = (V ,E) be a connected circulant of order pd and valency at
most p − 1, with p odd prime. Assume that Zpd

∼= G ≤ AutΓ and G is regular on V .
Then either Γ = Kp , or G is normal in AutΓ .

Proof Let R = 〈a〉 ∼= Zpd be such that Γ = Cay(R,S), and let X = AutΓ . Then
〈S〉 = R, and so S contains an element of order pd . Without loss of generality, assume
a ∈ S. Let Σ be the graph with vertex set V and edge set {1, a}X . Then Σ is a
connected X-edge-transitive Cayley graph of R, and X ≤ AutΣ .

If Σ = Kpd , then since the valency of Σ is at most p − 1, we conclude that d = 1
and Γ = Σ = Kp . Assume that Σ is not a complete graph. By Lemma 3.3, G is
normal in X. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let G, Γ and X be as in the theorem. If X is primitive on V ,
then by Lemma 2.2, either G ≤ X ≤ AGL(1,p) or (X,G,Xα), where α is a vertex,
lies in Table 2 and part (i) of Theorem 1.1 is satisfied.

Thus, we assume that X is imprimitive on V . Let B be a minimal X-invariant
partition of Ω , and let B ∈ B. Let K be the kernel of X acting on B. If soc(K) is
not simple, then by Lemma 2.1, K(B) �= 1. It follows that K(B) is transitive on C for
some block C ∈ B which is adjacent to B . Thus, the induced subgraph [B,C] ∼= Kl,l ,
where l = |B|. Since the valency of Γ is not divisible by p, we have (l,p) = 1. Hence
l = q , and so Γ = Σ[Kq ], as in part (v).

If K = 1, then X ∼= XB and ΓB is an edge-transitive circulant of order pd . By
Lemma 3.3, either ΓB = Kpd and XB is almost simple 2-transitive, or G ∼= GB �
XB ∼= X. For the former, X itself is almost simple and quasiprimitive, as in part (i).

Thus, we next assume that K �= 1 and soc(K) is simple. Then K ∼= KB is faithful.
Assume now that K ∩ G = 1. By Lemma 2.6, we have K = Zq . Hence, G cen-

tralizes K , and so 〈a〉 × K ∼= Zpdq is regular on V . Further, 〈a〉 is normal in X/K ,
and 〈a〉 × K is normal in X. Hence q divides the valency of Γ as in part (iv).

Assume that K ∩ G �= 1. Then one of parts (ii)–(iv) of Lemma 2.7 is satisfied.
First consider the triple (X,G,Xα) in part (ii) of Lemma 2.7. Then X =

PGL(q, rq).q , pd = rq2−1
rq−1 , and K = PGL(q, rq). For two adjacent orbits B,B ′

of K , the actions of K on B and B ′ are equivalent and 2-transitive. It follows
that the induced subgraph [B,B ′] ∼= Kl,l − lK2 with l = |B| = pd , and hence
Γ ∼= Cq [Kpd ] − pdCq .

Now consider part (iii) of Lemma 2.7. It is shown that Γ = Kpd × Cq , as in
Example 3.2.

For part (iv) of Lemma 2.7, we have X ≤ AGL(1,p), and G is normal in X.
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Finally, for part (v) of Lemma 2.7, we have Zp = K < 〈a〉. If V has another
minimal X-invariant partition C with L being the kernel of X on C . Then L �∼= Zp

since Z
2
p �≤ X, and hence pd divides |C|. Then the previous argument with C in place

of B shows that the theorem holds. Thus to complete the proof of Theorem 1.1, we
may further assume that B is the unique minimal X-invariant partition of V . It follows
that K is the unique minimal normal subgroup of X. Thus, X is an extension of K by
X := X/K ∼= XB ≤ AutΓK . We assume inductively that ΓK satisfies the statement of
the theorem.

Let C = CX(K). Then a ∈ C � X, and X/C ≤ Aut (K) ∼= Zp−1. If X has a non-
abelian minimal normal subgroup N , then K.N is a non-split extension of K = Zp

by N . Hence Zp is a factor group of the Schur multiplier of N , which is not possible,
refer to [4]. It follows that 〈a〉 is normal in X, and thus 〈a〉 is normal in X. Then
either G is normal in X, or X has a cyclic regular subgroup. �

4 Normal Cayley graphs

Here we study some properties of Cayley graphs, and give a proof of Theorem 1.2.
Let Γ be a Cayley graph of a group G. Then the right multiplications of elements

of G induce automorphisms of Γ , that is,

ĝ : x 
→ xg, for all g,x ∈ G.

Further, G ∼= Ĝ = {ĝ | g ∈ G}, and Ĝ ≤ AutΓ .
For an element g ∈ G, the left multiplication:

ǧ : x 
→ g−1x, x ∈ G

is not necessarily an automorphism of Γ . However, inside Sym(G), there is a relation
between Ĝ and Ǧ: Ĝ centralizes Ǧ, namely, Ĝ ◦ Ǧ = 〈Ĝ, Ǧ〉 < Sym(G).

We observe that, for an element g ∈ G,

ǧĝ : x 
→ g−1xg,

which is an inner automorphism of G induced by g, denoted by g̃. Let G̃ = {g̃ | g ∈
G}. Then G̃ = Inn(G).

For a subgroup H of a group X, denote by NX(H) and CX(H) the normalizer and
the centralizer of H in X, respectively. It is easily shown that CSym(G)(Ĝ) = Ǧ, and
ĜCSym(G)(Ĝ) = ĜǦ = Ĝ:G̃ = Ĝ:Inn(G). Moreover, for Cayley graphs, we have the
following statements, refer to [3].

Lemma 4.1 For a Cayley graph Γ = Cay(G,S), we have the following property:

NAutΓ (Ĝ) = Ĝ:Aut(G,S), and ĜCAutΓ (Ĝ) = Ĝ:Inn(G,S).

To prove Theorem 1.2, we need to find Aut (G) for the Frobenius group G =
Zpd :Zq .



508 J Algebr Comb (2012) 35:497–513

Lemma 4.2 Let G = 〈a〉:〈b〉 ∼= Zpd :Zq be a Frobenius group with p,q primes. Then
Aut (G) = 〈ρ, τ 〉 ∼= Zpd :Zpd−1(p−1), where

ρ : a → as, b → b, where (s,p) = 1,

τ : a → a, b → ab.

In particular, an element of G of order q is not conjugate to its inverse under Aut(G),
and elements of Aut(G) of order q are inner automorphisms of G.

Proof By definition, we have b−1ab = ar , where rq ≡ 1 (mod pd). Let σ ∈ Aut(G).
Since 〈a〉 is a characteristic subgroup of G, σ maps a to ax , where (x,pd) = 1, and
σ maps b to aybm for some integers y,m, with m �= 0. We claim m = 1, that is, σ

maps b to ayb.
Now (ab)σ = aσ bσ = axaybm = ayaxbm. Since ab = bar , we also have (ab)σ =

(bar)σ = aybmarx . Thus, ayaxbm = aybmarx , and hence axbm = bmarx , and
b−maxbm = arx . Because b−1ab = ar , we obtain b−maxbm = axrm

. Thus rx ≡ xrm

(mod pd), which implies that rm−1 ≡ 1 (mod pd). Hence m − 1 ≡ 0 (mod pd) and
σ maps b to ayb.

We claim that σ is uniquely determined by the parameters x and y. Let

σ1 : a → ax1, b → ay1b,

σ2 : a → ax2, b → ay2b.

If σ1 = σ2, then ax1 = aσ1 = aσ2 = ax2 and ay1b = bσ1 = bσ2 = ay2b. So x1 − x2 ≡
0 (mod pd) and y1 − y2 ≡ 0 (mod pd). Thus,

Aut (G) = {

σ | σ : a → ax, b → ayb such that
(

x,pd
) = 1

}

,

and in particular, |Aut(G)| = pd.pd−1(p − 1).

Let ρ, τ ∈ Aut(G) be such that

ρ : a → as , bρ → b, where (s,p) = 1,
τ : a → a, b → ab.

Then o(ρ) = pd−1(p − 1), and o(τ) = pd . Calculation shows that ρ−1τρ = τ δ . It
follows that 〈τ 〉 is a normal subgroup of Aut(G), and hence Aut(G) = 〈τ 〉:〈ρ〉 ∼=
Zpd :Zpd−1(p−1). �

The following lemma will be used to determine isomorphism classes of Cayley
graphs.

Lemma 4.3 ([8]) Let G be a finite group, and let Γ = Cay(G,S). Assume that G is
of odd order, and assume further that Ĝ is a Hall subgroup of AutΓ . Then for subset
S′ ⊂ G such that Γ ∼= Cay(G,S′), there exists σ ∈ Aut(G) such that Sσ = S′.

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2 Let G = 〈a〉:〈b〉 ∼= Zpd :Zq be a Frobenius group. Suppose that
k is a divisor of p − 1 which is bigger than 2 and coprime to pq . Let Γ = Cay(G,S)

be connected, undirected, edge-transitive, and of valency 2k. Since (2k,pq) = 1 and
2k

∣
∣ (p − 1), by [16, 17], this is not possible. Thus by Theorem 1.1 Ĝ is normal in

AutΓ . Thus, by Lemma 4.1, we conclude that

AutΓ = Ĝ:Aut(G,S).

Since Γ is connected, we have 〈S〉 = G, and as Γ is undirected, S = {s1, s
−1
1 , . . . ,

sk, s
−1
k }. Further, as Γ is edge-transitive and AutΓ = Ĝ:Aut(G,S), we conclude that

the subsets {si , s−1
i } with 1 ≤ i ≤ k are all conjugate in Aut(G,S). Therefore, since

G = Zpd :Zq is Frobenius, all elements of S are of order q . As |S| = 2k is coprime to

pq , it follows from Lemma 4.2 that Aut(G,S) = 〈τ 〉 ∼= Zk , and so AutΓ = Ĝ:〈τ 〉 ∼=
Ĝ:Zk . In particular, an element of order q is not conjugate in AutΓ to its inverse, and
therefore, Γ is not arc-transitive.

Subgroups of X of order q are Sylow q-subgroups, and hence they are conju-
gate. Thus, we may assume that s1 is conjugate to bi , where 1 ≤ i ≤ q−1

2 . Then S is
conjugate to

Si = {

bi, b−i
}〈τ 〉

.

Noticing that Ĝ is a Hall subgroup of AutΓ , by Lemma 4.3, Γ is a CI-graph. It is
easily shown that the subsets Si with 1 ≤ i ≤ q−1

2 are pairwise non-conjugate un-

der Aut(G). So Cay(G,Si) with 1 ≤ i ≤ q−1
2 are pairwise non-isomorphic. There-

fore, there are exactly q−1
2 non-isomorphic edge-transitive Cayley graphs of G of

valency 2k. �

5 Proof of Theorem 1.3

We first state a simple property about edge-transitive graphs. Recall that a permuta-
tion group P on Ω is called bi-transitive if P has exactly two orbits on Ω and the
two orbits have equal size.

Lemma 5.1 A graph Γ is X-edge-transitive if and only if one of the following two
cases happens, where α is a vertex:

1. Xα is transitive on Γ (α);
2. Xα is bi-transitive on Γ (α) with two orbits Δ1 and Δ2, and there exists σ ∈ AutΓ

such that (α,β)σ = (γ,α) where β ∈ Δ1 and γ ∈ Δ2.

As before, let G = Zpd :Zq be a Frobenius group, where p,q are odd primes. Let
Γ be a connected undirected Cayley graphs of G of valency at most 2q . Denote by α

the vertex of Γ corresponding to the identity of G. Let X � AutΓ contain Ĝ. Then
we have X = ĜXα.

Lemma 5.2 Assume that q divides |Xα|. Then Γ is edge-transitive and of valency 2q .
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Proof Since q divides |Xα|, it follows that Zq � X
Γ (α)
α . Thus Xα has an orbit Δ of

size at least q . For β ∈ Δ, we have βXα = Δ. Define a graph Γ0 := (V ,E0), where
E0 = {α,β}X . Let Σ be a connected component of Γ0 which contains α. Then the
vertex set V Σ is a subgroup of G, and so |V Σ | divides pdq . Let Y = AutΣ . Then q

divides |Yα|. It follows that the valency of Σ is at least q , and hence |V Σ | > q and p

divides |V Σ |. Moreover, Σ is Y -edge-transitive. By Lemma 5.1, Yα is transitive or
bi-transitive on Σ(α).

Assume that |Σ(α)| < 2q . If Yα is bi-transitive on Σ(α), then the two orbits of
Yα on Σ(α) have equal size which is at least q , which is not possible. Thus Yα is
transitive on Σ(α). Suppose that Yα is imprimitive on Γ (α). Then Γ (α) has a Yα-
invariant partition B which has l blocks and each block has size m. Thus, q | l, or
q | m, which is not possible since lm = |Γ (α)| < 2q . So Yα is primitive on Γ (α).
Let N be the maximal intransitive normal subgroup of Y . Let B be the set of N -
orbits on V Σ , and let K be the kernel of Y on B. Since Yα is primitive on Σ(α) and
|V Σ | is odd, it follows that Σ is a cover of ΣN , and Kα = 1. Thus, K = N , and
Y := Y/K � AutΣN . Now Y is quasiprimitive on B. By Lemmas 2.2, 2.3 and 2.5,
Y is almost simple, and lies in Table 2 or 3. Since ΣN has valency less than 2q and q

divides |Yα|, we conclude that this is not possible.
Therefore, Σ is of valency 2q , and so Γ = Σ is edge-transitive. �

Moreover, we have a characterization of the valency 2q case.

Lemma 5.3 Let Γ be a connected edge-transitive of valency 2q . Then the following
statements hold:

(1) AutΓ = 〈âb̌〉:〈b̂b̌τ 〉 ∼= Zpdq :Z2q , where τ is an involution, and

τ :
{

âb̌ → (âb̌)−1,

b̂b̌ → b̂b̌.

(2) AutΓ has exactly q−1
2 non-conjugate subgroups which are isomorphic to H and

regular on V :

〈â〉:〈b̂b̌j
〉

, 2 ≤ j ≤ q + 1

2
.

(3) If q ≥ 5, then Γ is not a CI-graph.

Proof If Γ = Σ[Kq ], as in part (v) of Theorem 1.1, then Σ is of valency divisible
by q . Hence Γ has valency divisible by q2, which is a contradiction since q > 2. It is
easily shown that none of the graphs in parts (i)–(ii) of Theorem 1.1 has valency 2q .
Thus, part (iii) or (iv) of Theorem 1.1 is satisfied.

Suppose that Ĝ is normal in X = AutΓ . Write Γ = Cay(G,S), where |S| = 2q .
By Lemma 4.1, X = Ĝ:Aut(G,S). Since (2q,p) = 1, by Lemma 4.2, Aut(G,S) is
isomorphic to a subgroup Zp−1. Further, Aut(G,S) is faithful on S, and S contains
at least one element of order q since 〈S〉 = G. Thus Aut(G,S) ≤ Z2q . If Aut(G,S) =
Z2q , then each element z ∈ S is conjugate to z−1 under Aut(G,S), which is not pos-
sible because an element of G of order q is not conjugate to its inverse. Therefore,
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Aut(G,S) = Zq , and hence it follows from Lemma 4.2 that Aut(G,S) is conjugate
to 〈b̂b̌〉. So X = Ĝ × 〈b̌〉, and Γ is not arc-transitive. However, 〈â〉 × 〈b̌〉 ∼= Zpdq is
regular on V , and so Γ is a circulant. It is well-known that edge-transitive circulant
is arc-transitive, which is a contradiction. Thus, Ĝ is not normal in AutΓ .

By Theorem 1.1, X = AutΓ contains a regular normal cyclic subgroup. It fol-
lows from Lemma 4.1 that Xα ≤ Zp−1. Since Γ is arc-transitive, Xα is transitive on
Γ (α). Hence Xα = Z2q , and 〈â〉 � X. Let H be a Hall {2, q}-subgroup of X that
contains b̂. Then X = 〈â〉:H , and H ∼= Z

2
q :Z2. Let C = CX(â). Then C = 〈â〉 × Cp′

�X, and X/C ≤ Aut(〈â〉). Hence Cp′ has order q or 2q , and contains a character-
istic subgroup 〈σ 〉 ∼= Zq . It follows that Ĝ centralizes Cp′ . Since Ĝ is regular, we
conclude that Cp′ = 〈σ 〉 = 〈b̌〉. Thus, Ĝ × 〈b̌〉 is a subgroup of AutΓ of index 2,
and X/Cp′ ∼= Zpd :Z2q . It then follows that X has an involution τ which maps â to

â−1 and centralizes the inner automorphism b̂b̌. It is easily shown that τ does not
centralize b̌, and hence b̌τ = b̌−1, as in part (1).

Notice that τ sends b̂b̌i to b̂b̌.b̌−i+1, which equals b̂b̌q+2−i , where 2 ≤ i ≤ q+1
2 .

In particular, τ : 〈â〉:〈b̂b̌2〉 → Ĝ. It follows that AutΓ has exactly q−1
2 non-conjugate

subgroups which are isomorphic to H and regular on V , which are 〈â〉:〈b̂b̌j 〉, where
2 ≤ j ≤ q+1

2 , as in part (2).
Finally, for q ≥ 5, AutΓ has at least two non-conjugate subgroups which are iso-

morphic to G and regular on V . Hence, by Babai’s criterion given in [1], Γ is not a
CI-graph, as in part (3). �

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let k be the valency of Γ , where k ≥ 3. Suppose that X is
primitive on V . Then by Lemma 2.2, either X is 2-transitive on V and Γ is a complete
graph, or |V | = pq , and Γ is characterized in [16, 17]. So part (iii) holds. Thus, in
the following we assume that X is imprimitive. If q divides |Xα|, by Lemma 5.2, Γ

is edge-transitive of valency 2q . Then by Lemma 5.3, Theorem 1.3 holds.
Hence we now assume that q does not divide |Xα|. Then G is a Hall {p,q}-

subgroup of X. Hence by Lemma 4.3, Γ is a CI-graph of G.
We next determine the automorphism group X ≤ AutΓ . Let B be a minimal X-

invariant partition of V , and Let K be the kernel of X acting on B. Then XB
B is a

primitive group, where B ∈ B.
If K = 1, then X ∼= XB is faithful, and by Lemma 2.4, ΓB is a circulant of order

pd . By Lemma 3.4, either ΓB = Kp , or G ∼= GB � XB ∼= X. The latter case is as in
part (i) of the theorem. For the former, it follows that X is quasiprimitive, given in
Lemma 2.5.

Thus, we assume that K �= 1 in the following.
Suppose that soc(K) is not simple. By Lemma 2.1, K(B) �= 1 and K(B) is transitive

on some B ′ ∈ B. Since p or q divides |B ′|, p or q divides |K(B)|, which is not
possible as K(B) � Kα and (|Kα|,pq) = 1. Thus, soc(K) is simple. Suppose that
q divides |K|. Since K ∩ G � G and G is a Frobenius group, q does not divide
|K ∩ G|, and thus q2 divides |KG|(= |K||G|

|K∩G| ), which is a contradiction. Thus, q does
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not divide |K|. By Lemma 2.4, |B| = pc, and XB
B is a primitive group and contains a

cyclic regular subgroup of order pc.
Suppose that XB

B is almost simple. Then so is KB , and thus K ∼= KB lies in Ta-
ble 3. Further, q is odd. It is easily shown that Kα = KB

α has no permutation repre-
sentation of degree less than p − 1, neither does Xα , which is not possible.

Thus, XB
B is affine, and Zp

∼= K � XB . Now X is an extension of K = Zp by
X := X/K . By induction, we assume that ΓK satisfies Theorem 1.3. Hence G � X,
and so G is normal in X. �

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4 As before, let G = 〈a〉:〈b〉 ∼= Zpd :Zq be a Frobenius group,

where p,q are odd primes. Let z = ba , and Tj = {zj , z−j }〈b〉 where 1 ≤ j ≤ q−1
2 . Let

Σj = Cay(G,Tj ). Then the Σj are X-edge-transitive, where X = Ĝ:〈b̃〉 ≤ AutΣj

and T1, T2, . . . , T q−1
2

are pairwise non-conjugate under Aut(G).

Let Γ = Cay(G,S) be a connected edge-transitive graph of valency 2q . Then S

contains an element x of order q. Since all subgroups of G of order q are conju-
gate, there exists ς ∈ Aut(G) such that xς = zi for some i with 1 ≤ i ≤ q−1

2 . By

Lemma 5.3, AutΓ = 〈âb̌〉 : 〈b̂b̌τ 〉 > Ĝ : 〈b̃〉. Thus b̃ fixes Sς , and so (zi)〈b̃〉 ⊆ Sς .

Since Γ is undirected, (z−i )〈b̃〉 ⊆ Sς . As |S| = 2q, Sς = {zi, z−i}〈b̃〉 = Ti , and so
Γ ς = Σi. That is to say, under Aut(G), there are exactly q−1

2 classes of edge-
transitive Cayley graphs of G of valency 2q , of which Σ1,Σ2, . . . ,Σq−1

2
are rep-

resentatives.
The automorphism group AutΓ = 〈âb̌〉:〈b̂b̌τ 〉 ∼= Zpdq :Z2q has exactly q−1

2 non-
conjugate subgroups which are isomorphic to G and regular on V . Let H be one of
these subgroups such that Ĝ �= H ∼= Ĝ. Then H is conjugate in the symmetric group
Sym(G) to Ĝ, namely,

H = Ĝρ, for some permutation ρ ∈ Sym(G).

Let Σ = Γ ρ , which is the graph with vertex set Gρ (= G) and edge set consisting
of {uρ, vρ} for edges {u,v} of Γ . Then ρ−1AutΓρ = AutΣ , and hence ρ−1Ĝρ is a
subgroup of AutΣ and regular on V Σ = G. Thus, Σ is a Cayley graph of G, namely,
Σ = Cay(G,S′) for some subset S′. Since it is isomorphic to Γ , Σ is edge-transitive
and of valency 2q , and S′ = S′−1. It follows that the q pairs {s, s−1} with s ∈ S′ are
conjugate under a subgroup of Aut(G).

Suppose that S′ = Sξ for some automorphism ξ ∈ Aut(G). Then Γ ξ = Σ = Γ ρ ,
and hence Γ ρξ−1 = Γ , that is, ρξ−1 ∈ AutΓ is an automorphism of Γ . Since Ĝ �
AutΓ , the element ρξ−1 normalizes Ĝ. However, ξ ∈ Aut(G) normalizes Ĝ, and
hence ρ normalizes Ĝ, which is a contradiction to the fact that Ĝρ = H �= Ĝ. Thus,
S′ and S are not conjugate in Aut(G).

Similarly, it is easily shown that the q−1
2 non-conjugate regular subgroups of AutΓ

correspond to q−1
2 Cayley graphs Γj = Cay(G,Sj ) which are isomorphic such that

S1(= S),S2, . . . , S q−1
2

are pairwise non-conjugate in Aut(G). Hence Γj
∼= Σi for
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some 1 ≤ i ≤ q−1
2 . It follows that all edge-transitive graphs of G of valency 2q are

isomorphic. �
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