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Abstract We define phylogenetic projective toric model of a trivalent graph as a gen-
eralization of a binary symmetric model of a trivalent phylogenetic tree. Generators
of the projective coordinate ring of the models of graphs with one cycle are explicitly
described. The phylogenetic models of graphs with the same topological invariants
are deformation-equivalent and share the same Hilbert function. We also provide an
algorithm to compute the Hilbert function.
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1 Introduction and background

The inspiration for this work are toric varieties arising in computational biology, or
more precisely in phylogenetic algebraic geometry. The references to the subject in-
clude [5, 16] and [18].

Markov models on phylogenetic trees are statistical models describing evolution.
They are usually defined as a subset of the probability simplex, parametrized by a
subset of matrices depending on the model. Among them there are group-based mod-
els on phylogenetic trees. These are special, as their projective versions, that is, the
Zariski closure of the parametrization in the complex projective space, are projective
toric varieties.

We are interested in the simplest group-based models—binary symmetric models,
also called the Jukes–Cantor models, on trivalent trees. The object of study is the
generalization of those models to trivalent graphs.
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The article is organized in the following way: in Sect. 1.1, we give motivation
to the subject and point out references where the main object of our study appears.
Then we give a brief introduction to our main tools: we recall geometric invariant
theory in Sect. 1.3, next, in Sect. 1.4 we set a notation for projective toric varieties
and in Sect. 1.5 provide a description of GIT quotient of a projective toric variety by
subtorus of its big torus.

In Sect. 2.1 we state combinatorial relations between the topological invariants
of a trivalent graph and we prove that graphs with the same invariants are mutation-
equivalent. In Sect. 2 we define the model of a trivalent graph as a GIT quotient of
a product of P

3’s indexed by the inner vertices of the graph. This implies that the
model is toric and comes with an embedding into a weighted projective space. Our
first result is Theorem 2.29 that lists the set of minimal generators of the projective
coordinate ring of the model, when the underlying graph has the first Betti number
at most one. Section 3 contains our second result—models of mutation-equivalent
graphs are deformation-equivalent.

Theorem 3.5 Geometric models of connected trivalent graphs with n leaves and the
first Betti number g are deformation-equivalent in the projective toric variety Pg,n,

which is a quotient of P
2n+2g−1−1 by a g-dimensional torus. Moreover, the deforma-

tions are invariant with respect to the action of the torus T(L) corresponding to the
leaves of the graph.

In Sect. 4 we prove that the Hilbert functions of mutation-equivalent models are
equal (Theorem 4.5) and finally we compute these Hilbert functions explicitly.

1.1 Motivation—Markov models on phylogenetic trees

A phylogenetic tree is an acyclic connected graph with additional data attached to its
edges and vertices. At a vertex v there is a finite ordered set Av called an alphabet. At
an edge with ends v and w there is a doubly stochastic matrix (all rows and columns
sums are 1) with the (i, j)th entry indicating the probability of the ith letter of Av

being changed to the j th letter Aw . To construct a Markov model on a phylogenetic
tree we first need to indicate a set of observable vertices. Then the model is the sub-
variety of the probability simplex, parametrized by a set of matrices: their entries are
probabilities of observing letters at the observable vertices. We consider symmetric
models, which means the matrices are symmetric. Typically the observable vertices
are the leaves of the tree.

Apart form this real variety, one can consider its complex algebraic relaxation.
That is, the parameters are allowed to vary in a complex projective space and we take
the Zariski closure of the image. Then the model becomes a complex projective va-
riety and can be studied by means of algebraic geometry. Binary symmetric models
have additional structure—they are equipped with an action of a torus of dimension
equal to the dimension of the model and thus they are projective toric varieties. This
is an especially nice class of varieties, which has a combinatorial description by lat-
tice polytopes. The geometry of the simplest group-based models—binary symmetric
models with the restriction that the underlying tree is trivalent was the object of study
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of [3]. In that paper we described the corresponding lattice polytope and interpreted
the models as a certain quotient of a product of three-dimensional projective spaces.

1.2 Toric algebras of our graph models in the literature

We generalize the quotient description of the tree models introduced in [3] and we
get a toric projective model, which this time is embedded in a weighted projective
space. Such an embedding is always given by a graded lattice cone. We denote the
cone for a graph G by τ(G).

The way we associate a lattice cone to a trivalent graph appears in the Jeffrey and
Weitsmann’s [10] study of moduli of flat SU(2)-connections on a genus g Riemann
surface. In this context the trivalent graph G describes the geometry of the compact
surface Σg of genus g and thus has no leaves. A subset of Z-labelings of the graph,
which are exactly points of our cone τ(G), are in 1–1 correspondence with the num-
ber of Bohr–Sommerfeld fibers which is the central object of study in [10]. By the
Verlinde formula, the number of those fibers equals the dimension of holomorphic
sections of powers of a natural line bundle on the moduli space of flat SU(2) con-
nections on Σg . This number is a value of the Hilbert function of the toric model of
a connected graph with no leaves and the first Betti number g. The varieties X(G)

appear naturally in the algebraic and symplectic geometry of the above mentioned
moduli space of flat SU(2)-connections, as discussed by Manon in [11] and in [12].

By our Theorem 4.5, we know that the Hilbert function only depends on the topo-
logical invariants of the graph.

Although the model depends on the shape of the underlying trivalent tree, once we
restrict ourselves to trees with fixed number of leaves, models of all of them are in the
same irreducible component of the Hilbert scheme of projective varieties with fixed
Hilbert polynomial. This was proved by Sturmfels and Xu in [20]. This direction was
extended and continued by Manon [11]. He constructs a sheaf of algebras over the
moduli stack M̄g,n of genus g, n-pointed stable curves, whose fiber over a curve is
the Cox ring of the moduli of quasi-parabolic principal vector bundles associated to a
simple reductive group. Our semigroup algebras C[τ(G)] are obtained by some initial
term deformations from algebras above the most special points of Mg,n in Manon’s
construction.

Any trivalent graph is made by gluing together tripods, that is, graphs with four
vertices and three edges attached to the central vertex. To construct the toric model
we assign to every inner vertex a copy of a three-dimensional complex projective
space and to every edge we assign an action of the one-dimensional complex torus
C

∗ on the product of all those P
3, which corresponds to gluing two tripods along

that edge. The model X(G) of the trivalent graph G is a geometric invariant theory
(GIT) quotient of product of the P

3 by the torus defined as a product of the C
∗’s

corresponding to the internal edges. We also translate this description into language
of projective toric varieties, by writing the model X(G) as the projective spectrum of
a semigroup ring C[τ(G)]. The underlying semigroup τ(G) has a clear description in
terms of the graph G .

Three results of this article generalize our earlier results obtained in [3] about
binary symmetric models of trivalent trees to phylogenetic graph models. First we
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describe the minimal Z-generators of the semigroup τ(G) when the graph G has the
first Betti number at most one. We also prove that models of graphs with the same dis-
crete invariants are deformation-equivalent and lastly that they share the same Hilbert
function.

1.3 Geometric invariant theory

We use geometric invariant theory for a normal projective variety X with an action of
an algebraic torus T. Our main reference is Sects. 5 and 6 of [1], although the setup we
use may seem to be slightly more general than the one found in [1]. Namely, instead
of linearizing only with respect to a line bundle we allow ample Weil divisors. We
will explain the necessary modifications and show how this does not affect the basic
theory.

Definition 1.1 A divisor L is an ample Weil divisor if some positive multiple nL is
an ample line bundle.

Given an ample Weil divisor L we have the ring

R(X, L) :=
∞⊕

p=0

H 0(X, O(pL)
)

which is the projective coordinate ring of X embedded into a weighted projective
space by the linear system |L|. This is completely analogous, see [17], to the standard
way of describing embedding of X into a projective space with a very ample line
bundle L, see [9, Sect. II.2]. We discuss these facts in Sect. 1.4.

We denote by

Rp(X, L) := R(X,pL)

the ring given by a multiple of L. When the divisor L is clear, we write R(X) and
Rp(X) an instead of R(X, L) and R(X,pL).

Lemma 1.2 (Veronese embedding) Let X = ProjR(X, L) be a projective variety
with a distinguished ample Weil divisor L. Then for any positive integer p the in-
clusion Rp(X, L) ↪→ R(X, L) induces an isomorphism

ProjR(X, L) � ProjRp(X, L).

Proof See [7, Chap. 2, Theorem 2.4.7], and also [9, Example II 5.13]. �

We briefly recall the definitions of quotients from [1] simplifying the statements
to match our case. A map π : X → Y is affine if preimage of any affine subset of Y is
affine. Let G be a reductive algebraic group acting on a variety X. A G-equivariant
morphism π : X → Y is called a semi-geometric quotient if

• the image of every closed orbit is closed, and this property is invariant under base
change
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• π is surjective and images of disjoint, closed orbits are disjoint and this property
is invariant under base change

• π∗(OG
X) = OY .

The map π : X → Y is called a good quotient if it is both affine and semi-geometric.
This definition implies that the good quotient is a categorical quotient, and thus

unique [1, Remark 3.1 and Theorem 3.2].
To construct the quotient, we need some more definitions.

Definition 1.3 Let G be a reductive algebraic group acting on X. An ample Weil
divisor L on X is G-linearized if the action of G can be lifted to the projective co-
ordinate ring R(X, L). More precisely, the action of G on X = ProjR(X, L) induced
by the lift, is the action of G on X.

When L is a line bundle, a G-linearization is an action of G on L which is linear
on fibers and agrees with its action on X. We recall the definition of an L-semistable
point [1, §6.1], which is independent of the multiple of L.

Definition 1.4 Let L be an ample Weil divisor. A point x ∈ X is L-semistable if
there exists a G-invariant section of a positive multiple of L that does not vanish at x.
We denote by Xss the set of all semistable points. The GIT quotient of X by G with
respect to the linearization L is

X//G = Xss//G

where Xss//G denotes the good quotient of the set of semistable points with respect
to L by the action of G. The rational map X ��� X//G is called GIT quotient map
and the regular map Xss → X//G is a good quotient map.

Remark 1.5 Both [13] and [1] assume that the section in the above definition has an
affine support, but as we consider only ample L all its sections automatically have
affine support.

The following theorem says that in the above situation a GIT quotient exists and
is the projective spectrum of the ring of invariants.

Theorem 1.6 Let G be a reductive group acting on projective varieties X and Y .

(i) Let L be a G-linearized ample Weil divisor on X. Then

X//G = ProjR(X, L)G.

(ii) Let X ↪→ Y be a G-equivariant embedding, with Y = ProjR and X = ProjR/I ,
where I is the homogeneous ideal of X in Y . Then I is generated by invariants
f1, . . . , fj , the map X//G ↪→ Y//G is an embedding and the homogeneous ideal
of X//G in RG is also generated by f1, . . . , fj .
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Proof In [1, §5] the affine quotient is defined for an affine variety X as a spectrum
of invariants and [1, Theorem 5.4] says it is a good quotient. Then [1, §7] provides
a characterization of a good quotient π : X → Y as a locally affine quotient. Equiva-
lently, the map π is a good quotient if and only if for any open affine subset U ⊂ Y

the restriction of the map π to π−1(U) is an affine quotient.
We know from [1, Theorem 6.2.1] that (i) is true for projective space and L =

O(1). Additionally for an arbitrary variety X = ProjR and a very ample line bundle
L that defines an equivariant embedding into P

n by [1, §6.3] we have:

• Xss = (Pn)ss ∩ X

• the restriction of the good quotient morphism π : (Pn)ss → (Pn)ss//G is the good
quotient morphism on X.

We choose an affine covering U of the quotient P
n//G by sets of the form {f 	= 0},

where f is G-invariant. Then {π−1(U)|U ∈ U } is an affine G-invariant covering of
P

n, since π is an affine map. By [1, Theorem 5.3] and the Hilbert–Nagata theorem
[1, Theorem 5.2] for each U ∈ U we know that (π−1(U) ∩ X)//G is a spectrum of
invariants

(
π−1(U) ∩ X

)
//G = Spec

(
R

[
f −1]0)G

.

Also each π−1(U) ∩ X has form {g = π∗f |X 	= 0}. To see that X//G = ProjRG, we
only need to see that (RG[g−1])0 = (R[g−1]0)G, which is true since g is G-invariant.
Thus (i) holds for X projective and L very ample.

When L is an ample Weil divisor, we use Lemma 1.2 to replace L by its kth power.
More precisely, we choose k such that kL is a very ample line bundle, and since the
set of semistable points does not depend on the multiple of L we have

X//G = ProjRp(X, L)G = Proj
(
R(X, L)G

)
p

= ProjR(X, L)G

where the first equality holds, because kL is very ample, the second holds because
the action of G preserves gradations, and in the third we use Lemma 1.2.

For the proof of (ii) by Hilbert–Nagata theorem, we know that I is generated by
invariants. Since a good quotient is a locally affine quotient the map X//G → Y//G

is an embedding. The last part of (ii) follows from [1, Theorem 5.2]. �

1.4 Toric varieties in weighted projective spaces

The embedding of a projective toric variety X into a projective space is described by
a polytope Δ with integral vertices. If we scale the polytope by an integer k, then we
do not change the variety. The resulting embedding changes by composing it with
kth Veronese embedding. The sum of all positive multiples forms a semigroup (or
a graded lattice cone). In this situation X = Proj

⊕
k∈N

C[kΔ]. When the ambient
space is a weighted projective space the embedding is given by a graded cone with a
set of (minimal) Z-generators, which are no longer in the first degree. Every section
of this cone determined by the grading is a rational polytope.

Definition 1.7 A weighted projective space P(a0, . . . , an) with weights (a0, . . . , an)

where each ai ∈ N is a positive integer is the GIT quotient of the affine space C
n+1
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by the action

t · (x0, . . . , xn) = (
ta0 · x0, . . . , t

an · xn

)
.

Again, the non-stable locus is the point 0 ∈ C
n+1.

We can assume that the greatest common divisor of the weights is one—this is
by substitution t 
→ tgcd(a0,...,an). Let us pick integers b0, . . . , bn such that

∑n
i=0 bi ·

ai = 1. The weighted projective space has the sheaf OP(1), which corresponds to the
ample Weil divisor

∑n
i=0 bi · (xi), where the (xi)’s are the divisors corresponding to

the coordinates.
Weighted projective spaces are often singular. They have quotient singularities

coming from finite abelian group actions.

Definition 1.8 To a lattice M , we associate in a non-unique way a graded lattice Mgr,
equipped with degree map deg : Mgr → Z—the projection to the first coordinate. It
fits into the exact sequence

0 M Mgr
deg

Z

s

0 .

We fix a splitting s : Z → Mgr of the exact sequence. Equivalently, we pick a 0 ele-
ment in M � (1,M) ⊂ Mgr. The choice of the splitting s corresponds to a choice of
linearization of the action of the torus Spec(C[M∨]) on itself.

Definition 1.9 A graded lattice cone τ is a rational, convex, polyhedral cone in a
graded lattice Mgr, with all elements having non-negative degree: deg(τ ) ⊂ N, and
the zero gradation consists of one element: deg−1(0)∩τ = 0. Convex here means that
τ ⊗Z R+ ⊂ Mgr ⊗Z R is convex. Equivalently, τ is a (saturated) sub-semigroup of
the free abelian group Mgr with finite set of Z-generators all having positive degrees.
The only element of degree zero is the neutral element.

Proposition 1.10 A toric variety X ⊂ P(a0, . . . , an) is described by its fan and an
ample Weil divisor OX(1) or equivalently by an isomorphism X � Proj C[τ ] where τ

is a graded, rational, convex, polyhedral cone in a graded lattice Mgr. Then C[τ ] =
R/I , where R is the homogeneous coordinate ring of P(a0, . . . , an) and I is the
homogeneous ideal of X.

Idea of the proof The correspondence between ample Weil divisors and the graded
lattice cones is the following. The degree k sections of the sheaf associated to the
Weil divisor form the kth section of the cone τ . To go the other way, we have an
isomorphism X � ProjC[τ ] and then the ample Weil divisor is OX(1)—the pull-
back of OP(a0,...,an)(1) from the ambient weighted projective space P(a0, . . . , an). �

The choice of the 0 element of M � (1,M) ⊂ Mgr in Definition 1.8 is a choice of
linearization of the action of the torus of X, which extends the action of the torus on
itself.
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Definition 1.11 A graded product M
gr
1 ×g M

gr
2 of the graded lattices M

gr
1 and M

gr
2 is

the fiber product over their degree maps, or equivalently the hyperplane deg1 = deg2
in the product M

gr
1 × M

gr
2 :

M
gr
1 ×g M

gr
2 M

gr
2

deg2

M
gr
1

deg1

Z

Definition 1.12 A graded product τ1 ×g τ2 of graded cones τ1 and τ2 is the fiber
product over their degree map, or equivalently intersection of the hyperplane deg1 =
deg2 with the product cone τ1 × τ2:

τ1 ×g τ2 τ2

deg2

τ1

deg1

Z

Lemma 1.13 If τ1 ⊂ M
gr
1 and τ2 ⊂ M

gr
2 are graded rational convex polyhedral

cones, and

X1 = ProjC[τ1], X2 = Proj C[τ2]
are corresponding projective toric varieties, then the product of these varieties under
the Segre embedding

X1 × X2 = ProjC[τ1 ×g τ2]
corresponds to the graded product of the cones τ1 and τ2.

Proof By definition X1 × X2 under Segre embedding is equal to

Proj
∞⊕

i=0

H 0(X1 × X2, OX1(i) � OX2(i)
)
.

For each i we know that the sections of this exterior tensor product are spanned by
the product of the ith graded pieces of the cones

H 0(X1 × X2, OX1(i) � OX2(i)
) = C · ((τ1 ∩ deg−1(i)

) × (
τ2 ∩ deg−1(i)

))
.

We conclude the lemma by summing the above equality over all i’s to get

∞⊕

i=0

H 0(X1 × X2, OX1(i) � OX2(i)
) = C[τ1 ×g τ2]

as required. �
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1.5 Quotient of a projective toric variety by subtorus

We show that the quotient of a projective toric variety X = Proj C[τ ] by a subtorus is
described by an appropriate linear section of τ .

We first recall some facts about toric varieties from [6]. If X = ProjC[τ ], where
τ ⊂ Mgr is a graded cone, then the torus of X is given by an isomorphism T =
Hom(M,Z) ⊗Z C

∗. The lattice N = Hom(M,Z) is the lattice of one-parameter sub-
groups of T. For any subtorus T

′ of the torus T there are corresponding maps of lat-
tices: the projection M � M ′ of the monomial lattices and the embedding N ′ ↪→ N

of the lattice of one-parameter subgroups.
A linearization of the action of the torus T on X, induces a linearization of the

action of any subtorus T
′ ⊂ T, by restricting the action. In this setting Theorem 1.6

implies the following result.

Theorem 1.14 Let τ be a graded lattice cone in a lattice Mgr and X = ProjC[τ ]
the corresponding toric variety. Let j : T

′ ↪→ T be a subtorus of the torus T, with
j∗ : N ′ ↪→ N , j∗ : M � M ′ and id⊕j∗ : Mgr → (M ′)gr the corresponding lattice
maps. Then there exists a good quotient and it is equal to

X//T
′ = Proj C[τ ]T′

where

C[τ ]T ′ = C
[
τ ∩ (

Z ⊕ ker(j∗ : M � M ′)
)] = C

[
τ ∩ (

Z ⊕ N ′⊥)]
.

Moreover the quotient X//T
′ is polarized by OX//T′(1) in a natural way.

The following example shows that we do need ample Weil divisors, not only am-
ple line bundles. This way the products and the quotients in the construction of the
phylogenetic model commute. Without allowing ample Weil divisors, one would ob-
tain different multiples of the initial bundle depending on the order of quotients by the
C

∗-actions. We use this property in the course of our main proofs: while using muta-
tions to pass to a simpler graph, in Theorem 3.5 about the deformation-equivalence
to have a small ambient space, also to study the minimal generators of the associated
semigroup.

Example 1.15 Let X be the good GIT-quotient

π : P
3 × P

3 → X = (
P

3 × P
3)//(C∗)3

of the product of two projective three-spaces by an action of three-dimensional torus
acting with weights

⎡

⎣
(0 1 1 0) × (0 −1 −1 0)

(0 1 −1 0) × (0 0 0 0)

(0 0 0 0) × (0 1 −1 0)

⎤

⎦

linearized with respect to the line bundle OP3(1) � OP3(1). We will see later that
X = X( ) is the model of the trivalent graph with the first Betti number two with
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three edges and is a projective toric variety by Theorem 1.14. The sheaf OX(1) =
π∗(OP3(1) � OP3(1)) is not a locally free OX-module because the associated di-
visor is not Cartier. To verify it we can use a computer algebra system, for exam-
ple magma [2] as follows. Since any divisor on a toric variety is linearly equivalent
to a T-invariant divisor, we identify a divisor with a corresponding Z-combination
of primitive elements of the rays of the fan. Thus we only need to check if the Z-
combination corresponding to OX(1) yields a piecewise linear function on the fan,
which by [15] is equivalent to our T-invariant Weil divisor being Cartier.

From the discussion in the latter part on this section, in particular Lemmas 2.21
and 2.22, we know that

X( ) = (
X( ) × X( )

)
//C

∗.

Here X( ) is the phylogenetic model. The quotient is equal to P(1,1,2) is polarized
with OX( )(1), which only is a Q-line bundle.

2 Phylogenetic models on trivalent graphs

2.1 Trivalent graphs

We define topological invariants of trivalent graphs. Any two graphs with the same
invariants are equivalent by applying appropriate mutations, which we introduced in
[3]. We do not assume that our graphs are connected.

Definition 2.1 A graph G is set V of vertices and set E of edges together with the
unordered boundary map ∂ : E → V ⊗2, where V ⊗2 is the set of unordered pairs of
vertices. We write ∂(e) = {∂1(e), ∂2(e)} and say that v is an end of the edge e if
v ∈ ∂(e). A vertex incident to exactly one edge is a leaf. The set of leaves is denoted
by L and the number of leaves by n. If a vertex is not a leaf, it is called an inner
vertex. An edge incident to a leaf is a petiole and P is the set of petioles. We write
comp G for the set of connected components of the graph and |comp G| for the number
of components. We denote by g for the first Betti numbers of graph, which is the
rank of the first homology group of the graph viewed as a CW-complex. A graph is
trivalent if every inner vertex has valency three. Valency of a vertex v is the number
of connected components of a sufficiently small neighborhood of v with v removed.
A trivalent graph with no cycles is a trivalent tree.

When discussing more than one graph we will write V (G), E (G), n(G), etc. instead
of V , E , n, etc.

We give names to the three small graphs: Dumbbell is the graph with three edges,
two loops and no leaves; LittleMan is the graph with four edges, one loop and two
leaves; Hammock is the graph with four edges, one 2-cycle and two leaves.

Remark 2.2 Our graphs are not oriented, nevertheless we write ∂1(e) and ∂2(e) for
the vertices adjacent to the edge e. This makes it easier to talk about “the other end
of e”.
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Fig. 1 Building a trivalent
graph from tripods

We call the unique trivalent tree with a single inner vertex and three leaves the
elementary tripod. It has three edges e1, e2, e3. Any trivalent graph is built of ele-
mentary tripods in the following way: given a trivalent graph G and any inner vertex
v ∈ V (G) we pick a copy of elementary tripod v � and a map iv : v → G
which sends the central vertex of v to v and locally near i−1(v) is an embedding.
We present the graph G as a disjoint union of the graphs v with appropriate identi-
fication of edges

G =
⊔

v∈V \L
v/

{
i−1
∂1(e)

(e) ∼ i−1
∂2(e)

(e)
}
e∈E \P . (2.1)

This mirrors the construction of the phylogenetic model X(G) as we will see in Def-
inition 2.11.

Example 2.3 In Fig. 1 we give an example of the above presentation of a trivalent
graph LittleMan.

Lemma 2.4 In any trivalent graph with n leaves and first Betti number g the follow-
ing holds:

(i) |V |, |E | ≥ n,
(ii) 2|E | = 3|V | − 2n,

(iii) |V | − |E | = |comp G| − g.

Thus, any three of the numbers |V |, |E |, n, g, |comp G| determine the other two.

Proof To prove (ii) let us count pairs consisting of a vertex and an adjacent edge. On
one hand we will count every edge twice. On the other hand every inner vertex has
three incident edges so we have 3(|V |−n) pairs and another n pairs come from leaves
which totals to 3|V | − 2n. Equation (iii) counts the Euler characteristic |comp G| − g

of the graph. �

Here we introduce operations of gluing two leaves of a graph, cutting an edge into
two new edges and taking a disjoint sum of two graphs.

Definition 2.5 We will use the following three constructions of trivalent graphs.

• G � G′ is the disjoint sum of the given graphs G and G′.
• Gl1

l2
⊃ is the graph obtained from a given graph G with two distinguished leaves

l1, l2 ∈ L(G) by gluing the two leaves l1 and l2, or more precisely by removing l1
and l2 and identifying the edge incident to l1 with the edge incident to l2.

• Gl � G′
l′ a graft of given graphs G and G′ each with a distinguished leaf. Figure 2 is

a schematic picture of this construction.
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Fig. 2 Graft of two graphs

Fig. 3 Cycle edge, cycle leg
and cycle vertex of a graph

Fig. 4 A path, a cycle and a
network containing a loop

The new graph can be written as

Gl � G′
l′ = ((

(G � G′)le1
⊃) � G′)l′

e2
⊃ .

• Ge is the graph obtained from the given graph G by cutting an internal edge e ∈
E (G) \ L(G). More precisely we replace e with two new edges e1 and e2 so that
∂1(e1) := ∂1(e) and ∂1(e2) := ∂2(e). There are two new leaves in Ge , which are the
free ends ∂2(e1) and ∂2(e2) of e1 and e2, respectively.

Definition 2.6 An edge e ∈ E is called a cycle edge if it is not a petiole and removing
it does not disconnect the connected component of the graph that contains e. An edge
e ∈ E is called cycle leg if it is incident to a cycle edge but is not a cycle edge itself. A
vertex v ∈ V is called cycle vertex if it is an end of a cycle edge. We draw an example
of those in Fig. 3.

A path is a sequence of distinct edges e0, . . . , em with ∂2(ei) = ∂1(ei+1) for all
i ∈ {0, . . . ,m − 1}, moreover ∂1(e0) and ∂2(em) are either both leaves or they are
equal. In the latter case, the path is called a cycle. Paths are disjoint if they have no
common vertices. A network is a union of disjoint paths. For consistency we say that
the empty set is also a network. A cycle is a minimal sequence of cycle edges. A cycle
of length one is a loop. In Fig. 4 we draw examples for each of those sequences.

A graph G is called a polygon graph if it has 2k edges of which k form the only
cycle of G and the remaining k edges are cycle legs. If G is any trivalent graph, e ∈
V (G) its non-cycle edge, then after cutting e we get a decomposition Ge = G0 � G1.
If G1 is a tree then we call it a pendant tree.
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Fig. 5 The three trees with four
labeled leaves

Fig. 6 Mutation along cycle
edge shortens a cycle

Fig. 7 Caterpillar tree

Figure 5 shows the three trivalent trees with one internal edge e and four labeled
leaves. Let G be a trivalent graph and let e be an internal edge which is not a loop (the
ends of e are not identified). Then a neighborhood of e in G is a trivalent tree with
four leaves.

Definition 2.7 A mutation of a trivalent graph G along an edge e is a graph G′ which
is obtained from G by removing a neighborhood of e (which is a trivalent tree with
four leaves) and replacing it by one of the other trivalent trees from Fig. 5. Two
graphs are mutation-equivalent if they may be transformed by sequence of mutations
into each other.

Remark 2.8 By definition it is not possible to mutate along an edge that forms a cycle
of length one. However, for longer cycles, mutations are possible, and one shortens
the length of the cycle. Figure 6 shows an example of this phenomenon: Hammock
graph is mutation-equivalent to LittleMan.

Lemma 2.9 Suppose edges {e1, . . . , ek} form a cycle in the graph G and assume
k > 1. Then, for any i ∈ {1, . . . , k} one of the two mutations along ei shortens the
cycle {e1, . . . , ek} by one in the resulting graph, i.e. {e1, . . . , ei−1, ei+1, . . . , ek} is a
cycle in the new graph.

A caterpillar is a trivalent tree, which after removing all leaves and petioles be-
comes a string of edges as shown in Fig. 7.

Lemma 2.10 Let G1 and G2 be connected, trivalent graphs both with n leaves and
first Betti numbers g. Then they are mutation-equivalent. Moreover, for any ordered
subsets S1 of cycle edges of G1 and S2 of cycle edges of G2, of the same size, both with
the property that removing Si from Gi does not disconnect the graph, we can find a
sequence of mutations that avoids the edges from S1 (S2) and sends ith edge of S1 to
the ith edge of S2. Also, any mutation sends a leaf of G1 to a leaf of G2.

Proof Let G be connected, trivalent graph with n leaves and the first Betti number g

and S a subset of cycle edges as above. We will prove that G is mutation-equivalent
to a trivalent graph obtained by attaching g cycles of length one to a caterpillar tree
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Fig. 8 Every graph is mutation-equivalent to a caterpillar graph

with n + g leaves. We will choose mutations so that they will satisfy the required
property.

Step 1. We proceed by induction on the set S and the first Betti number of G .
For an edge e ∈ S we can find a cycle that contains no other elements of S. This is
because after removing all edges from S the graph G is connected, so there is a path
γ from ∂1(e) to ∂2(e), which together with e forms the required cycle. By repeatedly
using Lemma 2.9, we reduce the length of this cycle to one, by performing mutations
along edges from γ . In the new graph the edge e forms a loop. We can consider this
graph with e removed, reducing both the size of S and g. If |S| < g, then we repeat
the above g − |S| times starting from any cycle edge, which is not a loop.

After repeating this procedure g times, we get a tree with g loops (all edges from S

are among them) attached to some leaves. We can assume that this tree is a caterpillar,
as we know from [3, Lemma 2.18] that any trivalent tree is mutation-equivalent to a
caterpillar with the same number of leaves.

Step 2. We observe that it does not matter to which leaves the cycles are attached,
we can move a cycle from a leaf to any another leaf.

In Fig. 8 we illustrate those two steps.
The last claim follows simply form the definition: mutation maps an inner edge to

an inner edge, and a leaf to a leaf. �

2.2 Definition as quotient

Given a (not necessarily connected) trivalent graph G , we construct a toric variety
X(G), generalizing the binary symmetric model of trivalent tree from [3].

As we have already explained, see (2.1), any trivalent graph is the union of |V |−n

elementary tripods with some edges identified. To define the variety X(G) we replace
each elementary tripod v with P

3
v , union with product, and the edge identification

with a quotient by an action of a one-parameter torus.

Definition 2.11 Let G be a trivalent graph. To an inner vertex v ∈ V \ L we associate
projective space P

3
v with coordinates xv

∅, xv
12, x

v
13, x

v
23. To any edge e ∈ E we associate

an action λe
v of C

∗ on P
3
v with weights 0 and 1 as follows:

λe
v(t)(xS) =

{
t · xv

S, if the index of i−1
v (e) ∈ {e1, e2, e3} belongs to the set S,

xv
S, otherwise.
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So we have an action of a three-dimensional torus on P
3 = Proj C[xv

∅, xv
12, x

v
13, x

v
23]

with weights:
⎡

⎣
0 1 1 0
0 1 0 1
0 0 1 1

⎤

⎦ .

For example if iv(e2) = e then λe
v acts with weight 1 on xv

12 and xv
23 and with weight 0

on xv
∅ and xv

13. This action extends to an action λe
v on

∏
v∈V \L P

3
v which is non-trivial

only if v is an end of the edge e. Thus, for any internal edge e ∈ E \ P , we can define
a C

∗-action λe
∂1(e)

× −λe
∂2(e)

on
∏

v∈V \L
P

3
v (2.2)

to be the product action of the action λe
∂1(e)

on P
3
∂1(e)

and the action λe
∂2(e)

with oppo-

site weights on P
3
∂2(e)

. We define the phylogenetic model of a trivalent graph G to be
the good quotient:

X(G) :=
( ∏

v∈V \L
P

3
v

) // ∏

e∈E \P

(
λe

∂1(e)
× −λe

∂2(e)

)
(2.3)

of the toric variety
∏

v∈V \L P
3
v by a subtorus of dimension |E | − |L| of the torus. The

subtorus by which we are dividing is a product of all the C
∗’s over all internal edges

of the graph G and the linearized line bundle is �v∈V (G)OP3
v
(1). By Theorem 1.14.

X(G) is toric as it is the quotient of a toric variety by a subtorus.

Remark 2.12 In (2.3) the choice that we made defining the action of the torus
(C∗)V \L only depends on the choice of coordinates of the torus. If we choose
different orientation of the edge e, then the two C

∗-actions λe
∂1(e)

× −λe
∂2(e)

and

−λe
∂1(e)

× λe
∂2(e)

differ by composing with t 
→ 1
t
.

Remark 2.13 Let l be a leaf of a graph G and e the adjacent petiole. The action
λe

l descends to a non-trivial action on the quotient variety X(G) and is denoted by
λl . For a subset S ⊂ L of the leaves of G of cardinality k we have an action of a
k-dimensional torus T(S)—a product of the corresponding λl’s.

If we set k = |V | − n the number of inner vertices, we can rewrite |V | − |E | =
|comp G| − g using Lemma 2.4(ii) to get k = (2g − 2|comp G|) + n. Observe that

• k is the number of the P
3’s in (2.2),

• g is the first Betti number.

On the other hand, |E | − n = k + g − |comp G| is the number of inner edges which is
the dimension of the torus that we divide by in (2.3). We get a variety of dimension

dimX(G) = 3k − (|E | − n
) = 3g − 3|comp G| + 2n = |E |.
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2.3 Lattice and cone

Given a trivalent graph G we construct the toric data that allow one to recover its toric
model. The graded lattice, denoted by Mgr, as well as the graded cone τ(G) in it both
have rank bigger by one than the dimension of the model X(G). The latter is equal to
the number of edges E (G).

Definition 2.14 Given a graph G let ZE = ⊕
Z · e be the lattice spanned by E , and

ZE ∨ = Hom(ZE ,Z) be its dual. Elements of the lattice ZE are formal linear combi-
nations of the edges, forming the standard basis of ZE . The dual lattice ZE ∨ comes
with the dual basis {e∗}e∈E . We identify vertices of the graph G with certain elements
of ZE ∨:

v =
∑

e�v

e∗. (2.4)

We also define M = {u ∈ ZE : ∀v ∈ V v(u) ∈ 2Z} and its dual N = Hom(M,Z).
Then the graded lattice of the graph is

Mgr = Z ⊕ M,

with the degree map

deg : Mgr = Z ⊕ M → Z,

which is the projection to the first summand. The degree of ω ∈ Mgr is deg(w).

If there is more than one graph in question we will write M(G) for Mgr(G) etc.
Let us use the following notation for the elements of the lattice ZE ∨ dual to the

edges meeting at the vertex v

av := (
iv(e1)

)∗
, bv := (

iv(e2)
)∗

, cv := (
iv(e3)

)∗
,

where {e1, e2, e3} are the edges of and iv : ↪→ G is, as before, a map which is
locally an embedding and sends the central vertex of the to v—an inner vertex
of G . Whenever we use this notation we have a fixed presentation as in (2.1).

Given an element ω in either ZE , M or Mgr, each of av, bv, cv ∈ ZE ∨ measures
the coefficient of ω at an edge incident to v. Then (2.4) becomes

v = av + bv + cv.

Definition 2.15 The degree of ω ∈ Mgr at a vertex v ∈ V (G) is

degv(ω) := 1

2
· (av(ω) + bv(ω) + cv(ω)

)
.

The minimal degree of ω is

degmin(ω) := max
v∈V

{
degv(ω)

}

where πM : Mgr → M is the projection to the second summand.
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The name minimal degree will become clear after we define the cone τ(G).
We identify paths and networks in G with elements of the lattices M and Mgr, by

replacing union with sum in the group ZE .

Definition 2.16 A network in the graded lattice Mgr is a pair ω = (1, a) ∈ Mgr where
a ∈ M is a network.

Lemma 2.17 An element of the lattice M is represented by a labeling of the edges
of G with integers so that the sum at any vertex is even. Thus the lattice M ⊂ ZE is
generated by

(i) networks
(ii) {2e | e ∈ E }.

Proof Let ω ∈ M . By using generators of the second type, we can assume that 0 ≤
av(ω), bv(ω), cv(ω) ≤ 1 for any vertex v. This implies that av(ω) + bv(ω) + cv(ω)

equals 0 or 2 and either two among av(ω), bv(ω), cv(ω) are one or all are zero. This
implies that ω is a network, since it corresponds to a disjoint union of paths. A path
goes through a vertex v means in terms of av(ω), bv(ω), cv(ω) that exactly two of
them are one. �

We define the cone τ(G) of the graph, which is the semigroup defining the model
of the graph as projective spectrum of the semigroup ring, as we will see in Theo-
rem 2.20.

Definition 2.18 For a graph G we define its cone τ = τ(G) ⊂ Mgr as the set of
ω ∈ Mgr which satisfy following inequalities:

(i) av(ω), bv(ω), cv(ω) ≥ 0,
(ii) for any vertex v ∈ V triangle inequalities hold

∣∣av(ω) − bv(ω)
∣∣ ≤ cv(ω) ≤ av(ω) + bv(ω), and

(iii) deg(ω) ≥ degmin(ω).

Remark 2.19 To explain the name minimal degree degmin(ω), note that for any ω in
the cone we have the following equality:

degmin(ω) = min
ω′∈τ

{
deg(ω′) : πM̂(ω′) = πM̂(ω)

}
.

Proof of the remark By part (iii) of the Definition 2.18 of τ for any ω′ ∈ τ satisfying
πM̂(ω′) = πM̂(ω) we have

deg(ω′) ≥ degmin(ω
′) = degmin(ω)

since by definition of degmin(ω) only depends on πM̂(ω). This means

degmin(ω) ≤ min
ω′∈τ

{
deg(ω′) : πM̂(ω′) = πM̂(ω)

}
.
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To prove the equality we will find ω′ ∈ τ with deg(ω′) = degmin(ω). Let us write
ω = (deg(ω),α) as it is an element of Mgr. Recall that degmin(ω) is the maxi-
mum of degv(ω) = 1

2 · (av + bv + cv)(w) over all vertices v of the graph. Thus
ω′ = (degmin(ω),α) is in the cone τ and has the required degree in Mgr. �

Theorem 2.20 The variety X(G) is isomorphic to the toric variety Proj C[τ(G)].

Proof To see this we first observe that each P
3
v in Definition 2.11 of the model X(G)

can be written as ProjC[τ( v)], where each cone

τ( v) = conv(0000,1000,1110,1101,1011)

is a cone over a tetrahedron and is clearly defined by the required inequalities. Next,
taking the product of Pv corresponds by Lemma 1.13 to taking a graded product of
cones. Thus the product cone is defined by required inequalities. Lastly we use the de-
scription of the quotient of a toric variety by a subtorus of the torus in Theorem 1.14.
The subtorus in Definition 2.11 is a product of the C

∗
e over all internal edges. Tak-

ing the quotient with respect to such a torus corresponds to cutting the cone with the
hyperplane of the type a∂1(e) = b∂2(e), which preserves the inequalities. �

2.4 Z-generators of the cone τ(G)

Knowing that the model X(G) is the projective spectrum of the semigroup algebra of
τ(G) means that it is a subvariety of a weighted projective space with weights equal
to the degrees of the chosen generators. When G = T is a tree the cone is generated
in degree 1 so the embedding is into a (straight) projective space P

k = P(1, . . . ,1). In
this case, by [3], we already know all about this cone, see Proposition 2.28 below. It
is represented by its degree one section—a normal lattice polytope Δ(T ) ⊂ 1 × M ,
whose vertices span the cone τ(T ) and the lattice points generate the semigroup.
Our goal is to show that for graphs with the first Betti number one, the semigroup is
generated in degrees one and two.

In order to describe Z-generators of the cone τ(G) we will express elements of
τ(G) in terms of G . We also decompose the graph G into smaller graphs for which
Z-generators of the corresponding cones are easier to find.

We explain that any element ω of the cone τ(G) locally decomposes into paths. In
the graph there are three non-empty paths, each consisting of two edges. Let us
denote them by

x := e2 + e3, y := e1 + e3, z := e1 + e2

where {e1, e2, e3} are edges of .
For an arbitrary G , we know that given an element ω ∈ τ(G) of the cone and a

vertex v ∈ V (G), the numbers av(ω), bv(ω), cv(ω) satisfy the triangle inequalities
and their sum is even. This allows us to, locally at v, rewrite ω as sum of paths x, y

and z. The picture of this decomposition is drawn in Fig. 9.
Our aim is to find the Z-generators by understanding how the graph G was built

from smaller pieces. Each of the operations in Definition 2.5 has a corresponding
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Fig. 9 Local paths around a
vertex

operation on lattices and cones. By Definition 2.11, the model of a disjoint sum of
graphs is the product of the models, so the underlying cone is the graded product of
corresponding cones.

Lemma 2.21 Let G1 and G2 be two trivalent graphs then

Mgr(G1 � G2) = Mgr(G1) ×g Mgr(G2), and

τ(G1 � G2) = τ(G1) ×g τ (G2).

In the definition of X(G) we take a quotient by a torus corresponding to the set of
inner edges. In other words we have translated the operation of gluing of two leaves
of a graph G into taking a quotient by an appropriate C

∗-action of the model X(G).
The following observation says that if we choose to glue some pairs of leaves first
and then the rest of the pairs it does not matter how we partition the set of pairs of
leaves or which order we choose. In all cases the resulting variety is the same.

Lemma 2.22 Let two reductive, commutative groups H1 and H2 and their direct sum
H1 ⊕ H2 act on a projective variety X. Suppose all those actions are linearized with
respect to some ample Weil divisor L. Then

X//(H1 ⊕ H2) = (X//H1)//H2 = (X//H2)//H1,

where the semistable points on X are taken with respect to L and on quotients of X

with respect to the push-forward of L.

We have identified the vertices of G with elements of ZE ∨, see (2.4). We observed
in Remark 2.13 that a leaf l yields a C

∗-action λl on X(G). Given two leaves l1 and
l2 of G , by definition we have

X
(

Gl1
l2
⊃) = X(G)//

(
λl1 × −λl2

)
.

In terms of toric geometry this quotient corresponds to the intersection of τ(G) with
the kernel of l1 − l2, where we treat l1 and l2 as elements of the lattice (Mgr)∨. Thus
the following lemma is a consequence of Theorem 1.14.

Lemma 2.23 Let l1 and l2 be distinct leaves of G . Then

Mgr(Gl1
l2
⊃) = Mgr(G) ∩ ker(l1 − l2),

τ
(

Gl1
l2
⊃) = τ(G) ∩ ker(l1 − l2).
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The reverse operation on graphs is to cut an edge into two new edges. In the next
lemma we explain how this is reflected on the cones and lattices.

Lemma 2.24 Let G be a trivalent graph and e ∈ E \ P an internal edge. As before Ge

is the graph obtained from G by cutting the edge e. Then there are natural embeddings
of the cones and graded lattices:

ie : Mgr(G) ↪→ Mgr(Ge
)
, ie : τ(G) ↪→ τ

(
Ge

)
.

Proof Let

ZE e(G) =
⊕

e′∈E (G)\{e}
Z · e′

be the lattice spanned by all other edges. We can decompose the lattices (ZE )gr(G)

and (ZE )gr(Ge)

ZE (G) = Z ⊕ ZE e(G) ⊕ Z · e,
ZE

(
Ge

) = Z ⊕ ZE e(G) ⊕ Z · e1 ⊕ Z · e2.

Thus we can embed the lattices identifying the first two summands and taking a diag-
onal embedding of the third one: ie := idZ ⊕ idZE e ⊕ΔZ : (ZE )gr(G) ↪→ (ZE )gr(Ge).
To complete the proof we check that ie restricts to the lattices with parity condition
and to the cones.

ZE (G)
ie

ZE (Ge)

Mgr(G)
ie

Mgr(Ge)

ZE (G)
ie

ZE (Ge)

τ (G)
ie

τ (Ge)

We only need to check the parity condition at the ends ∂1(e) and ∂2(e) of the edge e

we cut. By definition e∗
1(ie(e)) = e∗

2(ie(e)), so for any ω ∈ Mgr we have ∂1(e)(ω) =
∂1(e1)(i

e(ω)) and ∂2(e)(ω) = ∂2(e2)(i
e(ω)). In the same way ie preserves all the

inequalities defining cones τ(G) and τ(Ge). �

When the edge e is not a cycle edge, the graph Ge is not connected. We write
Ge = G1 � G2, where G1 (respectively, G2) is the part containing e1 (respectively, e2).
Then we have a projection πe

1 (respectively, πe
2 ) of lattices

πe
1 : Mgr(Ge

) = Mgr(G1) × Mgr(G2) � Mgr(G1)

which restricts to a projection of cones. For a non-cycle edge e ∈ E we denote by ρe
1

(respectively, ρe
2) the composition ρe

1 = πe
1 ◦ ie of the above defined maps.

Remark 2.25 When e ∈ E is not a cycle edge we write Ge = G1 � G2. Then the cone
τ(G) is the following fiber product of the cones ρe

1(τ (G)) = τ(G1) and ρe
2(τ (G)) =
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τ(G2). The same is true for the lattice Mgr(G).

τ(G)

ρe
1

ρe
2

τ(G1)

deg⊕e∗
1

τ(G2)

deg⊕e∗
2

Z ⊕ Z

Mgr(G)

ρe
1

ρe
2

Mgr(G1)

deg⊕e∗
1

Mgr(G2)

deg⊕e∗
2

Z ⊕ Z

Now we turn our attention to our main task of finding the Z-generators of the
cone τ(G).

Lemma 2.26 For any graph G the set of degree one integer points of cone τ(G) is
equal to the set of networks.

Proof If ω ∈ τ is a point in the cone of degree one, then for any vertex v ∈ V ,

1 = deg(ω) ≥ degmin(ω) = max
u∈V

{
degu(ω)

} ≥ degv(ω) ≥ 0.

By definition degv = xv + yv + zv ≥ 0 so exactly one of xv(ω), yv(ω), zv(ω) equals
one and the other two are zero or all are zero. Equivalently exactly two of av(ω),
bv(ω), cv(ω) are one, and the third one is zero, or all are zero. This means that ω is a
network. �

Corollary 2.27 All networks are among the minimal Z-generators of the cone τ(G).

In fact when the graph in question is a tree these are the Z-generators.

Proposition 2.28 [3, §2.1] If G is a trivalent tree, then τ(G) is generated in de-
gree one. Moreover, the generators are exactly networks of paths, which in this case
are determined by their values on the leaves. Thus a generator of τ(G) is identified
with a sequence of 0’s and 1’s of length n(G) with even number of 1’s. As a con-
sequence a model of a trivalent tree with n leaves comes with an embedding into
projective space P

2n−1−1.

Let G be a graph with the first Betti number one. We will describe the genera-
tors of the semigroup τ(G) in this case. We cut all the cycle legs l1, . . . , lk of G and
write Gl1,...,lk = G0 � G1 � · · · � Gk , where G0 is a polygon graph and thus G1, . . . , Gk

are pendant trees (see Definition 2.6). Thus any element ω ∈ τ(G) has a lift ω̃ ∈
τ(G0 � · · · � Gk) = τ(G0) ×g τ (G1) ×g · · · ×g τ (Gk) and components ω̃ =
(ω0,w1, . . . ,ωk), which can be written ωi = ρli (ω).

Theorem 2.29 Let G be a trivalent graph with the first Betti number exactly one. Any
element ω ∈ Mgr(G) is a minimal Z-generator of τ(G) if and only if it satisfies one of
the following conditions:
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Fig. 10 Generators of the cone of the LittleMan graph

(i) ω has degree one and ω is a network, or
(ii) ω has degree two, and satisfies the following three conditions determining w0:

e∗(ω) = 1, for all cycle edges e ∈ E \ L,

e∗(ω) = 2, for an odd number of cycle legs,

e∗(ω) = 0, for the remaining cycle legs.

Each of the remaining components ωi ∈ τ(Gi ) is an element of degree at most
two.

We postpone the proof until we prepare for it with some lemmas. The idea of the
proof is to use Lemma 2.24 in order to remove the pendant trees G1, . . . , Gk and work
only with the polygon graph G0. Lemma 2.33 describes all the degree two points of
the cone of a polygon graph and distinguishes the generators among them.

Example 2.30 In Fig. 10 we illustrate the generators of the cone associated to the
graph LittleMan (one of the two graphs with one cycle and two leaves). The first four
are of degree one, the remaining three are of degree two.

Lemma 2.31 (Decomposition propagates to pendant trees) Let G be any trivalent
graph and ω ∈ τ any cone element. Let us also fix a non-cycle edge e ∈ E \ P such
that Ge is a tree, where Ge = G1 � G2. Then any decomposition of ρe

1(ω) lifts to a
decomposition of ω.

Proof First note that both ρe
1 and ρe

2 preserve the degree, so an element ω of degree
d in τ(G) yields ω1 ∈ τ(G1) and ω2 ∈ τ(G2) both of degree d . The semigroup of a
tree is generated by networks, which are degree one elements, see Theorem 2.28. This
means that ρe

2(ω) is a sum of degree one elements. Thus if ρe
1(ω) can be decomposed,

then the same decomposition works for ω by choosing an appropriate grouping of the
summands of ρe

2(ω), because the degrees are preserved. �

Corollary 2.32 In the proof of Theorem 2.29 we can assume that the graph is a
polygon graph.

Proof A graph with one cycle is a polygon graph with a tree attached to each cycle
leg l1, . . . , lk . We cut all the cycle legs to obtain k+1 pieces of the graph G : a polygon
graph G0 and k trees: G1, . . . , Gk . We denote by ρ0 the composition of projections for
each leg that we cut ρ0 = ρ

l1
0 ◦ · · · ◦ ρ

lk
0 . Iteratively using Lemma 2.31 to decompose

ρ0(ω) we decompose ω. �
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Fig. 11 Decomposition of a
degree two element with a
weight zero cycle edge

Fig. 12 Decomposition of a
degree two element with all
cycle edges of weight two

Lemma 2.33 (Degree two elements of the semigroup) Let G be a graph with exactly
one cycle. Any degree two element of τ(G) except those in Theorem 2.29(ii) is a sum
of two networks.

Proof By Corollary 2.32 we may assume G is a polygon graph. Let ω ∈ τ(G) be a
degree two element. The coefficient e∗(ω) of ω on any edge e ∈ E is 0,1 or 2. We
denote by

ωE \P := {
e∗(ω) | e ∈ E \ P

}

the set of coefficients of ω on the cycle edges. We distinguish between four types of
ω based on ωE \P . For all but one we decompose ω as a sum of two networks.

If 0 ∈ ωE \P , there exists a cycle edge e ∈ E (G) with e∗(ω) = 0. We can cut it
with no harm to ω, since ie(ω) ∈ τ(Ge) is a degree two element in a cone of the
trivalent tree Ge, so it can be decomposed into a sum of degree one elements. This
decomposition can be lifted to τ(G), as we assumed e∗(ω) = 0. In Fig. 11 we show
an example of this situation.

The second case is ωE \P = {2}, that is, e∗(ω) is 2 on all cycle edges. As ω has
degree two, we know that degv(ω) ≤ 2 and as a consequence

e∗(ω) =
{

2, if e is a cycle edge,

0, otherwise, i.e. e is a cycle leg.

Thus ω is twice the network consisting of all the cycle edges, as in the example in
Fig. 12.

For the last two cases we let l1, . . . , lp be the set of all cycle legs with l∗i (ω) 	= 0
ordered anticlockwise and indexed by elements of Zp . Also we denote by i � j the
path that starts at li and goes anticlockwise along the intermediate cycle edges to lj
and ends there.

In the third case ωE \P = {1} and we will show that ω can be decomposed into a
sum of two networks if and only if the number of cycle legs for which ω has a coef-
ficient 2 is even. Suppose we have decomposed ω = ω1 + ω2 into a sum of networks
and neither ω1 nor ω2 contains the path consisting of all cycle edges (in which case
the other one would be an empty network). Then both ω1 and ω2 contain a positive
even number of legs. Any path in ω1 (respectively, ω2) is of the type i � i + 1, from
the cycle leg li to the next one. If the end was not the next one, there would be a path
in ω2 (respectively, ω1) containing an intermediate leg and as a result there would be
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Fig. 13 Typical generator of degree two and a decomposition of a degree two element with all cycle edges
of weight one

Fig. 14 Element of degree two
has even number of one-legs
between consecutive two-legs

Fig. 15 Decomposition of a
degree two element with even
number of two-legs

a cycle edge e with ω(e) = 2, but ωE \P = {1}. Moreover, both ω1 and ω2 contain
all non-zero cycle legs, each with value 1, because they are both of degree 1 and in
the cone we have deg(ω) ≥ degmin(ω). This is only possible when the number p of
non-zero cycle legs is even, and in that case we have the obvious decomposition with
ω1 = i1 � i2 + · · · + ip−1 � ip and ω2 = i2 � i3 + · · · + ip � i1. Otherwise ω is a
generator. Examples both of these situations are drawn in Fig. 13.

In the last case ωE \P = {1,2}. When l∗(ω) = 2 we call l a two-leg. Denote by
li1, . . . , liq the subsequence of two-legs, numbered in such way that traveling along
the cycle anticlockwise from liq to li1 there is a one-leg, provided that ω has some
one-legs. We observe that the number of one-legs between two consecutive two-legs
is always even. This is best explained by drawing the picture from Fig. 14, where the
arcs are our xv, yv, zv’s introduced in Fig. 9. If there would be only zero-legs where
the first dots are, the local paths would not agree on some cycle edge.

The decomposition ω = (1,ω1) + (1,ω2) depends on the parity of q , which is the
number of two-legs. We first work out the case when q = 2r is even; the odd case uses
the same idea with small modifications. Figure 15 visualizes how the decomposition
is constructed in the case of q = 4.

First we place all paths connecting two consecutive two-legs starting at a leg with
an even (respectively, odd) index into ω1 (respectively, ω2). Then, to take care of the
one-legs, we add paths between consecutive one-legs lying between li2j

and li2j+1 for
some j ∈ {1, . . . , p} to ω1. Thus we get

ω1 = i1 � i2 + (i2 + 1) � (i2 + 2) + · · · + (i3 − 2) � (i3 − 1)

+ i3 � i4 + (i4 + 1) � (i4 + 2) + · · · + (i5 − 2) � (i5 − 1)

+ · · ·
+ i2r−1 � i2r + (i2r + 1) � (i2r + 2) + · · · + (i1 − 2) � (i1 − 1).



J Algebr Comb (2012) 35:421–460 445

Fig. 16 Decomposition of a
degree two element with odd
number of two-legs

Similarly we add paths between consecutive one-legs lying between li2j−1 and li2j
for

some j ∈ {1, . . . , p} to ω2. So we can write

ω2 = i2 � i3 + (i3 + 1) � (i3 + 2) + · · · + (i4 − 2) � (i4 − 1)

+ i4 � i5 + (i5 + 1) � (i5 + 2) + · · · + (i6 − 2) � (i6 − 1)

+ · · ·
+ i2r � i1 + (i1 + 1) � (i1 + 2) + · · · + (i2 − 2) � (i2 − 1).

Clearly those paths in ω1 (resp. ω2) are disjoint, so both are networks and by con-
struction they yield a decomposition of our ω.

When the number q of two-legs is odd we need to adjust the above decomposition.
Again, we draw an example in Fig. 16 for q = 3.

As there is an odd number of two-legs, we will use two consecutive one-legs lying
between liq and li1 to make up for the missing two-leg, and we proceed as before to
get

ω1 = i1 � i2 + (i2 + 1) � (i2 + 2) + · · · + (i3 − 2) � (i3 − 1)

+ i3 � i4 + (i4 + 1) � (i4 + 2) + · · · + (i5 − 2) � (i5 − 1)

+ · · ·
+ i2r−1 � i2r + (i2r + 1) � (i2r + 2) + · · · + (i2r+1 − 2) � (i2r+1 − 1)

+ i2r+1 � i1 − 1

and

ω2 = i2 � i3 + (i3 + 1) � (i3 + 2) + · · · + (i4 − 2) � (i4 − 1)

+ i4 � i5 + (i5 + 1) � (i5 + 2) + · · · + (i6 − 2) � (i6 − 1)

+ · · ·
+ i2r � i2r+1 + (i2r+1 + 1) � (i2r+1 + 2) + · · · + (i1 − 4) � (i1 − 3)

+ i1 − 2 � i1.

This ends the proof of the lemma about the decomposable degree two elements of the
cone. �

Proof of Theorem 2.29 The proof yields an algorithm for decomposing an arbitrary
element ω of the cone τ(G) into a sum of degree one and two generators. By Corol-
lary 2.32 we only need to prove the theorem when G is a polygon graph. First we
fix an orientation of the cycle of G and we call it anticlockwise in order to think of a
planar embedding of the graph. Let ω ∈ τ(G). We will find an element μ of degree
at most two, such that ω − μ ∈ τ(G). Let v be a vertex and lv the cycle leg attached
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to it. We choose a map iv : → G so that the edge e3 is mapped to lv , the edge e2

is mapped to the edge which points anticlockwise from v, and the edge e1 is mapped
to the edge which points clockwise from v. In this notation the coefficient of ω at lv
is measured by cv and the coefficient of the edge anticlockwise (respectively, clock-
wise) from v is measured by av (respectively, bv). We will also use the local paths
xv, yv, zv defined in Fig. 9.

Now we are ready to describe the algorithm to find μ.

Step 1. If there is a cycle edge e with e∗(ω) = 0, we cut e and obtain the graph
Ge which is a trivalent tree. Thus ρe(ω) is a sum of networks of paths and this
decomposition lifts to graph G .

Step 2. Otherwise e∗(ω) ≥ 1 on all cycle edges e. We set μ to have value 1 on every
cycle edge. Equivalently μ is defined by setting at every cycle vertex zv(μ) = 1,
xv(μ) = 0, yv(μ) = 0. Now if ω−μ ∈ τ(G) we are done. Otherwise ω−μ fails one
of the inequalities defining τ(G). It is not the one with degrees, since for each vertex
v ∈ G we have degv(μ) = 1, which implies degmin(ω − μ) ≤ deg(ω) − deg(μ) =
deg(ω−μ). Clearly all coefficients of ω−μ are positive. Thus at some vertex v ∈ V
our ω − μ fails one of the triangle inequalities.

Step 3. We will adjust μ to fix the triangle inequalities for ω − μ. If a triangle
inequality for ω − μ at v fails, then this is because zv(ω) = 0. In such a case
we set μ(lv) = 2, which will not make any coefficient of ω − μ negative pro-
vided cv(ω) ≥ 2. But since av(ω), bv(ω) ≥ 1 and zv(ω) = 0 we must have xv(ω),

yv(ω) ≥ 1. This implies cv(ω) ≥ 2 as required. In terms of xv, yv, zv we have de-
creased zv(μ) by one and increased both xv(μ) and yv(μ) by one.

Step 4. The last step adjusts μ to ensure the additivity of degree where it is attained,
i.e. for any v such that degv(ω) = deg(ω) we need degv(μ) = 2 since deg(μ) = 2.
This is to ensure ω − μ ∈ τ . We call v degree deficient vertex if degv(ω) = deg(ω)

and degv(μ) = 1.
If v is degree deficient and in addition xv(ω) > 0 and yv(ω) > 0 we set xv(μ) =
yv(μ) = 1 and zv(μ) = 0.
If v is degree deficient and both xv(ω) = yv(ω) = 0 are zero, then zv(ω) = degv(ω),
so at both next and previous cycle vertex the degree is attained

degvnext
(ω) = degvprev

(ω) = deg(ω)

since path matching gives

zvnext + yvnext = zv + xv = deg(ω) = zv + yv

= zvprev + xvprev . (2.5)

If all degree deficient vertices were of this type, then ω would be a multiple of the
path consisting of all cycle edges.
Now we divide the set of all deficient vertices (which all have at least one of xv(ω)

or yv(ω) equal to zero) into sequences of adjacent ones. Let us fix our attention to
such a sequence (we have already excluded the case when it has the same end and
beginning). Call it v1, . . . , vr . All vi ’s are degree deficient so deg(ω) = degvi

(ω).
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Fig. 17 Example of a degree
three generator

The last one has yvr (ω) > 0 by (2.5)

deg(ω) = zvr−1(ω) = yvr (ω) + zvr (ω) ≤ zvr (ω) < deg(ω).

In the same way xv1(ω) > 0. Finally all the middle ones have zvi
(ω) > 1. This

implies that we can redefine μ on our fixed sequence v1, . . . , vr preserving all other
properties and fixing the degree deficiency:

xv1(μ) = 1, xvi
(μ) = 0, xvr (μ) = 0,

yv1(μ) = 0, yvi
(μ) = 0, yvr (μ) = 1,

zv1(μ) = 1, zvi
(μ) = 2, zvr (μ) = 1

where i ∈ {2, . . . , r − 1}. We do this for all such sequences and we have the re-
quired μ.

Now μ is an element of degree two and is either a generator or can be decomposed
into a sum of two generators in degree one, as described in Lemma 2.33. �

Remark 2.34 If we allow more cycles, we can have generators of higher degree.
As we can see in Fig. 17 the graph with two loops and one leaf has a degree three
generator: one on the two loops, two on the three other edges.

2.5 Embedding

The aim of this section is to find a common ambient space for phylogenetic models
of all graphs with the same topological invariants. The way to construct this ambient
space follows easily form the definition of the model.

Theorem 2.35 The phylogenetic model of a trivalent graph G embeds in a projective
toric variety Pg,n, which is a good quotient of projective space by an action of a g-
dimensional torus. This action as well as the variety Pg,n depends only on the first
Betti number and number of leaves of G , up to reordering of coordinates.

Proof Models of trivalent trees with N leaves embed naturally in P
2N−1−1 with coor-

dinates xκ where κ ∈ {0,1}N is a sequence of length N with values in {0,1} and even
number of 1-entries, see Proposition 2.28. We cut g cycle edges of the graph G so we
obtain a trivalent tree T with set S of N = n + 2g leaves. Dividing P

2N−1−1 by the
action of the g-dimensional torus T(g,n) corresponding to gluing these leaves back
together yields the required embeddings.

We will now explain why this action does not depend on the graph G , up to choice
of coordinates on P

2N−1. Let us label the set of leaves by 1, . . . ,N and divide it into
three disjoint sets S = S0 � S1 � S−1 as follows. S0 is the set of leaves of the original
graph G . The 2g new leaves of T come in pairs (l, l−), where both l and l− used to
be the same edge in G . We put l in S1 and l− in S−1.
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Fig. 18 Obtaining LittleMan
graph from a four-leaf tree

The action of the g-dimensional torus T(g,n) on P
2N−1−1 is given by a matrix

{
ζ l
κ

}l=1...g

κ∈{0,1}N , where ζ l
κ = κl − κl− .

Thus this action is independent of the shape of G and depends only on (g,n) up to
choice of order of coordinates. �

We will now illustrate Theorem 2.35.

Example 2.36 We describe X( ), the model of LittleMan, together with its embed-
ding into P1,2. We know that the model of a trivalent tree is a complete intersection
of two quadrics, see [3, Example 2.6],

(x1100x0011 − x0000x1111, x1001x0110 − x1010x0101)

⊂ Proj C[x0000, x1100, x0011, x1111, x1010, x1001, x0101, x0110] (2.6)

where each variable xκ corresponds to a degree one generator τ( ). By Proposi-
tion 2.28 a generator is given by its values on the leaves, which form the index
κ ∈ {0,1}4.

To obtain X( ), we glue two leaves, say leaf e1 is glued with the leaf e2 to get the
loop in LittleMan as shown in Fig. 18.

Now X( ) is a GIT-quotient of X( ) by the action λe1−e2 .
In the same way it embeds in a GIT-quotient of P

7. One easily sees that

P
7//C

∗ = V (y1 · y2 − z1 · z2) ⊂ P
(
14,24)

where

P
(
14,24) = Proj C[x0000, x1100, x0011, x1111, y1, y2, z1, z2]

is a weighted projective space and

y1 = x1001 · x0110, y2 = x1010 · x0101,

z1 = x1010 · x0110, z2 = x0101 · x1001

are the C
∗-invariant variables of degree two. From Theorem 1.6 it follows that X( )

is given by (2.6) of X( ) in P
7, rewritten in the coordinates of P

7//C
∗. The second

one becomes y1 − y2 = 0, so

X( ) = ProjC
[
τ( )

] = V
(
x1100x0011 − x0000x1111, y

2
1 − z1z2

) ⊂ P
(
14,23

)

‖⋂
V (y1 − y2)⋂

P1,2 = P
7//C

∗ = V (y1y2 − z1z2) ⊂ P
(
14,24

)
.
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Fig. 19 Ideal of the model LittleMan graph

Fig. 20 Obtaining Hammock
graph from a four-leaf tree

Fig. 21 Ideal of the model of
the Hammock graph

If we replace each variable in the equations of X( ) by its representation on the
graph, we get the picture from Fig. 19.

Example 2.37 To complete the example of Theorem 2.35 for graphs with g = 1 and
n = 2, which models embed in P1,2, we will find the equations of X( )—the model
of Hammock. We use the same action λl1−l2 , but we change the embedding X( ) ↪→
P

7 by relabeling the leaves as in Fig. 20.
As the labeling of was modified, (2.6) becomes

V (x1010x0101 − x0000x1111, x1001x0110 − x1100x0011) ⊂ P
7.

As before rewrite it in the invariant coordinates of P(14,24) to get

X( ) = Proj C
[
τ( )

] = V (x0000x1111x1100x0011 − z1z2) ⊂ P(14,22)

‖⋂
V (y1 − x0000x1111, x1100x0011 − y2)⋂

P1,2 = P
7//C

∗ = V (y1y2 − z1z2) ⊂ P
(
14,24

)
.

If we replace each variable in the degree four equation of X( ) by its represen-
tation on the graph, we get the picture shown in Fig. 21.

3 Flat families

Models of trivalent trees that differ by one mutation live in a flat family in a projec-
tive space [3]. This statement almost remains true for trivalent graphs, by the same
argument. The only difference is that we get a family in the projective toric variety
Pg,n instead of a usual projective space.

Recall that in Remark 2.13 we have associated to a subset of leaves S ⊂ L with k

elements an action of the k-dimensional torus T(S) on the model X(G).
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Fig. 22 Mutations of graphs with one cycle and two leaves

3.1 Key examples

We construct two-dimensional flat families containing models of small graphs. They
become the building blocks for deformations of bigger graphs.

Example 3.1 (g = 0, n = 4) Let be a trivalent tree with four leaves. In [3, Example
2.20] we constructed a flat family

X 0 ↪→ B × P
7,

where

• B is an open subset of P
2 with coordinates b(1,2)(3,4), b(1,3)(2,4), b(1,4)(2,3),

• the torus T(L) acts on B × P
7 via the second coordinate, that is, for a leaf l of

and coordinate xκ we have λvi
(t)(b(.)(.), xκ) = (b(.)(.), t

κ(l)xκ),
• the equidimensional projection X 0 → B contains the three special fibers X 0

[1,0,0],
X 0

[0,1,0] and X 0
[0,0,1] which are models of aforementioned four-leaf trees,

• X 0 is a T(L)-invariant complete intersection in B × P
7 of the two quadrics

b(12)(34) · x1100x0011 + b(13)(24) · x1010x0101 + b(14)(23) · x1001x0110

− (
b(12)(34) + b(13)(24) + b(14)(23)

) · x0000x1111
(
b(13)(24) − b(14)(23)

) · x1100x0011 + (
b(14)(23) − b(12)(34)

) · x1010x0101

+ (b(12)(34) − b(13)(24)) · x1001x0110.

Example 3.2 (g = 1, n = 2) We construct a family which contains models of graphs
with one cycle and two leaves. It arises as a C

∗-quotient of the family X 0 ↪→ P
7

from Example 3.1. Let us fix a C
∗-action λl1−l2 on the ambient P

7, thus on X 0 and
tree models as well, by choosing leaves l1 and l2 labeled by 1 and 2, respectively.
Each of the three trees yields a graph, when two leaves are glued together. Up to
graph isomorphism, there are two graphs with one cycle and two leaves. As we are
mutating along fixed edge, the LittleMan appears once and the Hammock twice. The
picture of the three possible trees becomes the one in Fig. 22.

The new ambient space P
7//C

∗ = (y1 · y2 − z1 · z2) ⊂ P(14,24) was discussed in
Example 2.36.

By Theorem 1.6, the new family X 0//C
∗ is given by the same, T(S)-invariant

equations of X 0. We rewrite them in the (invariant) coordinates of P(14,24)

b(12)(34) · x1100x0011 + b(13)(24) · y2 + b(14)(23) · y1

− (b(12)(23) + b(13)(24) + b(14)(23)) · x0000x1111,
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Fig. 23 Behavior of coordinates of P1,2 under mutations

(b(23)(14) − b(14)(23)) · x1100x0011 + (b(14)(23) − b(12)(34)) · y2

+ (b(12)(34) − b(23)(14)) · y1,

y1 · y2 − z1 · z2.

To understand how this works a little better, let us look at particular coordinate of
P(14,24), say y2 = x1001x0110, and draw in Fig. 23 its representation for each graph.

3.2 General case

We construct a flat family containing models of all mutations of a given trivalent
graph G along a fixed edge e ∈ E \ P . We follow [3, Const. 3.5] replacing polytopes
by cones.

Let G be a graph with an inner edge e0 which contains two trivalent inner vertices.
We can write G as a sum of a not necessarily connected graph G1 with a set S of k

distinguished leaves l1, . . . , lk with k ∈ {0, . . . ,4} and a graph G0 having the edge e0
as its inner edge and G0 is one of the following three small graphs:

(i) a tree with four leaves v1, . . . , v4, where the edge incident to the leaf li is
identified with the edge incident to the leaf vi ,

(ii) LittleMan or Hammock —a graph with four edges and two leaves v1 and
v2,

(iii) Dumbell a graph with three edges and two loops and no leaves.

From Proposition 2.21 we can compute the lattice Mgr(G) and the cone τ(G) from
those of the pieces G0 and G1

Mgr(G) = Mgr(G0) ×g Mgr(G1) ∩
k⋂

i=1

ker(�i − vi),

τ (G) = τ(G0) ×g τ (G1) ∩
k⋂

i=1

ker(�i − vi).

We consider the lattice M
gr
amb and the cone τamb, which are the combinatorial data

of the ambient space Pg(G0),n(G0) described by Theorem 2.35, Example 2.36 and Ex-
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ample 2.37. The inclusion X(G0) ⊂ Pg(G0),n(G0) yields maps: M
gr
amb → Mgr(G0) and

τamb → τ(G0). Forms vi , i = 1, . . . k pull-back to M
gr
amb and we denote them by ṽi ,

respectively. Now we define

M
gr

Y = M
gr
amb(G0) ×g Mgr(G1) ∩

k⋂

i=1

ker(�i − ṽi ),

τY = τamb(G0) ×g τ (G1) ∩
k⋂

i=1

ker(�i − ṽi ).

We define a toric variety Y = Proj C[τY ]. Since the good quotient is a categorical
quotient, by the construction we have the embedding

X(G) ↪→ Y .

Lemma 3.3 The inclusions

M
gr

Y ↪→ M
gr
amb × Mgr(G1) and τY ↪→ τamb × τ(G1)

induce a rational map

Pg(G0),n(G0) × X(G1) ��� Y

which is a good quotient map (of the set over which it is defined) with respect to
the action of the k-dimensional torus T0 generated by one-parameter groups λvi−�i

,
where i = 1, . . . k. The subvariety

X̂ = X 0 × X(G1) ↪→ B × P
7 × X(G1)

is T0 × T(X(G1))-invariant and its quotient X is locally complete intersection in
B × Y .

Proof The map given by inclusions of cones and lattices is a good quotient map by
Theorem 1.14. Invariance of the resulting subvariety X̂ follows by the invariance
of X 0 ↪→ B × P

7 discussed in Example 3.1. The map is also clearly equivariant
with respect to the big torus T(X(G1)) of X(G1). Finally, since X̂ is a complete
intersection in B × P

7 × X(G1) its image X is a locally complete intersection in the
quotient B × Y . This follows from the definition of good quotient, which locally is an
affine quotient [1, Chap. 5], hence functions defining X̂ locally descend to functions
defining X . �

Lemma 3.4 Over an open set B′ ⊂ P
2 containing points [1,0,0], [0,1,0], [0,0,1]

the projection morphism X → B′ is flat. The fibers over points [1,0,0], [0,1,0],
[0,0,1] are reduced and isomorphic to, respectively, the geometric model of G and
of its elementary mutations along the edge e0.

Proof First we note that the fibers in question, X[∗,∗,∗], of X → B are geometric mod-
els as we claim. Indeed this follows from the universal properties of good quotients,
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cf. [1], as they are quotients of the respective products X 0[∗,∗,∗] × X(G1), which are

located, as three invariant subvarieties, in X̂ = X 0 × X(G1). This, in particular, im-
plies that the respective fibers of X → B are of the expected dimension, hence they
are contained in a set B′ ⊂ P

2 over which the map in question is equidimensional.
Since Y is toric it is Cohen–Macaulay and because X is a locally complete intersec-
tion in Y , it is Cohen–Macaulay too [4, Proposition 18.13]. Finally, the map X → B′
is equidimensional hence it is flat, because B′ is smooth, see [4, Theorem 18.16]. �

Theorem 3.5 Geometric models of connected trivalent graphs with the same num-
ber of leaves n and cycles g are deformation-equivalent in the projective toric variety
Pg,n, which is a quotient of P

2n+2g−1−1 by a g-dimensional torus. Moreover, the de-
formations are invariant with respect to the action of the torus T(L) corresponding
to the leaves of the graph.

Proof This is a combination of Proposition 2.10 and of Lemma 3.4. The T(L)-
equivariant property follows from Lemma 3.4 and Theorem 2.35; see also the dis-
cussion in the proof of Theorem 4.5. �

Remark 3.6 Since the phylogenetic model of disjoint union of graphs is a product
of the models of the pieces, see Lemma 2.21, we have proved that models of graphs
with the same topological invariants are deformation-equivalent.

4 Hilbert function of the model

As we mentioned in Sect. 3, given a projective variety embedded in a projective
space we have Hilbert function coming from the grading of the coordinates ring,
or equivalently from the action of the one-dimensional torus C

∗. If our projective
variety is equipped with an action of a bigger torus it is natural (see [8]) to consider a
multigraded Hilbert function, whose domain consists of the characters of the torus.

We study multigraded Hilbert function of an embedded projective toric variety
with the multigrading given by a subtorus of the big torus. For the graph model X(G)

the subtorus comes from a subset of leaves. We prove in Theorem 4.5 that the Hilbert
function depends only on the topological invariants of the graph by showing that de-
formations constructed in the proof of Theorem 3.5 preserve the whole Hilbert series.
As tools we use Lemma 4.3 to compute the Hilbert series of a torus invariant com-
plete intersection. Lemma 4.4 gives the formula for the Hilbert series of a quotient
of a toric variety by a subtorus of the big torus. We first state them in the algebraic
setting.

4.1 Ring with a torus action

Let R be a commutative C-algebra with an action of a torus T. Let MT = {χ : T →
C

∗} denote the group of characters of the torus T. Then we can write

R =
⊕

χ∈MT

Rχ



454 J Algebr Comb (2012) 35:421–460

as a sum of isotypical pieces indexed by the characters of the torus. We assume that
each Rχ has finite dimension over C. Then its Hilbert function HR,T : MT → N is

HR,T(χ) := dimRχ.

The Hilbert series is the generating series of HR,T

hR,T(t) :=
∑

χ∈MT

dimRχ · tχ .

Lemma 4.1 Let R = ⊕
χ∈MT

Rχ be a ring with a torus action. If f1, . . . , fq are
homogeneous with fi ∈ Rχi

and form a regular sequence in R, then

hR/〈f1,...,fq 〉,T(t) = hR(t) · (1 − tχ1
) · · · · · (1 − tχq

)
.

Proof The statement for the single graded Hilbert series is explicitly given in [19,
Corollary 3.2]. Its multigraded, more general, version with minor additional assump-
tion can be found in [14, Claim 13.38]. The lemma follows by induction on the length
of the regular sequence. For any homogeneous f ∈ Rχf

which is not a zero divisor
in R and any χ ∈ M we have the exact sequence of T-modules

0 Rχ−χf

f ·
Rχ (R/(f ))χ 0,

which implies that

HR/(f )(χ) = dim
(
R/(f )

)
χ

= dimRχ − dimRχ−χf
= HR(χ) − HR(χ − χf ).

This is equivalent to the required equality for Hilbert series. �

Given a subtorus ι : S ↪→ T we have the corresponding epimorphism of the charac-
ter groups ι∗ : MT � MS and we can form the S-invariant subring RS of R equipped
with the residual action of the quotient torus T/S

RS =
⊕

χ∈MT/S

Rχ.

Then we have the following formula for the Hilbert series.

Lemma 4.2 Let R be a ring equipped with an action of a torus T and let ι : S ↪→ T

be a subtorus. Then the Hilbert series of the invariant ring RS is

hRS,T/S =
∑

χ∈ker ι∗
tχ dimRχ,

where ι∗ : MT � MS is the dual map of the character groups.
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4.2 Toric variety with a distinguished subtorus

Let X = ProjR be a projective toric variety of dimension d with an ample Weil
divisor L where R = ⊕

m∈N
Rm = ⊕

m∈N
H 0(X,mL) as in Sect. 1.3. Then R has an

action of a d + 1 dimensional torus which is the product of the d-dimensional torus
T of X and the C

∗ from the grading. Any subtorus S ↪→ T of dimension r induces
a Z

r+1-sub-grading. Then its multigraded Hilbert function HX,S : MC∗×S → N with
respect to S is

HX,S(χ) := HR,S(χ) = dimRχ.

The generating series of hR,S is the multigraded Hilbert series with respect to S

hX,S(t) := hR(t) =
∑

χ∈MS

dimRχ · tχ .

We have the following corollary of Lemma 4.1.

Corollary 4.3 Let Y = ProjR be a projective toric variety with an action of an r-
dimensional subtorus S ⊂ T of the big torus. Let us assume that X ⊂ Y is an S-
invariant complete intersection in Y given by the ideal I (X) = 〈f1, . . . , fq〉, where
degfi = χi . Then the S-graded Hilbert series of X is

hX,S(t) = hY (t) · (1 − tχ1
) · · · · · (1 − tχq

)
.

The next statement is a corollary of Lemma 4.2 by using the description of the
quotient as the spectrum of invariants given in Theorem 1.6.

Lemma 4.4 Let X = ProjR be a projective toric variety with a subtorus ι : S ↪→ T

of the big torus as before. We assume that both actions are linearized with respect
to the ample Weil divisor L. Let ι∗ : MT � MS be the corresponding surjection of
character lattices. Then

hX//S(t0, t1, . . . , tr ) =
∑

χ∈τ(X)∩ker ι∗
tχ · dimRχ.

We combine the above facts to get the equality of the Hilbert series of models of
mutation-equivalent graphs.

Theorem 4.5 Let G1 and G2 be mutation-equivalent graphs and S1 (respectively, S2)
be a subset of leaves of G1 (respectively, S2). Assume that |S1| = |S2|. Then the multi-
graded series with respect to the tori associated to those sets of leaves are equal

hX(G1),T(S1) = hX(G2),T(S2).

Proof Since they are mutation-equivalent by Lemma 2.10 we can assume the se-
quence of mutation takes the set S1 to the set S2. We can assume G1 and G2 differ
by one mutation. In Sect. 3.2 we have constructed a flat family which is a complete
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intersection having the models X(G1) and X(G2) as fibers. Because both those mod-
els are complete intersections of the same type in the same ambient space by using
Lemma 4.3 we conclude that the Hilbert series are equal. �

We illustrate Theorem 4.5 on examples.

Example 4.6 We compute the Hilbert series for the models of graphs with two leaves
and the first Betti number one X( ) and X( ). As we saw in Example 2.30, using
the notation of Example 2.36, the cone τ( ) has generators of the following multi-
degrees:

Coordinate x0000 x1100 x0011 x1111 y1 z1 z2

Degree (1,0,0) (1,0,0) (1,1,1) (1,1,1) (2,1,1) (2,2,0) (2,0,2)

As a consequence X( ) is a complete intersection in P(14,23) of a quadric
x1100x0011 − x0000x1111 of multidegree (2,1,1) and a quartic y2

1 − z1z2 of multi-
degree (4,2,2). Thus

hX( ),L( )(t, s1, s2) = (1 − t2s1s2) · (1 − t4s2
1s2

2)

(1 − t)2 · (1 − ts1s2)2 ·(1 − t2s1s2) · (1 − t2s2
1) · (1 − t2s2

2)
.

Ignoring the multigrading by the two-dimensional torus spanned by leaves (by setting
s1 = s2 = 1) we get

hX( )(t) = (1 − t2) · (1 − t4)

(1 − t)4 · (1 − t2)3
= 1 + t2

(1 − t)4 · (1 − t2)
.

We have seen in Example 2.37 that τ( ) has six generators: those are the elements
in the above table for apart from y1. The model X( ) is a hypersurface of degree
(4,2,2) in P(14,22) so

hX( ),L( )(t, s1, s2) = (1 − t4s2
1s2

2)

(1 − t)2 · (1 − ts1s2)2 · (1 − t2s2
1) · (1 − t2s2

2)

= hX( ),L( )(t, s1, s2).

Again we can ignore the multigrading and get

hX( )(t) = (1 − t4)

(1 − t)4 · (1 − t2)2
= 1 + t2

(1 − t)4 · (1 − t2)
.

We expand to see the first few terms

hX( )(t) = 1 + 4t + 12t2 + 28t3 + 57t4 + 104t5 + 176t6 + 280t7 + O
(
t8).
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Fig. 24 Caterpillar graph

Example 4.7 The Hilbert series of models of both graphs and with no leaves (thus
no additional grading) and two cycles is

hX( )(t) = hX( )(t) = 1

(t4 − 4t3 + 6t2 − 4t + 1)

= 1 + 4t + 10t2 + 20t3 + 35t4 + 56t5

+ 84t6 + 120t7 + O
(
t8).

This is because X( ) is P
3 = (P3 × P

3)//(C∗ × C
∗ × C

∗).

4.3 Computing the Hilbert function

Given a trivalent tree T with n leaves we computed the Hilbert function HX(T ) of its
model in [3] as

HX(T ),S({l})(m, k) = 1�n
m (k)

where the additional grading corresponds to a distinguished leaf l, � is an appro-
priate summing formula and 1m is the constant function. This inductive formula for
HX(T ) uses the decomposition of the tree T as a sum of tripods, which leads to the
presentation of the polytope Δ(T ) as a fiber product of tetrahedrons Δ( ).

The same method works for any trivalent graph. We proved in Theorem 4.5 that the
Hilbert functions of mutation-equivalent graphs are equal. By Lemma 2.10 we know
that any graph is mutation-equivalent to a graph of the shape depicted in Fig. 24.

This means we have reduced the calculation to the case of caterpillar graphs. As
we have described in Sect. 2.1, any graph is presented as union of tripods with
identifications. More precisely, any trivalent graph is built from by the operations
of grafting two graphs and gluing two leaves.

Remark 4.8 To produce a caterpillar graph G from |’s (leaves) and ’s (leaves with
loop) using � and ⊃, we need the second operation only once per graph and only in
the case when G has no leaves.

Remark 4.9 On the level of graph models we have

X(G1 � G2) = (
X(G1) × X( ) × X(G2)

)
//(C∗)2
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and

X
(

Gl1
l2
⊃) = X(G)//C

∗

where the actions of the tori were described in Sect. 2.4.

We give a formula for hX(G1�G2),S(L(G1�G2)) and for h
X(Gl1

l2
⊃),S(L(Gl1

l2
⊃)

, using the

above fact about how the model of G1 � G2 is constructed from smaller pieces.

hX(G1�G2),S(L(G1�G2))
= hX(G1),S(L(G1))

� hX(G2),S(L(G2))

:= the part containing monomials of the form (t1t2t3)i (s′)0(s′′)0(s′′′)j sI of

hX(G1)

(
t1, s1, . . . , sn1 ,

1
s′

)
· hX( )(t3, s′, s′′, s′′′) · hX(G2)

(
t2, sn1+1, . . . , sn1+n2 ,

1
s′′

)

(4.1)

where s = (s1, . . . , sn2) and I is the exponent vector.
Let us compute the input functions: apart from the constant one which corresponds

to leaves of G we have HX( ),S({l}) the Hilbert function of the model of graph with
two edges. Recall that the model X( ) is P

3//C
∗ = P(1,1,2), where the C

∗ action
has weights [0 1 0 −1] on P

3. Here is the list of generators with weights and the
resulting graded Hilbert function

t 1 1 2
s 0 0 2

� h(t, s) = 1

(1 − t)(1 − s2t2)
.

We can expand Formula (4.1), setting f to be a Hilbert function of some graph, to
get for k ≤ m

2

hX( ) � f (k) = (m − k + 1)

m−k−1∑

a0=0

f (a)[2|k + a](a + 1)

+ (k + 1)

k∑

a0=m−k

f (a)[2|k + a](m + 2 − a)

+ k

m∑

a0=k+1

f (a)[2|k + a](m + 1 − a)

and for k ≥ m
2

hX( ) � f (k) = (m − k + 1)

m−k−1∑

a0=0

f (a)[2|k + a](a + 1)
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+ (m − k + 1)

k∑

a0=m−k

f (a)[2|k + a](2m − 2k − a + 1)

+ (m − k)

m∑

a0=k+1

f (a)[2|k + a](2m − 2k − a)

where a = (a0, a1, . . . , an).
In the same way we can write

h
X(Gl1

l2
⊃)

(t, s1, . . . , sn)

= the part that contains monomials t i (s′)0sI of hX(G)

(
t, s1, . . . , sn, s

′, 1

s′

)

(4.2)

where s = (s1, . . . , sn) and I is the exponent vector.
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