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Abstract In our recent paper (Douglass et al. arXiv:1101.2075 (2011)), we claimed
that both the group algebra of a finite Coxeter group W as well as the Orlik–Solomon
algebra of W can be decomposed into a sum of induced one-dimensional represen-
tations of centralizers, one for each conjugacy class of elements of W , and gave a
uniform proof of this claim for symmetric groups. In this note, we outline an in-
ductive approach to our conjecture. As an application of this method, we prove the
inductive version of the conjecture for finite Coxeter groups of rank up to 2.

Keywords Coxeter groups · Reflection arrangements · Descent algebra · Dihedral
groups

1 Introduction

Let W be a finite Coxeter group, generated by a set S of simple reflections. If |S| = r ,
then W acts as a reflection group on Euclidean r-space V . The reflection arrangement
of W is the hyperplane arrangement consisting of the reflecting hyperplanes in V of
all the reflections in W . The Orlik–Solomon algebra A(W) of W is the cohomology
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ring of the complement of the complexified reflection arrangement. It follows from a
result of Brieskorn [3] that the algebra A(W) is a W -module of dimension |W |. For
some history of the computation of A(W) as a W -module, see the introduction of our
recent paper [4].

In [4], we claimed that both the group algebra CW of W (affording the regular
character ρW ) as well as the Orlik–Solomon algebra A(W) (affording the Orlik–
Solomon character ωW ) can be decomposed into a sum of induced one-dimensional
representations of centralizers, one for each conjugacy class of elements of W , in the
following interlaced way.

Conjecture A Let R be a set of representatives of the conjugacy classes of W . Then,
for each w ∈ R, there are linear characters ϕ̃w and ˜ψw of CW(w) such that

ρW =
∑

w∈R
IndW

CW (w) ϕ̃w, ωW =
∑

w∈R
IndW

CW (w)
˜ψw

are sums of induced linear characters. Moreover, for each w ∈ R, the characters ϕ̃w

and ˜ψw can be chosen so that

˜ψw = ϕ̃wεαw,

where ε is the sign character of W , and αw is the determinant on the 1-eigenspace
of w.

When W is a symmetric group, the formula for ρW has been proved independently
by Bergeron, Bergeron, and Garsia [1], Hanlon [6], and Schocker [14]. The formula
for ωW follows from work of Lehrer and Solomon [9], who also checked the identity
for ωW in the case of a dihedral group W . Conjecture 2.1 in [4] is a graded refinement
of Conjecture A and the main result in [4] is a uniform proof of this refined conjecture
for symmetric groups.

The details of the proof of Conjecture 2.1 in [4] for symmetric groups rely on
properties of these groups not shared by other finite Coxeter groups. However, the
underlying strategy of the proof using induced characters both generalizes and admits
a “relative” version, for pairs (W,WL), where WL is a parabolic subgroup of W .
In Sect. 4, we formalize this notion in Conjecture C, show how it leads to a proof
of Conjecture A, and describe a two-step procedure that can be used to prove this
relative conjecture. Prior to that, in Sects. 2 and 3 we review some notation and basic
facts about the descent algebra Σ(W) and the Orlik–Solomon algebra A(W). In the
final section, we apply the methods from Sect. 4 and prove Conjecture C for all pairs
(W,WL) where W is arbitrary and WL has rank at most 2. As a consequence, we
deduce that Conjecture A holds for Coxeter groups of rank 2 or less.

2 Minimal length transversals of parabolic subgroups

The descent algebra of a finite Coxeter group W encodes many aspects of the com-
binatorics of the minimal length coset representatives of the standard parabolic sub-
groups of W . In this section, we provide notation and summarize useful properties of
these distinguished coset representatives following Pfeiffer [12].
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For J ⊆ S, let

XJ = {

w ∈ W : 	(sw) > 	(w) for all s ∈ J
}

.

Then XJ is a right transversal of the parabolic subgroup WJ = 〈J 〉 of W , consisting
of the unique elements of minimal length in their cosets. If we set

xJ =
∑

x∈XJ

x−1 ∈ CW,

then, by Solomon’s Theorem [15], the subspace

Σ(W) = 〈xJ : J ⊆ S〉C
is a 2r -dimensional subalgebra of the group algebra CW , called the descent algebra
of W .

For J ⊆ S, denote

X


J = {

x ∈ XJ : J x ⊆ S
}

.

The action of W on itself by conjugation partitions the power set of S into equivalence
classes of W -conjugate subsets. We call the class

[J ] = {

J x : x ∈ X


J

}

of a subset J ⊆ S the shape of J , and denote by

Λ = {[J ] : J ⊆ S
}

the set of shapes of W . The shapes parametrize the conjugacy classes of parabolic
subgroups of W , since two subsets J,K ⊆ S are conjugate if and only if the corre-
sponding parabolic subgroups WJ and WK are conjugate. We say that a parabolic
subgroup of W has shape [J ] if it is conjugate to WJ in W .

Furthermore, for J ⊆ S, we define

NJ = {

x ∈ XJ : J x = J
}

.

Then NJ is a subgroup of W and by results of Howlett [7], the normalizer of WJ in
W is a semi-direct product NW(WJ ) = WJ � NJ .

An element w ∈ W is called cuspidal in case w has no fixed points in the reflection
representation of W . Thus, for J ⊆ S, an element w ∈ WJ is cuspidal in the parabolic
subgroup WJ if w has no fixed points in the orthogonal complement of Fix(WJ ) in V ,
where Fix(WJ ) is the fixed point subspace of WJ in V . If w is a cuspidal element
in WJ , then the quotient CW(w)/CWJ

(w) is isomorphic to NJ (see [8]).
We consider the character αJ of NW(WJ ), defined, for w ∈ NW(WJ ), as

αJ (w) = det(w|Fix(WJ )).

Note that WJ is contained in the kernel of αJ and so αJ (un) = αJ (n) for u ∈ WJ ,
n ∈ NJ .
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Lemma 2.1 Let J ⊆ S. For n ∈ NJ denote by σJ (n) the sign of the permutation
induced on J by conjugation with n. Then

σJ (n) = ε(n)αJ (n),

for all n ∈ NJ .

Proof Denote by VJ the orthogonal complement of Fix(WJ ) in V . Then VJ affords
the reflection representation of the parabolic subgroup WJ , and the decomposition
V = VJ ⊕ Fix(WJ ) is NW(WJ )-stable. For n ∈ NJ , the matrix of n on VJ is equiv-
alent to the permutation matrix of the conjugation action of n on J and thus has de-
terminant σJ (n). The matrix of n on Fix(WJ ) has determinant αJ (n), by definition.
Consequently, the determinant of n on V is ε(n) = σJ (n)αJ (n). �

Pfeiffer and Röhrle [13] call WJ a bulky parabolic subgroup of W if NW(WJ ) is
isomorphic to the direct product WJ × NJ , or equivalently, if NJ centralizes WJ .
Notice that WJ is bulky whenever WJ is a self-normalizing subgroup of W . Suppose
WJ is bulky in W . Then σJ (n) = 1 for all n ∈ NJ . Consequently, for u ∈ WJ and
n ∈ NJ , we have

ε(un)αJ (un) = ε(u). (2.2)

Thus, the character εαJ = εJ × 1NJ
of NW(WJ ) = WJ × NJ is the trivial extension

of the sign character of WJ .
Here and in the remainder of the paper, we denote the restrictions of the trivial

and the sign character of W to a subgroup U of W by 1U and εU , respectively, or
by 1J and εJ , if U = WJ for some J ⊆ S. If no confusion can arise, we denote the
restrictions of the characters 1S and εS of W to any of its subgroups simply by 1
and ε, respectively.

Following Bergeron et al. [2], we decompose Σ(W) into projective indecompos-
able modules, using a basis of quasi-idempotents, that naturally arise as follows. For
L,K ⊆ S, we define

mKL =
{ |XK ∩ X



L| , if L ⊆ K ,

0, otherwise.

Then (mKL)K,L⊆S is an invertible matrix, and consequently, there is a basis (eL)L⊆S

of Σ(W) such that

xK =
∑

L⊆S

mKLeL

for K ⊆ S. Define, for λ ∈ Λ, elements

eλ =
∑

L∈λ

eL.

Then {eλ : λ ∈ Λ} is a set of primitive, pairwise orthogonal idempotents in Σ(W). In
particular,

∑

λ∈Λ

eλ = 1 ∈ CW.
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Thus, if we set

Eλ = eλCW,

then

CW =
⊕

λ∈Λ

Eλ (2.3)

is a decomposition of the group algebra into right ideals. We call the right ideal E[S]
the top component of CW .

For λ ∈ Λ, denote by Φλ the character of the W -module Eλ. Furthermore, for
L ⊆ S, denote by ΦL the character of the top component of the group algebra CWL.
Notice that for λ = [L], Φ[L] is a character of W whereas ΦL is a character of WL.
If L = S, then WL = W and Φ[S] = ΦS . In general, the characters Φ[L] and ΦL are
related in the following way.

Proposition 2.4 [4, Corollary 3.13] Let L ⊆ S. Then the character ΦL of WL extends
to a character ˜ΦL of the normalizer NW(WL) = WL � NL such that

Φ[L] = IndW
NW (WL)

˜ΦL.

Remark 2.5 If WL is a bulky parabolic subgroup of W , then, by [4, Lemma 3.7] ˜ΦL

is the character ΦL × 1NL
of NW(WL) = WL × NL and so Φ[L] = IndW

WL×NL
(ΦL ×

1NL
).

3 The reflection arrangement and the Orlik–Solomon algebra A(W)

A finite Coxeter group of rank r acts as a reflection group on Euclidean space R
r .

Here it is convenient to regard this as an action on the complex space VC = C
r . Let

T = {

sw : s ∈ S, w ∈ W
}

be the set of reflections of W . For t ∈ T , denote by Ht the reflecting hyperplane of
t , i.e., the 1-eigenspace of t . The set of hyperplanes A = {Ht : t ∈ T } is called the
reflection arrangement of W ; for details see [11, Chap. 6]. Examples of (the real part
of) reflection arrangements in dimension 2 are shown in Figs. 1 and 2.

The lattice of A is the set of all possible intersections of hyperplanes

L(A) = {Ht1 ∩ · · · ∩ Htp : t1, . . . , tp ∈ T }.
For X ∈ L(A), the pointwise stabilizer

WX = {w ∈ W : x.w = x for all x ∈ X}
is a parabolic subgroup of W . We define the shape sh(X) of X to be the shape of WX ,
i.e., sh(X) = [L] ∈ Λ if WX is conjugate to WL in W for some L ⊆ S. The group W

acts on T by conjugation and the W -action on T induces actions of W on A and
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Fig. 1 Hyperplane arrangements of type I2(m), m = 3,5,7,9

Fig. 2 Hyperplane arrangements of type I2(m), m = 4,6,8,10

L(A). Orlik and Solomon [10] have shown that the normalizer of WX in W is the
setwise stabilizer of X in W , that is,

NW(WX) = {w ∈ W : X.w = X}.
Consequently, the orbits of W on the lattice L(A) are parametrized by the shapes of
W . We denote by αX:NW(WX) → C the linear character of NW(WX) defined by

αX(w) = det(w|X)

for w ∈ NW(WX). Then, for w ∈ W , we have αw = αX , where X = Fix(w), the
fixed point subspace of w in V . Moreover, for L ⊆ S, we have αL = αX , where
X = Fix(WL).

The Orlik–Solomon algebra of W is the associative C-algebra A(W), generated
as an algebra by elements at , t ∈ T , subject to the relations

atat ′ = −at ′at

for all t, t ′ ∈ T , and

p
∑

i=1

(−1)iat1 · · ·ati−1 âti ati+1 · · ·atp = 0,

where the hat denotes omission, whenever {Ht1, . . . ,Htp } is linearly dependent. The
action of W on the hyperplanes extends to an action on A(W) via

at .w = atw
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for t ∈ T , w ∈ W . The algebra A(W) is a skew-commutative, graded algebra

A(W) =
⊕

p≥0

Ap,

where the degree p subspace Ap is spanned by those monomials at1 · · ·atp in A(W)

with dimHt1 ∩ . . . ∩ Htp = r − p. Clearly, Ap = 0 for p > r . We call Ar the top
component of A(W). We need a refinement of this decomposition, due to Brieskorn
[3]. For a subspace X ∈ L(A) of codimension p, define a subspace

AX = 〈at1 · · ·atp : Ht1 ∩ . . . ∩ Htp = X〉
of A(W). Then A{0} = Ar is the top component of A(W). Note that AX is an embed-
ding of the top component of A(WX) into A(W). For w ∈ W , we have AX.w = AX.w

and so AX is an NW(WX)-stable subspace.
We have

A(W) =
⊕

X∈L(A)

AX

and if we set

Aλ =
⊕

sh(X)=λ

AX,

for λ ∈ Λ, then

A(W) =
⊕

λ∈Λ

Aλ

is a decomposition of A(W) into W -modules Aλ. Note that A[S] = A{0} is the top
component of A(W).

For λ ∈ Λ, denote by Ψλ the character of the component Aλ of the Orlik–Solomon
algebra A(W). Furthermore, for L ⊆ S, denote by ΨL the character of the top com-
ponent of the Orlik–Solomon algebra A(WL) of the parabolic subgroup WL of W .
Notice that for λ = [L], Ψ[L] is a character of W whereas ΨL is a character of WL.
If L = S, then Ψ[S] = ΨS . In general, the characters Ψ[L] and ΨL are related in the
following way, analogous to Proposition 2.4.

Proposition 3.1 [9, §2] Let L ⊆ S. Then the character ΨL of WL extends to a char-
acter ˜ΨL of the normalizer NW(WL) = WL � NL such that

Ψ[L] = IndW
NW (WL)

˜ΨL.

Remark 3.2 Suppose that WL is a bulky parabolic subgroup of W and set X =
Fix(WL). If codim X = p and t1, . . . , tp are in T with X = Ht1 ∩ · · · ∩ Htp , then
t1, . . . , tp are in WL and so, since NL centralizes WL, we have at1 · · ·atp .n =
atn1

· · ·atnp
= at1 · · ·atp , for n ∈ NL. Thus, ˜ΨL is the character ΨL×1NL

of NW(WL) =
WL × NL and so Ψ[L] = IndW

WL×NL
(ΨL × 1NL

).
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4 The inductive strategy

Before stating our relative Conjecture C, we briefly review the proof of Conjec-
ture 2.1 in [4] and describe how it leads to a proof of Conjecture A. We first showed
that the characters of the top components of CW and A(W) are related as described
in the following conjecture which makes sense for any finite Coxeter group. To this
end, let C be the set of cuspidal conjugacy classes of W and, for L ⊆ S, let CL denote
the set of cuspidal conjugacy classes in WL. For a class C in C or CL, we denote by
wC ∈ C a fixed representative.

Conjecture B For each class C ∈ C , there exist linear characters ϕwC
and ψwC

of
the centralizer CW(wC) such that the following hold:

(i) ΦS = ∑

C∈C IndW
CW (wC) ϕwC

;

(ii) ΨS = ∑

C∈C IndW
CW (wC) ψwC

;

(iii) ψwC
= ϕwC

ε for all C ∈ C .

Remark 4.1 If it is known that ΨS = ΦSεS , then choosing ψwC
or ϕwC

in such a way
that ψwC

= ϕwC
ε, we have that part (iii) in the above Conjecture B holds and that (i)

and (ii) are equivalent statements.

When W is a symmetric group, every parabolic subgroup WL of W is a product of
symmetric groups and so Conjecture B holds for the group WL. Thus, for wC ∈ C ∈
CL, we obtained linear characters ϕwC

and ψwC
of CWL

(wC) such that the characters
ΦL and ΨL of WL decompose as

ΦL =
∑

C∈CL

IndWL

CWL
(wC) ϕwC

and ΨL =
∑

C∈CL

IndWL

CWL
(wC) ψwC

.

We know from Propositions 2.4 and 3.1 that ΦL and ΨL extend to characters ˜ΦL and
˜ΨL of NW(WL). The next step in [4] was to show that each ϕwC

and ψwC
extend to

characters ϕ̃wC
and ˜ψwC

of CW(wC) in such a way that

˜ΦL =
∑

C∈CL

IndNW (WL)
CW (wC) ϕ̃wC

and ˜ΨL =
∑

C∈CL

IndNW (WL)
CW (wC)

˜ψwC
, (4.2)

and moreover that ˜ψwC
= ϕ̃wC

εSαL for all C ∈ CL. Finally, we applied IndW
NW (WL)

to (4.2) and summed over the set of shapes [L] ∈ Λ. Conjecture A then followed
immediately by transitivity of induction.

Motivated by (4.2), we make the following general conjecture.

Conjecture C Let L ⊆ S. Then, for each C ∈ CL, there exist linear characters ϕ̃wC

and ˜ψwC
of CW(wC) such that the following hold:

(i) ˜ΦL = ∑

C∈CL
IndNW (WL)

CW (wC) ϕ̃wC
;

(ii) ˜ΨL = ∑

C∈CL
IndNW (WL)

CW (wC)
˜ψwC

;

(iii) ˜ψwC
= ϕ̃wC

εSαL for all C ∈ CL.
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Remark 4.3 If it is known that ˜ΨL = ˜ΦLεSαL, then choosing ˜ψwC
or ϕ̃wC

in such
a way that ˜ψwC

= ϕ̃wC
εSαL, we have that part (iii) in the above Conjecture C holds

and that (i) and (ii) are equivalent statements.

Conjecture B is known to hold in the following cases:

1. W of type A (see [4, Theorem 4.1]);
2. W has rank 2 or less (see Lemmas 5.1 and 5.2, Theorem 5.11).

Conjecture C is known to hold in the following cases:

1. W of type A; all L (see [4, Theorem 5.2]);
2. W arbitrary; WL is bulky and satisfies Conjecture B (by Theorem 4.7);
3. W arbitrary; |L| ≤ 2 (see Corollary 5.3, Theorem 5.18).

If Conjecture C holds for all L ⊆ S, then Conjecture A is true for W .

Theorem 4.4 Suppose that Conjecture C holds for all subsets L ⊆ S. Then for each
w in a set R of representatives of the conjugacy classes of W , there are linear char-
acters ϕ̃w and ˜ψw of CW(w) such that

(i) the regular character of W is given by ρW = ∑

w∈R IndW
CW (w) ϕ̃w ,

(ii) the Orlik–Solomon character of W is given by ωW = ∑

w∈R IndW
CW (w)

˜ψw , and

(iii) ˜ψw = ϕ̃wεαw for all w ∈ R.

Proof For L ⊆ S, let RL be a set of representatives of the classes CL. For a class
C ∈ CL, denote by wC ∈ RL its representative. Let L be a set of representatives of
shapes, so Λ = { [L] | L ∈ L }. Then, by [5, Theorem 3.2.12], we may assume without
loss that

R =
∐

L∈L
RL = {wC : C ∈ CL, L ∈ L}.

Then, by Conjecture C the equality in (iii) holds. By (2.3) and Proposition 2.4, we
have

ρW =
∑

λ∈Λ

Φλ =
∑

L∈L
IndW

NW (WL)
˜ΦL =

∑

L∈L

∑

C∈CL

IndW
CW (wC) ϕ̃wC

,

as desired. The formula for ωW follows in the same way. �

Notice that in the case when L = S, Conjecture C is simply a restatement of Con-
jecture B. In general, Conjecture C for L ⊆ S implies the validity of Conjecture B for
the group WL, as follows.

Proposition 4.5 Suppose that Conjecture C holds for a subset L ⊆ S. Then the re-
strictions

ϕwC
= ResCW (wC)

CWL
(wC) ϕ̃wC

and ψwC
= ResCW (wC)

CWL
(wC)

˜ψwC

are linear characters that satisfy Conjecture B for WL.
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Proof By Mackey’s theorem, we have

ResNW (WL)
WL

IndNW (WL)
CW (wC) ϕ̃wC

= IndWL

CWL
(wC) ResCW (wC)

CWL
(wC) ϕ̃wC

,

since NW(WL) = WLCW(wC) (see [8]), and therefore,

ΦL = ResNW (WL)
WL

˜ΦL

=
∑

C∈CL

ResNW (WL)
WL

IndNW (WL)
CW (wC) ϕ̃wC

=
∑

C∈CL

IndWL

CWL
(wC) ResCW (wC)

CWL
(wC) ϕ̃wC

=
∑

C∈CL

IndWL

CWL
(wC) ϕwC

.

The formula for ΨL follows in the same way. The conclusion that ψwC
= ϕwC

ε for
C ∈ CL is easily seen to hold. �

Remark 4.6 Although Conjecture B for WL formally follows from Conjecture C, as
in [4], the characters ϕ̃wC

and ˜ψwC
of CW(wC) arise in practice as extensions of

characters ϕwC
and ψwC

of CWL
(wc) that satisfy Conjecture B for WL. In particular,

if Conjecture B is known to hold for WL, then using Remark 4.3, to prove Conjec-
ture C for L ⊆ S, it suffices to prove that each ϕwC

extends to CW(wC) in such a way
that Conjecture C (i) holds and that ˜ΨL = ˜ΦLεSαL.

When L ⊆ S is such that WL is a self-normalizing subgroup of W (e.g., if L = S),
then NL is the trivial group and Conjecture B for the group WL vacuously implies
Conjecture C for the subset L in this case. More generally, whenever the comple-
ment NL centralizes WL, i.e., when WL is bulky in W , Conjecture B for WL implies
Conjecture C for L ⊆ S, as follows.

Theorem 4.7 Let L ⊆ S. Suppose that Conjecture B holds for the group WL and
that WL is a bulky parabolic subgroup of W . Then Conjecture C holds with ϕ̃wC

=
ϕwC

× 1NL
and ˜ψwC

= ψwC
× 1NL

for each cuspidal class C of WL.

Proof As observed in the remark above, it suffices to show that each ϕwC
extends to

CW(wC) in such a way that Conjecture C (i) holds and that ˜ΨL = ˜ΦLεSαL.
Because NL centralizes WL, we have that the centralizer CW(wC) is the direct

product of CWL
(wC), and NL and so ϕ̃wC

is indeed a linear character of CW(wC)

that extends ϕwC
. Thanks to Remark 2.5, ˜ΦL = ΦL ×1NL

. Thus, by Conjecture B (i),
we have
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˜ΦL = ΦL × 1NL
=

(

∑

C∈CL

IndWL

CWL
(wC) ϕwC

)

× 1NL

=
∑

C∈CL

IndWL×NL

CWL
(wC)×NL

(ϕwC
× 1NL

)

=
∑

C∈CL

IndNW (WL)
CW (wC) ϕ̃wC

.

Hence Conjecture C (i) holds.
By Remark 3.2, Conjecture B (iii), Lemma 2.1, and Remark 2.5, we have

˜ΨL = ΨL × 1NL
= ΦLεL × 1NL

σL = (ΦL × 1NL
)εαL = ˜ΦLεSαL,

using the fact that WL ⊆ kerαL, whence we are done. �

Combining Theorem 4.7 with the results in [4], we see that if WL is a product of
Coxeter groups of type A and is a bulky parabolic subgroup of W , then Conjecture
C holds for L ⊆ S. For example, if WL is of type A1 × A3 and W is of type E6,
then the characters ϕwC

and ψwC
constructed in [4] satisfy Conjecture B and so, by

Theorem 4.7, they extend to CW(wC) and Conjecture C holds. Note, however, that
the property of being a bulky parabolic subgroup depends in a fundamental way on
the embedding of WL in W . If WL is of type A1 × A3 and W is of type E7, then WL

is not bulky and Theorem 4.7 cannot be applied.

5 Conjectures A, B and C for Coxeter groups of rank up to 2

In this section, we show that Conjecture C holds for L ⊆ S for any S as long as
|L| ≤ 2. Note that because the type of the ambient Coxeter group W is arbitrary, even
for types A1 × A1 and A2 Conjecture C is a stronger statement than is proved in
[4] for such parabolic subgroups. The strategy we use is to first prove that Conjec-
ture B holds for W when the rank of W is at most 2 and then use the procedure
outlined in Remark 4.6. Combining Conjecture C with Theorem 4.7, we conclude
that Conjectures A, B, and C all hold in case the rank of W is at most 2.

The top components of Coxeter groups of rank 0 or 1 almost trivially satisfy Con-
jecture B. For later reference, we record this explicitly in the following lemmas.

Lemma 5.1 The top component characters of W∅ are Φ∅ = 1∅ and Ψ∅ = 1∅.
Moreover, W∅ satisfies Conjecture B with ϕ1 = 1∅ and ψ1 = 1∅.

Lemma 5.2 Suppose W is a Coxeter group of rank 1, generated by S = {s}. Then
the top component characters of W are ΦS = εS and ΨS = 1S . Moreover, W satisfies
Conjecture B with ϕs = εS and ψs = 1S .

Proof In this case, the non-trivial conjugacy class {s} is the unique cuspidal conju-
gacy class in W . From the definitions we have e[S] = eS = 1

2 (1− s) and it follows that
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W acts on the top component E[S] = e[S]CW with character Φ[S] = εS . Moreover, W

acts trivially on the basis {as} of the top component A[S] of A(W), which therefore
affords the trivial character. Thus, Ψ[S] = 1S and so Φ[S] = Ψ[S]εS . Set ϕs = εS and
ψs = 1S . Then ϕs and ψs obviously satisfy the conclusions of Conjecture B. �

In any finite Coxeter group W , parabolic subgroups of rank 0 and 1 are always
bulky. We may thus conclude from Lemmas 5.1 and 5.2 and Theorem 4.7 that Con-
jecture C holds for L ⊆ S with |L| ≤ 1.

Corollary 5.3 Suppose that L ⊆ S has size |L| ≤ 1. Then Conjecture C holds.

As a consequence of the corollary, W acts trivially on both the component E[∅]
of the group algebra CW (with character Φ[∅] = ˜Φ∅ = 1S ) and the component A[∅]
of the Orlik–Solomon algebra A(W) (with character Ψ[∅] = ˜Ψ∅ = 1S ), as one can
easily establish directly.

Moreover, the degree 1 component of A(W) is a direct sum of transitive permuta-
tion modules, one for each conjugacy class of reflections of W . This agrees with the
description of the degree 1 component of A(W) as the permutation representation of
W on its reflections, that can easily be obtained directly.

Next we consider the case when W has rank 2. Until further notice, we assume
that

W = 〈

s, t : s2 = t2 = (st)m = 1
〉

.

Then W is a Coxeter group of rank two and is of type A1 × A1, or I2(m) for m ≥ 3,
with Coxeter generators S = {s, t}. For convenience, we regard type A1 × A1 as type
I2(2), noting that the general results of this section remain true for m = 2.

To prove Conjecture B for W , we first compute the character ΦS of the top com-
ponent E[S] of the group algebra CW , and verify that it is a sum of induced linear
characters. Then we compute the character ΨS of the top component A[S] of the
Orlik–Solomon algebra A(W) and verify that ΨS = ΦSεS . Conjecture B then fol-
lows as observed in Remark 4.1.

As usual, denote by w0 the longest element of W . Furthermore, we define

Av(U) = 1

|U |
∑

u∈U

u

for a subgroup U of W . Recall that Av(U)u = Av(U) for all u ∈ U and that
Av(U)CW is the permutation module of W on the cosets of U .

Lemma 5.4 eS = Av(〈w0〉) − Av(W).

Proof By Solomon’s theorem [15], the elements

x∅ = 1 + s + t + st + ts + · · · + w0, xs = 1 + t + st + tst + · · · + w0s,

xst = 1, xt = 1 + s + ts + sts + · · · + w0t

form a basis of the descent algebra Σ(W). Note that xt + xs = x∅ + 1 − w0.
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For L ⊆ K ⊆ S, the numbers mKL = |XK ∩ X


L| are easily determined as

(mKL)K,L⊆S =
⎡

⎢

⎣

2m . . .

m 2 . .

m . 2 .

1 1 1 1

⎤

⎥

⎦
, (mKL)−1 =

⎡

⎢

⎢

⎢

⎣

1
2m

. . .

− 1
4

1
2 . .

− 1
4 . 1

2 .

m−1
2m

− 1
2 − 1

2 1

⎤

⎥

⎥

⎥

⎦

.

Hence the idempotents eL are (cf. [2])

e∅ = 1

2m
x∅, es = 1

2
xs − 1

4
x∅,

est = 1 − 1

2
xs − 1

2
xt + m − 1

2m
x∅, et = 1

2
xt − 1

4
x∅.

From xt + xs = 1 + x∅ − w0, it follows that es + et = 1
2 (1 − w0), and hence that

eS = 1
2 (1 + w0) − e∅ = Av(〈w0〉) − Av(W), as required. �

As an immediate consequence we obtain the character of the top component of
CW .

Corollary 5.5 The W -module E[S] affords the character ΦS = IndW〈w0〉(1) − 1S .

Next we identify linear characters of centralizers of cuspidal elements. Note that
the group W consists of m reflections and m rotations. Denote the rotation subgroup
of W by W+ = 〈st〉. The centralizer of a rotation w is W+, unless w is central
in W . The cuspidal classes of W are exactly the classes of nontrivial rotations, rep-
resented by the set {(st)j : j = 1, . . . , �m

2 
}, containing w0 = (st)m/2 in case m is
even. The group W+ is a cyclic group of order m and it has m linear characters χj ,
j = 0, . . . ,m − 1, defined by

χj (st) = ζ
j
m

for a primitive mth root of unity ζm. In the following arguments, we make frequent
use of the fact that the sum of all the nontrivial characters χj of W+ equals the
difference of its regular and its trivial character,

m−1
∑

j=1

χj = IndW+
{1} (1) − 1W+ ,

which obviously follows from
∑m−1

j=0 χj = IndW+
{1} (1) and χ0 = 1W+ .

We distinguish two cases, depending on the parity of m.

Proposition 5.6 Suppose that m = 2k with k > 0. Let

ϕ(st)j =
{

χ2j , 0 < j < k,
εS, j = k.
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Then ϕ(st)j is a linear character of CW((st)j ), for j = 1, . . . , k, and

k
∑

j=1

IndW
CW ((st)j )

(ϕ(st)j ) = εS +
k−1
∑

j=1

IndW
W+(χ2j ) = ΦS.

Proof Note that CW((st)j ) = W+ and w0 lies in the kernel of the characters ϕ(st)j =
χ2j , for all j = 1, . . . , k − 1. Hence the χ2j can be regarded as a full set of nontrivial
irreducible characters of the quotient group W+/ 〈w0〉, whence their sum

∑k−1
j=1 χ2j

equals the difference of its regular and its trivial characters. Thus, as a character of
W+, we have

k−1
∑

j=1

χ2j = IndW+
〈w0〉(1) − 1W+ .

Therefore

εS + IndW
W+

(

k−1
∑

j=1

χ2j

)

= εS + IndW〈w0〉(1) − IndW
W+(1) = IndW〈w0〉(1) − 1S = ΦS,

where the penultimate equality holds because IndW
W+(1) = 1S + εS . �

Proposition 5.7 Suppose that m = 2k + 1 for some k > 0. For j = 1, . . . , k, let

ϕ(st)j = χj .

Then ϕ(st)j is a linear character of CW((st)j ), for j = 1, . . . , k, and

k
∑

j=1

IndW
CW ((st)j )

(ϕ(st)j ) =
k

∑

j=1

IndW
W+(χj ) = ΦS.

Proof We have CW((st)j ) = W+ and ResW
W+(IndW

W+(χj )) = χj + χm−j for all j =
1, . . . , k. Hence

ResW
W+

(

k
∑

j=1

IndW
W+(χj )

)

=
m−1
∑

j=1

χj = IndW+
{1} (1) − 1W+

= ResW
W+

(

IndW〈w0〉(1) − 1S

) = ResW
W+(ΦS).

It follows that

ΦS =
k

∑

j=1

IndW
W+(χj ),

since the restrictions of both characters to the subgroup 〈w0〉 of W also coincide. �
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Proposition 5.8 Let πA be the character of the permutation action of W on the
hyperplane arrangement A. Then W acts on the degree 1 component of A(W) with
character πA, and W acts on the component A[S] of A(W) with character

ΨS = πA − 1S.

Consequently, W acts on A(W) with character 2πA.

Proof The degree 1 component of A(W) has basis {at : t ∈ T } and W acts on it by
permuting the basis vectors. In order to analyze the top component of A(W), we
make this permutation action explicit as follows.

Label the hyperplanes H0, . . . ,Hm−1, so that the real part of the hyperplane Hj is

spanned by ζ
j

2m, where ζ2m = e2πi/2m is a primitive (2m)th root of unity, as shown in
Figs. 1 and 2.

Let s be the reflection about H0 (the x-axis) and ts = (st)−1 the (anti-clockwise)
rotation about the angle 2π/m. Then t is the reflection about Hm−1.

The reflection s permutes the hyperplanes according to the rule

Hj .s = Hm−j ,

for j = 0, . . . ,m − 1, fixing H0. The rotation ts acts as

Hj .ts = Hj+2,

for j = 0, . . . ,m − 1, where the indices are reduced mod m if necessary.
The top component A[S] has a basis {a0aj : j = 1, . . . ,m − 1}, where W acts on

the indices as indicated above, subject to the relation a0aj − a0ak + ajak = 0, i.e.,

ajak = a0ak − a0aj .

The reflection s fixes H0 and thus maps a0aj to

a0aj .s = a0am−j ,

for j = 1, . . . ,m − 1. The rotation ts maps a0aj to

a0aj .ts = a2aj+2 =
{

a0aj+2 − a0a2, j �= m − 2,
−a0a2, j = m − 2.

Now define vectors

b0 = − 1

m

m−1
∑

j=1

a0aj

and, for j = 1, . . . ,m − 1,

bj = a0aj + b0.

Then b0.s = b0 and bj .s = bm−j for j = 1, . . . ,m − 1. Moreover, bj .ts = bj+2 for
j = 0, . . . ,m − 1, with indices reduced mod m if necessary. Hence the map aj �→ bj
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is a W -equivariant bijection from the basis {aj : j = 0, . . . ,m − 1} of the degree 1
component to a spanning set {bj : j = 0, . . . ,m − 1} of A[S]. Clearly,

∑m−1
j=0 bj = 0

and so the character of W on A[S] is πA − 1S . �

Lemma 5.9 The element a0am−1 generates the top component A[S] as CW -module.

Proof Let M = a0am−1.CW . Then M contains the elements

a0a1 = a0am−1.s, a1a2 = −a0am−1.ts, a0a2 = a0a1 + a1a2,

and, by induction, the elements

aj−1aj = aj−3aj−2.ts, and a0aj = a0aj−1 + aj−1aj ,

for j > 2. Consequently, M contains the basis {a0aj : j = 1, . . . ,m − 1} of A[S],
whence M = A[S]. �

Proposition 5.10 ΨS = ΦSεS .

Proof We distinguish two cases.
If m is odd, then πA = IndW〈s〉(1), since CW(s) = 〈s〉 and all reflections are conju-

gates of s. Hence

ΨS = IndW〈s〉(1) − 1S = IndW〈w0〉(1) − 1S = ΦS

and ΦS = ΦSεS , since ΦS(w) = 0 for all w ∈ W with εS(w) = −1.
If m is even, then IndW〈w0〉(1)εS = IndW〈w0〉(1) and

ΦSεS = (

IndW〈w0〉(1) − 1S

)

εS = IndW〈w0〉(1) − εS = πA − 1S = ΨS,

since πA − IndW〈w0〉(1) = 1S − εS , as can be easily verified. �

We can now conclude that Conjecture B holds for W of rank 2.

Theorem 5.11 Let W be a Coxeter group of rank 2, generated by S = {s, t}. Then,
with notation as above, the top component characters of W are ΦS = IndW〈w0〉(1)−1S

and ΨS = πA − 1S = ΦSεS . Moreover, W satisfies Conjecture B with ϕ(st)j = χj in
case m odd, while ϕw0 = εS and ϕ(st)j = χ2j in case m even.

Proof Apply Propositions 5.6, 5.7, and 5.10, and Remark 4.3. �

Corollary 5.12 Suppose that W is a Coxeter group with rank at most 2. Then Con-
jecture A holds for W .

Proof By Lemmas 5.1 and 5.2, and Theorem 5.11, Conjecture B holds for all
parabolic subgroups of W . By Theorem 4.4, it suffices to show that Conjecture C
holds for all subsets L ⊆ S. If |L| = 0,1, this follows from Corollary 5.3. It follows
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from Theorem 5.11 that Conjecture C holds when the rank of W and |L| are both
equal 2. �

It follows in particular from Corollary 5.12 that every Coxeter group of type I2(m)

satisfies Conjecture A. We list the corresponding decomposition of the regular char-
acter ρW into characters Φ[L] = IndW

NW (WL)
˜ΦL and the decomposition of the Orlik–

Solomon character ωW into characters Ψ[L] = IndW
NW (WL)

˜ΨL in Table 1 below. In
Table 1, the left character table covers the case m = 2k and the right character ta-
ble covers the case m = 2k + 1. The columns of the character tables are labeled
by representatives of the conjugacy classes of W , where the parameter in (st)i is
i = 1, . . . , k −1 for m = 2k, and i = 1, . . . , k for m = 2k +1. An entry ‘.’ in the table
stands for the value 0. As observed in Proposition 5.8, the rank 1 component of ωW

is the permutation character of the action of W on the set A of hyperplanes. In case
m = 2k, the constituent Ψ[{s}] corresponds to the action on the W -orbit of the hyper-
plane Hs , and whether the element s has 2 or 1 fixed points in this action depends on
whether k is even or odd. In such a situation, an entry of the form ‘x | y’ in the table
stands for ‘x if k is even and y if k is odd’.

We saw in Theorem 5.11 that Conjecture B holds when W has rank 2 and we saw
in Corollary 5.3 that Conjecture C holds when the subset L ⊆ S has size |L| ≤ 1.
In the rest of this section, we prove that if the parabolic subgroup WL has rank 2,
then Conjecture C holds for any overgroup W . A similar result when WL is a product
of symmetric groups would reduce the proof of Conjecture A to considering only a
small number of cases.

From now on, W is a finite Coxeter group, generated by S with |S| ≥ 3 and WL is
a rank 2 parabolic subgroup of W with L = {s, t} ⊆ S. The elements xK and eK are
defined relative to the ambient set S. We use a superscript to indicate this ambient set
when it is not equal to S. Thus, for K ⊆ L, xL

K denotes a basis element of the descent
algebra of WL.

If WL is bulky, then WL satisfies Conjecture C, by Theorem 4.7.
Suppose WL is not bulky. Then NL does not centralize WL and so NL contains an

element inducing the nontrivial graph automorphism γ on WL, interchanging s and

Table 1 The characters Φλ and Ψλ for I2(m); m = 2k, m = 2k + 1

1 s t w0 (st)i 1 s (st)i

Φ[∅] 1 1 1 1 1 Φ[∅] 1 1 1

Φ[{s}] k . | 1 . | −1 −k . Φ[{s}] m −1 .

Φ[{t}] k . | −1 . | 1 −k . Φ[S] m − 1 . −1

Φ[S] m − 1 −1 −1 m − 1 −1

ρW 2m . . . . ρW 2m . .

Ψ[∅] 1 1 1 1 1 Ψ[∅] 1 1 1

Ψ[{s}] k 2 | 1 . | 1 k . Ψ[{s}] m 1 .

Ψ[{t}] k . | 1 2 | 1 k . Ψ[S] m − 1 . −1

Ψ[S] m − 1 1 1 m − 1 −1

ωW 2m 4 4 2m . ωW 2m 2 .
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t . In this case, s and t are conjugate in W and so WL is either of type A1 × A1 or of
type I2(m) for odd m > 2. We distinguish two cases accordingly.

First, suppose that WL is of type A1 × A1. Then WL has exactly one cuspidal
element w = st = ts, which is central in WL and invariant under NL, hence central
in NW(WL). We have

ϕw = ΦL = εL, and ψw = ΨL = 1L,

by Corollary 5.5 and Proposition 5.8. Parts (i) and (ii) of Conjecture C are therefore
trivially satisfied, with

ϕ̃w = ˜ΦL, and ˜ψw = ˜ΨL,

which exist by Propositions 2.4 and 3.1.
For part (iii) of Conjecture C, note that the idempotent

f = 1

4
(1 − s − t + st)

spans a subspace of CWL affording the character ΦL. As in the proof of Lemma 5.4,

eL
L = 1 − 1

2
xL
s − 1

2
xL
t + 1

4
xL

∅ = 1

4
(1 + st) − 1

4
(s + t) = f,

and thus eL
Lf = eL

L is a basis of the top component of WL which is centralized by
NL. Hence ϕ̃w(un) = ϕw(u), for u ∈ WL and n ∈ NL. Moreover, note that aL = asat

spans the top component of A(WL), and that eLn = eL, whereas aL.n = σL(n)aL

for n ∈ NL. It follows that ˜ψL(un) = ψL(u)σL(n) = ϕL(u)ε(u)ε(n)αL(n) =
ϕ̃L(un)ε(un)αL(un), for u ∈ WL and n ∈ NL, as desired. This proves the follow-
ing proposition.

Proposition 5.13 Suppose L = {s, t} ⊆ S is such that WL is of type A1 × A1. Then
Conjecture C holds for L ⊆ S.

Second, suppose that WL is of type I2(m) where m = 2k + 1. Recall the charac-
ters χj : st �→ ζ

j
m for j = 1, . . . ,m − 1. The centrally primitive idempotent in C〈st〉

affording χj is

fj = 1

m

m−1
∑

k=0

ζ
jk
m (st)−k.

The cuspidal conjugacy classes in WL are represented by cj = (st)j for j = 1, . . . , k

and CWL
(cj ) is the rotation subgroup W+ = 〈st〉 of W . Moreover, for j = 1, . . . , k

the characters ϕ(st)j = χj satisfy the conclusions of Conjecture B for WL and the
line CeL

Lfj in eL
LCWL affords the character ϕ(st)j of W+. As usual, denote by

wL the longest element of WL. Note that f
wL

j = fm−j , for j = 1, . . . , k, since

(st)wL = (st)−1, and that eL
Lfj = Av(〈wL〉)fj , by Lemma 5.4, since Av(WL)fj =

∑m−1
k=0 ζ

jk
m Av(WL) = 0, for j = 1, . . . ,m− 1. Obviously, the graph automorphism γ
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swaps eL
Lfj and eL

Lfm−j , as does right multiplication by wL:

eL
LfjwL = Av(〈wL〉)fjwL = Av(〈wL〉)wL f

wL

j

= Av(〈wL〉)f wL

j = Av(〈wL〉)fm−j = eL
Lfm−j .

Recall from [4, Lemma 3.2] that NL centralizes eL
L and that NW(WL) acts naturally

on CWL with a.nw = n−1anw for a in CWL, n in NL, and w in WL. Suppose z is in
CW(cj ). Then z = nw, where n is in NL and w is in WL. If n centralizes WL, then

eL
Lfj · z = n−1eL

Lfjnw = eL
Lfjw

and w is in W+. If n does not centralize WL, then nwL centralizes WL and nw =
(nwL)(wLw), so

eL
Lfj · z = (

wLn−1)eL
Lfj (nwl)(wLw) = eL

Lfj (wLw)

and wLw is in W+. It follows that the characters ϕ(st)j of W+ extend to characters
ϕ̃(st)j of the centralizers CW(cj ) with

ϕ̃(st)j (z) = ϕ(st)j (v),

where if z = nw with n ∈ CW(WL), then v = w, and if z = nw with n �∈
CW(WL), then v = wLw. For j = 1, . . . , k, define Mj = eL

LfjCWL. Then Mj is a

NW(WL)-module with basis {eL
Lfj , e

L
Lfm−j } and character IndNW (WL)

CW (cj ) ϕ̃(st)j . Clearly,

eL
LCWL

∼= ⊕k
j=1 Mj is a decomposition of eL

LCWL as a direct sum of NW(WL)-

modules. By [4, Corollary 3.13], the character of eL
LCWL is ˜ΦL, and so we conclude

that

˜ΦL =
k

∑

j=1

IndNW (WL)
CW (cj ) ϕ̃(st)j .

Thus, part (i) of Conjecture C holds. By Remark 4.3, to show that Conjecture C holds,
it suffices to show that ˜ΨL = ˜ΦLεSαL. Define aL = asat in A(W), and recall from
Lemma 5.9 that aLCWL is isomorphic to the top component of A(WL). Since m is
odd, we have WL = W+ ∪ wLW+ and thus

aLCW+ = aLCWL,

since aLwL = asat .wL = atas = −asat = −aL. Define f0 = Av(W+). Then the
idempotents fj for j = 0, . . . ,m − 1 form a Wedderburn basis of the group al-
gebra CW+ and so the module aLCW+ is spanned by the elements {aLfj : j =
0, . . . ,m − 1}. Since

aLf0 =
m−1
∑

k=0

a0am−1.(ts)
k =

m−1
∑

k=0

ak+1ak

= a0am−1 − a0a1 +
m−2
∑

k=1

a0ak − a0ak+1 = 0,
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we see that {aLfj : j = 1, . . . ,m−1} is a C-basis of aLCWL. By construction fj st =
ζ

j
mfj and by definition ε(st) = αL(st) = 1. Therefore,

aLfj .st = ζ
j
maLfj and eL

Lfj .st = ε(w)αL(w)ζ
j
meL

Lfj . (5.14)

We have seen that fjwL = wLfm−j , aL.wL = −aL, and in Lemma 5.4 that eL
LwL =

eL
L . Also, ε(wL) = −1, and αL(wL) = 1. Therefore,

aLfj .wL = aLfmj and eL
Lfj .wL = ε(wL)αL(wL)eL

Lfm−j . (5.15)

For n in NL, we have fj .n = nf n
j , aLn = σL(n)aL, where by Lemma 2.1 σL(n) =

ε(n)αL(n), and eL
L.n = n−1eL

Ln = eL
L . Therefore,

aLfj .n = σL(n)aLf n
j and eL

Lfj .n = ε(n)αL(n)σL(n)eL
Lf n

j . (5.16)

Because NW(WL) is generated by st , wL, and NL, it follows from (5.14), (5.15),
and (5.16) that ˜ΨL(w) = ˜ΦL(w)εS(w)αL(w) for w in NW(WL). This proves the
following proposition.

Proposition 5.17 Suppose L = {s, t} ⊆ S is such that the order m of st is odd. Then
Conjecture C holds for L ⊆ S.

We summarize Propositions 5.13, 5.17, and Theorem 4.7 for rank 2 parabolic sub-
groups as follows.

Theorem 5.18 Suppose that WL is a rank 2 parabolic subgroup of W . Then Conjec-
ture C holds for WL.
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