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Abstract We study maximal Hom-free sets in the τ [2]-orbit category C(Q) of the
bounded derived category for the path algebra associated to a Dynkin quiver Q, where
τ denotes the Auslander–Reiten translation and [2] denotes the square of the shift
functor. We prove that these sets are in bijection with periodic combinatorial configu-
rations, as introduced by Riedtmann, certain Hom≤0-configurations, studied by Buan,
Reiten and Thomas, and noncrossing partitions of the Coxeter group associated to Q

which are not contained in any proper standard parabolic subgroup. Note that Read-
ing has proved that these noncrossing partitions are in bijection with positive clusters
in the associated cluster algebra. Finally, we give a definition of mutation of maximal
Hom-free sets in C(Q) and prove that the graph of these mutations is connected.

Keywords Cluster combinatorics · Derived category · Exceptional sequences ·
Hom-configurations · Mutations · Noncrossing partitions · Perpendicular
categories · Reflection functors · Quiver representations

1 Introduction

Let Q be a Dynkin quiver, Db(Q) the bounded derived category for the path algebra
associated to Q, with shift functor [1] and Auslander–Reiten translation τ .

Our main object of study is the set of Hom-configurations in the orbit category
C(Q) := Db(Q)/τ [2], which is triangulated by Keller [19]. A Hom-configuration is
defined to be a maximal Hom-free set of indecomposable objects in this category.
We will give bijections between the collection of Hom-configurations in C(Q) and
collections of other representation-theoretic and combinatorial objects.
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One such collection is the set of combinatorial configurations, which were intro-
duced by Riedtmann [22] in order to classify self-injective algebras of finite repre-
sentation type. A combinatorial configuration can be regarded as a certain Hom-free
collection of indecomposable objects in the bounded derived category of finitely gen-
erated modules over a path algebra associated to a Dynkin quiver. Riedtmann proved
(cf. [22, 23]) that combinatorial configurations in type A and D are invariant under
the functor τ [2].

Motivated by this, the authors of [8] studied the Ext-version of these configurations
in the bounded derived category Db for any finite-dimensional hereditary algebra, the
so called Ext-configurations. The authors proved that these objects are invariant under
the functor τ−1[1]. This implies that Ext-configurations in the bounded derived cate-
gory Db are in one-to-one correspondence with Ext-configurations in the cluster cat-
egory Db/τ−1[1], which are called cluster-tilting objects. These objects were proved
to be in bijection with maximal Ext-free sets in the cluster category (cf. [8, 2.3]). One
should then expect that a similar result holds for combinatorial configurations in the
orbit category Db(Q)/τ [2], where Db(Q) is the bounded derived category for the
path algebra associated to any Dynkin quiver Q.

We prove that Hom-configurations in C(Q) are in bijection with periodic combina-
torial configurations, i.e., combinatorial configurations in Db(Q) which are invariant
under τ [2].

Riedtmann also gave a natural bijection between the set of combinatorial config-
urations for type An and the set NC(n) of classical noncrossing partitions of the set
{1, . . . , n}, which was introduced by Kreweras [20] in 1972.

Later, in the early 2000’s, Brady [5] and Bessis [2] independently introduced an
algebraic generalization of classical noncrossing partitions. To each finite Coxeter
group W these authors associate a poset, called the poset of noncrossing partitions of
W , which we denote by NC(W). The posets NC(n) and NC(An−1) are known to be
isomorphic [3].

The initial motivation for this article was to generalize Riedtmann’s bijection to
any Dynkin case, using Hom-configurations. However, a simple computation in type
D4 shows that the number of Hom-configurations in C(Q) is different from the num-
ber of noncrossing partitions of type D3. So we reinterpret Riedtmann’s bijection as
follows.

Each finite Coxeter group W has a number associated to it, known as the Cata-
lan number of type W . These numbers occur in various counting problems, and in
particular, the number of noncrossing partitions associated to W is given by the cor-
responding Catalan number (cf. [2]).

There is also another number that is associated to W , the so called positive Catalan
number (see [14]). This number counts a special subset of the noncrossing partitions.
This subset, which will be denoted by NC+(W), consists of the noncrossing partitions
which are not contained in any proper standard parabolic subgroup. Reading [21] has
proved that this subset is in bijection with positive clusters in the associated cluster
algebra ([12], see also [13]). For this reason, we say that these noncrossing partitions
are positive.

The Catalan number of type An−1 coincides with the positive Catalan number of
type An. Given this fact, it is possible to reinterpret Riedtmann’s bijection as a bijec-
tion between An combinatorial configurations and An positive noncrossing partitions.
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We then give a combinatorial description of positive noncrossing partitions for
type A, giving an explicit one-to-one correspondence f between NC(An−1) and
NC+(An). We also give a bijection ϕ between positive noncrossing partitions of the
Coxeter group WQ associated to any Dynkin quiver Q and Hom-configurations in
C(Q). This bijection generalizes Riedtmann’s bijection, in the sense that Riedtmann’s
bijection is given by the composition of ϕ (in the An case) with f .

Our work is closely related to [10]. In this paper the authors give a natural bi-
jection between m-clusters and m-noncrossing partitions, for m ≥ 1, using special
classes of exceptional sequences in the bounded derived category. The sets of ele-
ments of one of these special classes of exceptional sequences are called m- Hom≤0-
configurations. These configurations are contained in D≥0

≤m, the full additive subcat-
egory of the bounded derived category generated by the indecomposable objects of
KQ- mod[i], with 0 ≤ i ≤ m.

Hom-configurations turn out to be in bijection with 1- Hom≤0-configurations con-
tained in D

(≥0)−
≤1 , the full additive subcategory of the bounded derived category gen-

erated by the indecomposable objects of KQ- mod∪KQ- mod[1] other than the pro-
jective modules.

The main results presented in this paper can be summarized in the following the-
orem.

Theorem 1.1 Let Q be a Dynkin quiver and C(Q) the orbit category Db(Q)/τ [2].
Then the following collections of objects are in bijection:

(1) Hom-configurations in C(Q);
(2) Hom≤0-configurations contained in D

(≥0)−
≤1 ;

(3) periodic combinatorial configurations;
(4) sincere Hom-free sets in KQ- mod;
(5) positive noncrossing partitions of the Coxeter group WQ associated to Q.

The paper is organized as follows. We first prove that the subcategory of C(Q)

⊥M⊥
Q = {

X ∈ C(Q) | HomC(Q)(X,M) = 0 = HomC(Q)(M,X)
}
,

where M is an indecomposable object of C(Q), is equivalent to C(Q′) where Q′ is a
disjoint union of quivers of Dynkin type, whose number of vertices is n − 1.

This result gives us a strategy to prove some of the results in this paper. This
strategy is to use induction and reduce to the simpler case when we have a Hom-
configuration which contains a simple projective indecomposable module.

In Sect. 3, we prove the bijection between (1) and (2) in Theorem 1.1. The one-to-
one correspondence between (1) and (4) is proved in Sect. 4. This result is crucial to
prove the relation between Hom-configurations and positive noncrossing partitions.

In Sect. 5 we give a bijection between (1) and (5). We note that Buan, Reiten
and Thomas [9, Theorem 7] provide a different Coxeter-theoretic description for the
noncrossing partitions in bijection with Hom≤0-configurations contained in D(≥0)−

≤1 .
In Sect. 6, we prove the bijection between (1) and (3). We use some results in

[6] and the fact that the number of Hom-configurations is given by the so called
positive Fuss–Catalan number corresponding to the Coxeter group WQ associated
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to the Dynkin quiver Q. This fact follows immediately from the bijection between
Hom-configurations in C(Q) and positive noncrossing partitions.

In Sect. 7 we give a combinatorial description of this class of noncrossing par-
titions for type A and check that the bijection between (1) and (5) generalizes the
bijection given by Riedtmann in type A.

Finally, in Sect. 8 we give a definition of mutation of Hom-configurations and
prove that the graph of these mutations is connected.

2 Perpendicular category for Hom-configurations—main tool

Firstly let us fix some notation. Denote by K an algebraically closed field, Q a sim-
ply laced Dynkin quiver with n vertices, Q0 the set of vertices of Q, h the Coxeter
number associated to Q and KQ the path algebra. All modules considered will be left
finite-dimensional KQ-modules. The support of a module M , which we will denote
by supp(M), is the set of vertices i of Q for which Mi �= 0. The bounded derived cat-
egory of KQ-modules will be denoted by Db(Q). We know that the indecomposable
objects in Db(Q) are of the form M[i], for some indecomposable KQ-module M

and some integer i. If X = M[i] is an indecomposable object in Db(Q), we denote
by X the corresponding indecomposable KQ-module M , and by d(X) its degree, i.e.,
d(X) = d(M[i]) = i.

We define a partial order in the set ind Db(Q), the subcategory of isomorphism
classes of indecomposable objects in Db(Q), as follows. Given X,Y ∈ ind Db(Q),
we say that X 	 Y if there is a path from X to Y in the Auslander–Reiten quiver of
Db(Q). It is clear that 	 is indeed a partial order. Fix a refinement ≤ of 	 to a total
order that satisfies the following property:

X ≤ Y if d(X) < d(Y ). (1)

Let C(Q) be the category Db(Q)/τh−1, where τ is the Auslander–Reiten translate.
Note that C(Q) can also be defined to be the category Db(Q)/τ [2], where [− ] is the
shift functor and τ is the AR-translate in Db(Q) (cf. [15]).

It is easy to check that the objects in the subcategory

E (Q) = ind
(
KQ- mod∪(KQ- mod\I)[1])

of Db(Q) where I denotes the set of injective modules, is a fundamental domain for
the action of τ [2] on ind Db(Q). From now on, we identify the objects in ind C(Q)

with their representatives in this fundamental domain, unless stated otherwise.
The following remark is going to be useful later.

Remark 2.1 It follows very easily from the Serre duality that, for any pair of
objects X,Y in Db(Q), we have HomDb(Q)(X, τY [2]) 
 HomDb(Q)(Y [1],X) 

Ext−1

Db(Q)
(Y,X).
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Proposition 2.2 Let X,Y ∈ E (Q).

(1) We have HomDb(Q)(X, τ kY [2k]) = 0 for all k �= 0,1.
(2) HomDb(Q)(X, τ kY [2k]) �= 0 for at most one value of k.

Proof (1) Let k = −1 and suppose d(Y ) = 1. Note that d(τ−1Y [−2]) = 0 if
and only if Y = I [1] for some injective KQ-module I , which contradicts the hy-
pothesis that Y ∈ E (Q). Hence we have d(τ−1Y [−2]) = −1 and it is clear that
HomDb(Q)(X, τ kY [2k]) = 0. Finally, if d(Y ) = 0 then d(τ−1Y [−2]) = −2 or −1,
and so it is obvious that there is no map from X to τ−1Y [−2]. The case when
k < −1 is trivial since d(τ kY [2k]) is negative. If k > 2, then d(τ kY [2k]) ≥ k ≥
3, since d(Y ) = 0 or 1, and so HomDb(Q)(X, τ kY [2k]) = 0. Let now k = 2. If
d(Y ) = 1 then d(τ 2Y [4]) ∈ {3,4,5} and our claim holds. Suppose then that d(Y ) = 0.
Then d(τ 2Y [4]) ∈ {2,3,4}. The only nontrivial case is when d(τ 2Y [4]) = 2. But
this holds if and only if Y is projective and τY is an injective-projective mod-
ule, i.e., τY = Pa where a must be a source of Q. Therefore τ 2Y [4] = Ia[2],
and HomDb(Q)(X, Ia[2]) �= 0 implies that d(X) = 2, which is a contradiction since
X ∈ E (Q).

(2) By Remark 2.1, we have HomDb(Q)(X, τY [2]) 
 HomDb(Q)(Y [1],X). Sup-
pose HomDb(Q)(X,Y ) �= 0. Then, in particular X 	 Y , and so, by transitivity we
have X 	 Y [1]. Because X �= Y [1], we have by antisymmetry that Y [1] �	 X, which
implies that HomDb(Q)(Y [1],X) = 0. �

Proposition 2.3 Let M be an indecomposable object in C(Q). The full subcategory
⊥M⊥

Q of C(Q) whose set of objects is

⊥M⊥
Q = {

X ∈ C(Q) | HomC(Q)(X,M) = 0 = HomC(Q)(M,X)
}

is equivalent to C(Q′) where Q′ is a disjoint union of quivers of Dynkin type, whose
number of vertices is n − 1.

Firstly, we will show this proposition in the case when M is an indecomposable
simple projective KQ-module.

Lemma 2.4 Let M = Pa (a ∈ Q0) be an indecomposable simple projective KQ-
module. Then ⊥M⊥

Q is equivalent to C(Q′) where Q′ is the full subquiver of Q whose
set of vertices is Q0 \ {a}.
Proof Let M = Pa be an indecomposable simple projective KQ-module. Recall that
an indecomposable object X in Db(Q) is of the form X[i], where i ∈ Z and X is an
indecomposable module. It is easy to check that the indecomposable objects of ⊥M⊥
are of the form:

ind ⊥M⊥ = {
X ∈ ind KQ- mod | (dimX)a = 0

}

∪ {
X[1] | X ∈ ind KQ- mod,X noninjective, (dimX)a = 0

}
. (2)

Let Q′ be the full subquiver of Q whose set of vertices is Q0 \ {a}. Let Sa denote
the full subcategory of KQ-mod whose set of objects are the KQ-modules with no
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support at a, and let Db
Sa

be the full subcategory of Db(Q) whose objects are

obj Db
Sa

= {
X ∈ Db(Q) | Hn(X) ∈ Sa ∀n

}
.

Given that X 
 ⊕
n∈Z

Hn(X)[n] in the hereditary case (see e.g. [7, Lemma 3.3]),
Db

Sa
is equivalent to the full subcategory whose collection of objects is {X ∈ Db(Q) |

Xn ∈ Sa ∀n}.
It is easy to check that Db

Sa
is triangle equivalent to Db(Q′). We denote by G this

triangle equivalence and we will use it to define a K-linear functor FM from ⊥M⊥
to C(Q′).

In order to define FM on the objects, note that obj ⊥M⊥ ⊆ obj Db
Sa

, by (2). Hence,

given X ∈ ⊥M⊥, we can define FM(X) to be G(X) regarded as an element of C(Q′).
Note also that if X ∈ KQ- mod∩⊥M⊥ = Sa , then FM(X) ∈ KQ′- mod. Moreover, it
follows from [1, III.2.6 (b)] that X is an injective KQ-module if and only if G(X) is
an injective KQ′-module, because a is a sink. Hence FM maps the indecomposable
objects of ⊥M⊥ into the fundamental domain E (Q′) (recall that we regard the objects
of C(Q) as objects in the fundamental domain E (Q)).

It is enough to define FM on the morphisms between indecomposable objects.
So let X,Y ∈ ind ⊥M⊥ and f ∈ HomC(Q)(X,Y ). By Proposition 2.2, we have
f ∈ HomDb(Q)(X,Y ) or f ∈ HomDb(Q)(X, τY [2]). If f ∈ HomDb(Q)(X,Y ), set
FM(f ) := G(f ). If f ∈ HomDb(Q)(X, τY [2]), we must have X = X[1] and Y = Y .
Let ψY denote the isomorphism

HomDb(Q)

(
X[1], τY [2])

ψY

HomKQ
(
Y ,X

)

and by ψ ′
Y the corresponding isomorphism

HomDb(Q′)
(
ΣG(X),Σ2τ ′G(Y)

) ψ ′
Y

HomKQ′
(
G(Y),G(X)

)

in Db(Q′), where Σ denotes the shift functor and τ ′ the AR-translate in
Db(Q′). We then define FM(f ) to be ψ ′−1

Y (G(ψY (f )), regarded as an element of
HomC(Q′)(FM(X),FM(Y )).

One can easily see that FM is indeed a functor. Since G is dense, so is FM , and
it is easy to check that FM is also fully faithful using the definition of FM on the
morphisms and the fact that G is an equivalence. �

Remark 2.5 Note that the equivalence FM given in the proof above satisfies the fol-
lowing properties, which are going to be useful later:

(1) d(FM(X)) = d(X) for all X ∈ ⊥M⊥
Q ,

(2) For each b ∈ Q0 \ {a}, the simple KQ′-module S′
b is the image of the simple

KQ-module Sb ,
(3) For each KQ-module X in ⊥M⊥

Q , supp(FM(X)) = supp(X).



J Algebr Comb (2012) 35:313–343 319

In order to prove Proposition 2.3 we recall the definition of section.

Definition 2.6 [1, VIII.1.2] Let (Γ, τ ) be a connected translation quiver. A section
of Γ is a connected full subquiver Σ of Γ satisfying the following properties:

i. Σ is acyclic.
ii. Σ meets each τ -orbit exactly once.

iii. If x0 → x1 → ·· · → xt is a path in Γ with x0, xt ∈ Σ0 then xi ∈ Σ0, for all
0 ≤ i ≤ t .

We can associate a section to an arbitrary indecomposable object M of Db(Q).
Indeed, let x0 be the vertex of the AR-quiver Γ of Db(Q) associated to M . Recall
that Γ = ZQ, since Q is of Dynkin type, (cf. [16]). Let Σ = ⋃

k Σk be the full
subquiver of Γ whose set of vertices is defined by

(1) Σ0 := {x0},
(2) Σk := {y ∈ Γ | x → y ∈ Γ with x ∈ Σk−1 and τ y �∈ Σj for j < k}.
Note that M = τmPi , for some vertex i in Q and some integer m, and so Σ =⋃r

k=1 Σk , where r is the length of the longest unoriented path in Q starting at the
vertex i.

It is easy to prove that Σ is in fact a section and we will call it the section associ-
ated to M .

The proof of Proposition 2.3 follows easily from Lemma 2.4.

Proof of Proposition 2.3 Let Σ be the section associated to M and let Ω be the quiver
obtained from Σ by reversing all the arrows. By [1, VIII.1.6], we have ZQ 
 ZΩ ,
and so Db(Q) 
 Db(Ω). Let G denote this equivalence. We can assume that the
image of M under G is the projective KΩ-module associated to x0. This projective
module is simple since x0 is a sink in Ω . We can easily see that C(Q) 
 C(Ω) and
⊥M⊥

Q 
 ⊥G(M)⊥Ω . Because G(M) is a simple projective KΩ-module, it follows

from Lemma 2.4 that ⊥G(M)⊥Ω 
 C(Q′), where Q′ is a full subquiver of Ω with
n − 1 vertices, which finishes the proof. �

The main objects of our study are defined as follows.

Definition 2.7 Let C be an additive category.

(1) A Hom-free set of indecomposable objects of C is a set T of indecomposable
pairwise non-isomorphic objects of C such that HomC (X,Y ) = 0 for all X,Y ∈
T ,X �= Y .

(2) A maximal Hom-free set in C will be called a Hom-configuration.

We will study Hom-configurations in the quotient category C(Q).

Example 2.8 Given an arbitrary Dynkin quiver Q, the set of simple KQ-modules is a
Hom-configuration in C(Q).
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Lemma 2.9 A Hom-free set in C(Q) is a Hom-configuration if and only if it has n

elements.

Proof This follows easily from Proposition 2.3 using induction on the number of
vertices of Q. �

3 Hom-configurations vs. Hom≤0-configurations

In this section we will see that the main object of our study, Hom-configurations in the
quotient category C(Q), are very closely related to Hom≤0-configurations, a object
introduced by Buan–Reiten–Thomas (cf. [10]).

Exceptional sequences are crucial for our study, and are defined as follows.

Definition 3.1 (1) An object X of an Abelian or triangulated category C is said to be
rigid if Ext1C (X,X) = 0. If in addition, the object X is indecomposable then it is said
to be exceptional.

(2) An exceptional sequence in KQ- mod is a sequence E = (E1, . . . ,En) of ex-
ceptional KQ-modules satisfying the following property

HomKQ(Ei,Ej ) = 0 = Ext1KQ(Ei,Ej ), for j > i.

(3) An exceptional sequence in Db(Q) is a sequence of exceptional objects satis-
fying the following property

ExtmDb(Q)
(Ei,Ej ) = 0, for j > i and m ∈ Z.

In order to simplify the exposition, we use the reverse of the usual convention for
the order of an exceptional sequence.

Lemma 3.2 An exceptional sequence in Db(Q) can also be defined to be a sequence
(X1, . . . ,Xn) of indecomposable objects such that (X1, . . . ,Xn) is an exceptional
sequence in KQ- mod.

Proof Suppose (X1, . . . ,Xn) is an exceptional sequence in Db(Q) as defined in Def-
inition 3.1(3). Since for each i ∈ [n], Xi is indecomposable, we have Xi = Xi[ti],
for some integer ti . In other words, Xi = Xi[−ti], for all i. Note also that we have
ExtkKQ(Xi,Xj ) 
 ExtkDb(Q)

(Xi,Xj ), for k = 0,1 and j > i, since Xj ,Xi are KQ-
modules. Hence, for j > i and k = 0,1, we have

ExtkKQ

(
Xi,Xj

) 
 HomDb(Q)

(
Xi[−ti],Xj [k − tj ]

)


 HomDb(Q)

(
Xi,Xj [k − tj + ti]

) = 0,

by Definition 3.1.
Conversely, suppose (X1, . . . ,Xn) is a sequence of indecomposable objects in

Db(Q) such that (X1, . . . ,Xn) is an exceptional sequence in KQ- mod. Then we
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have HomDb(Q)(Xi,Xj [k]) = 0, for every integer k and j > i, by assumption in
the case when k = 0,1 and because Xj and Xi are KQ-modules, in the case when
k ∈ Z \ {0,1}. Using the same argument as used above, we easily deduce that
(X1, . . . ,Xn) is an exceptional sequence in Db(Q) as defined in Definition 3.1. �

In [10], Buan, Reiten and Thomas define a new object in the bounded derived cat-
egory Db(Q) of an arbitrary hereditary Artin algebra, called a Hom≤0-configuration.

Definition 3.3 [10] An object X ∈ Db(Q) is a Hom≤0-configuration if it satisfies the
following axioms:

(1) X has n indecomposable pairwise non-isomorphic summands X1, . . . ,Xn, and
they are rigid.

(2) HomDb(Q)(Xi,Xj ) = 0 for i �= j .
(3) ExtkDb(Q)

(X,X) = 0 for k < 0.
(4) The indecomposable direct summands can be ordered into an exceptional se-

quence.

Our aim is to prove that Hom≤0-configurations contained in E (Q) are precisely
the Hom-configurations in C(Q).

Lemma 3.4 Let T be a Hom-configuration in C(Q), and let X,Y ∈ T . We have
ExtiDb(Q)

(X,Y ) = 0, for i ≤ 0.

Proof Note that X,Y ∈ E . So, we have

0 = HomC(Q)(X,Y ) 
 HomDb(Q)(X,Y ) ⊕ HomDb(Q)

(
X,τY [2]).

Hence HomDb(Q)(X,Y ) = 0. We also have HomC(Q)(Y,X) = 0, which implies that

HomDb(Q)(Y, τX[2]) = 0, and so Ext−1
Db(Q)

(X,Y ) = 0, by Remark 2.1. For i ≤ −2,

we see that Y [i] has negative degree, as Y lies in E . Therefore ExtiDb(Q)
(X,Y ) = 0,

for i ≤ −2, since X has degree 0 or 1. �

Remark 3.5 (1) Let P be an indecomposable projective KQ-module. If
HomDb(Q)(P,X) �= 0 then X ∈ KQ- mod.

(2) Any non-zero KQ-module has a non-zero morphism to an indecomposable
injective module.

(3) Let P be an indecomposable projective KQ-module. We have P 	 I for any
indecomposable injective module I .

Proof We just prove (3). Let Pi be the indecomposable projective KQ-module asso-
ciated to vertex i in Q, and let Q′ be the quiver obtained from Q by orienting all the
arrows away from i. Note that the indecomposable projective KQ′-module P ′

i associ-
ated to the vertex i in Q′ is sincere. We have a derived equivalence between the two
module categories, i.e., Db(Q) 
 Db(Q′), and we can assume that this equivalence
identifies the projectives at i for the two quivers, i.e., G(Pi) = P ′

i .
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Since P ′
i is sincere, we have HomKQ′(P ′

i , I
′) �= 0, for all indecomposable injective

KQ′-modules I ′. Hence, in particular, P ′
i 	 I ′.

Note that under the equivalence G we find that, for an arbitrary indecomposable
injective KQ-module I , G(I) is either injective or it lies in KQ′- mod[1]. Therefore,
as we have seen above, G(Pi) = P ′

i 	 G(I), which implies that Pi 	 I , for any
indecomposable injective KQ-module. �

Proposition 3.6 Let T be a Hom-configuration in C(Q) (regarded as lying in E (Q)).
If we order the elements of T respecting the total order ≤ (i.e., order the elements
from left to right in the AR-quiver), we obtain an exceptional sequence in Db(Q).

Proof Let T = {X1, . . . ,Xn} be a Hom-configuration of C(Q) ordered with respect
to the total order ≤. We want to check that

ExtmDb(Q)
(Xi,Xj ) = 0, (3)

for j > i and for any integer m.
Note that (3) holds for m ≤ 0, by Lemma 3.4. (3) also holds for m > 2 since Xi

has degree 0 or 1 and Xj [m] has degree ≥ 3.
Let us check the case when m = 1. Given i, j ∈ [n] with i < j , we have

Ext1Db(Q)
(Xi,Xj ) 
 HomDb(Q)(Xj , τXi) by Serre duality. If this is non-zero, then

we have in particular that there is a path from Xj to τXi in the AR-quiver of Db(Q),
which implies that Xj ≤ τXi . On the other hand, τXi ≤ Xi , and so by transitivity,
we have Xj ≤ Xi . Since j > i, we have Xi ≤ Xj , so Xi = Xj by antisymmetry,
a contradiction. Hence, (3) holds for m = 1.

Finally, let us check for m = 2. Note that Xi ≤ Xj , and so Xj �	 Xi , i.e., there is
no path from Xj to Xi in the AR-quiver of Db(Q).

We have Xi = τ−l (Pa), for some natural number l and some indecomposable pro-
jective KQ-module Pa (a denotes the vertex corresponding to the projective module).

Suppose Ext2Db(Q)
(Xi,Xj ) = HomDb(Q)(Pa, τ

lXj [2]) �= 0. By Remark 3.5(1),

τ lXj [2] is a KQ-module, i.e., τ lXj has degree −2. It follows from Remark 3.5(2) that
there is a path from τ lXj to I [−2], for some indecomposable injective module I , i.e.,
τ lXj 	 I [−2]. We also have I [−2] 	 P [−1], where P is the indecomposable projec-
tive such that soc I 
 P/ radP , in other words, τP = I [−1]. By Remark 3.5(3), we
have P [−1] 	 Ia[−1]. We also have Ia[−1] 	 Pa . By transitivity we can conclude
that τ lXj 	 Pa , and so Xj = τ−l (τ lXj ) 	 τ−lPa = Xi , which is a contradiction. �

Theorem 3.7 Hom-configurations in C(Q) are in 1 − 1 correspondence with
Hom≤0-configurations contained in E (Q).

Proof Let T be a Hom-configuration of C(Q). By Lemma 2.9 T has n elements, and
every element of T is rigid, since Q is of Dynkin type. Properties 2 and 3 of Defini-
tion 3.3 follow from Lemma 3.4 and the definition of Hom-configuration and prop-
erty 4 follows from Proposition 3.6. Conversely, suppose T is a Hom≤0-configuration
of Db(Q) contained in E (Q). Then by property 1, it has n elements, and for any pair
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of objects X,Y of T we have

HomC(Q)(X,Y ) = HomDb(Q)(X,Y ) ⊕ HomDb(Q)

(
X,τY [2]),

since X,Y lie in E . Both summands are zero, by properties 2,3 and by Re-
mark 2.1. Hence T is a Hom-free set with n elements, and so the result follows
from Lemma 2.9. �

Note that the full subcategory D(≥0)−
≤1 of Db(Q) whose indecomposables are in

KQ- mod[i] \ {Pi | i ∈ [n]} with i = 0,1, which was considered in [10], is just a
different fundamental domain for the action of τ [2] in Db(Q).

Remark 3.8 Let T = {X1, . . . ,Xr,Xr+1[1], . . . ,Xn[1]} be a Hom-configuration in
C(Q) lying in E (Q), where Xi ∈ KQ- mod for i = 1, . . . , n and Xj ∈ KQ- mod\I ,
for j ≥ r + 1.

It is easy to check that the map μ sending T to {τ−1Xr+1, . . . , τ
−1Xn,X1[1], . . . ,

Xr [1]} gives a 1-1 correspondence between Hom-configurations in C(Q) (regarded
as lying in E (Q)) and Hom≤0-configurations contained in D(≥0)−

≤1 .

We will refer to this map μ later in Sect. 5.

4 Sincere Hom-free sets in KQ-mod

This section is devoted to the study of the set of modules of a Hom-configuration. We
prove that the restriction of the Hom-configurations in C(Q) to KQ- mod is precisely
the set of sincere Hom-free sets.

Some of the proofs will rely on using reflection functors, which correspond to
changing the orientation in the quiver Q, to reduce to the case when we have a simple
projective module, so we can use Lemma 2.4.

Given a sink or a source i of the quiver Q, we denote by σi(Q) the quiver ob-
tained from Q by reversing all the arrows incident to i. We denote by Ri the (sim-
ple) reflection functor associated to a sink i and by R−

j the simple reflection functor
associated to a source j . If i is a sink of Q, the functor Ri gives an equivalence
between Db(Q) and Db(σi(Q)), and the inverse is given by R−

i . Because Ri and
R−

i commute with τ and [− ], these functors induce equivalences between C(Q) and
C(σi(Q)). If we have a sequence i1, . . . , ik of vertices of Q such that each ij is a
sink in σij−1 . . . σi1(Q), and R is the sequence of reflections Rik . . .Ri1 , we denote by
σR(Q) the quiver σik . . . σi1(Q), for simplicity.

We have the following useful description of the image of an indecomposable ob-
ject of Db(Q) under these reflection functors:

Let i be a sink (source) of Q, and M[j ] an indecomposable object of Db(Q). If
M �= Si , then Ri(M[j ]) = N [j ] (R−

i (M[j ]) = N [j ]), where N is the indecompos-
able Kσi(Q)-module whose dimension vector is dim (N) = si(dimM), where si is
the simple reflection associated to the simple root αi . If M = Si , then Ri(M[j ]) =
M[j − 1] (R−

i (M[j ]) = M[j + 1]).
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Remark 4.1 (1) Given X ∈ C(Q), there exists a composition of reflection func-
tors Rik . . .Ri1 , where ij is a sink in σij−1 . . . σi1(Q) for each 2 ≤ j ≤ k such that
Rik . . .Ri1(X) is a simple projective K(σik . . . σi1(Q))-module.

(2) Given a set T of n objects in C(Q) and a sink i in Q, T is a Hom-configuration
in C(Q) if and only if Ri(T ) is a Hom-configuration in C(σi(Q)).

Proof Part (1) is a well known result, but we will give a specific sequence of reflection
functors which will be useful later.

Consider the set of objects {Y ∈ E (Q) | Y 	 X}. Let {Y1, . . . , Yk} be the order-
ing of the elements of this set with respect to the total order ≤. Given that Y1 is
	-minimal, Y1 must be a simple projective KQ-module. Let i1 be the sink of Q as-
sociated to Y1, i.e., Y1 = Pi1 . Note that Y2 is 	-minimal in E (σi1(Q)), i.e., Y2 is a
simple projective Kσi1(Q)-module. Let i2 be the corresponding sink in σi1(Q). Pro-
ceeding this way, we get the composition Rik . . .Ri2Ri1 of reflection functors. Clearly
this composition maps X to a simple projective KσR(Q)-module.

Part (2) follows easily from the fact that Ri is an equivalence and it commutes
with τ and the shift functor. �

Lemma 4.2 (1) [24, Theorem 3] The set of the simple KQ-modules is the unique
Hom-configuration of C(Q) consisting of modules.

(2) Any Hom-configuration of C(Q) has at least one KQ-module.

Proof Part (1) was proved by Ringel (cf. [24, Theorem 3]) but we will give an alter-
native proof, which will be by induction on n, the number of vertices of Q. The case
when n = 1 is very easy to check. Let T be a Hom-configuration consisting of mod-
ules in C(Q), where |Q0| = n. First suppose that T contains a simple projective mod-
ule Si . We will use the equivalence FSi

between ⊥S⊥
i and C(Q′), where Q′ = Q \ {i}

defined in Sect. 2 (for its definition and some of its properties, see proof of Lemma 2.4
and Remark 2.5). Note that FSi

(T \ Si) is a Hom-configuration in C(Q′) and it
consists only of KQ′-modules, by Remark 2.5(1). It follows by induction that these
KQ′-modules are the simple KQ′-modules, and so we have T = {S1, . . . , Sn}, by Re-
mark 2.5(2).

Suppose now that T does not contain any simple projective module. Let X be
a minimal element of T with respect to the partial order 	. Let R be the com-
position of reflection functors described in the proof of Remark 4.1(1). Observe
that R maps X to a simple projective KσR(Q)-module and if Y ∈ KQ- mod with
Y �	 X then R(Y ) ∈ KσR(Q)- mod. The same holds for R′ := Rik−1 . . .Ri2Ri1 , i.e.,
R′(Y ) ∈ KσR′(Q)- mod. So, in particular, R(T ) lies in KσR(Q)- mod, due to the
choice of X. Moreover, by Remark 4.1(2), R(T ) is a Hom-configuration in C(σR(Q))

and it contains a simple projective module. Hence, R(T ) is the set of simple modules
in KσR(Q)- mod. However, if one considers the simple injective KσR(Q)-module S′
corresponding to Rik , we know there is an element Y of T such that R(Y ) = S′, and
Rik−1 . . .Ri1(Y ) has degree 0 but Rik−1 . . .Ri1(Y ) = R−1

ik
(S′) = S′[1], a contradiction.

To prove (2), suppose T is a Hom-configuration of C(Q) whose objects lie in
ind((mod KQ\ I)[1]). Then T must be the set {S[1] | S simple module}, since other-
wise T [−1] = {M[−1] | M ∈ T } would be a Hom-configuration consisting of mod-
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ules which is not the set of the simple modules, contradicting (1). However, since Q is
a Dynkin quiver, it must have a source i. Hence Si = Ii is injective, a contradiction. �

In order to extend a sincere Hom-free set in KQ- mod to a Hom-configuration
by adding indecomposable objects of degree 1, we use the notion of perpendicular
category. If T is a set of indecomposable modules, the perpendicular category is
defined by

T ⊥ = {
M ∈ KQ- mod | HomKQ(X,M) = 0,Ext1KQ(X,M) = 0,∀X ∈ T

}
.

If Q is a Dynkin quiver and X is an indecomposable KQ-module, it is well known
that X⊥

Q is equivalent to KQ′- mod where Q′ is a quiver with no oriented cycles and
|Q0| − 1 vertices. Note that the functor from KQ′- mod to KQ- mod is exact and
induces isomorphisms on both Hom and Ext. We refer the reader to [25, Theorem 2.3]
for more details.

Remark 4.3 Let T be a Hom-free set in KQ- mod. Then T ⊥
Q 
 KQ′- mod for some

quiver Q′ which is a union of Dynkin quivers and it has |Q0| − |T | vertices.

Proof This follows immediately from Theorem 2.5 in [25] and Proposition 3.6. �

Proposition 4.4 Let T be a sincere Hom-free set in KQ- mod. There exists a unique
Hom-configuration of C(Q) whose restriction to KQ- mod is T .

Proof Let T = {X1, . . . ,Xk} be a sincere Hom-free set in KQ- mod. For each injec-
tive module I , there exists i ∈ [k] such that HomKQ(Xi, I ) �= 0, since T is sincere.
Hence the injective KQ-modules do not lie in T ⊥.

We claim that given Y ∈ ind(KQ- mod\I), Y [1] lies in ⊥T ⊥ if and only if
Y ∈ T ⊥. Indeed, given X ∈ T , we have HomC(Q)(X,Y [1]) 
 HomDb(Q)(X,Y [1]) 

Ext1KQ(X,Y ), and HomC(Q)(Y [1],X) = HomDb(Q)(Y [1], τX[2]) 
 HomKQ(X,Y ),
and so our claim holds.

We know T ⊥ 
 KQ′- mod, for some Dynkin quiver Q′ with n − k vertices.
Consider U = {S[1] | S simple object in T ⊥}. By the first part of this proof, U ⊆

⊥T ⊥ and so T ′ � U is a Hom-free set in C(Q). Since U has n − k elements, T ′ � U

is indeed a Hom-configuration in C(Q).
To prove the uniqueness let V be a set of elements in ind(KQ- mod\I)[1] such

that T ′ � V is a Hom-configuration in C(Q). Then it follows from the first part of
the proof that V [−1] is a Hom-free set in T ⊥ and it contains n − k elements. But
T ⊥ 
 KQ′- mod, where Q′ has n − k vertices, so it follows from 4.2 (1) that V must
be the shift of the simple objects in T ⊥. �

We remark that the proof gives us an explicit way to extend a sincere Hom-free set
to a Hom-configuration, by simply taking the perpendicular category of the sincere
Hom-free set and picking the shift of the simple objects in this category.
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Example 4.5 Consider the quiver Q : 4 3 2 1 of type A4.

We denote an indecomposable module with dimension vector given by (i1, i2, i3, i4)

by listing the vertices of the simple modules in its support.
Let T = {34,12}. Then obj T ⊥ = {1,123,23} and the simple objects of this sub-

category are 1 and 23. So U = {1[1],23[1]} and the unique Hom-configuration whose
set of modules is T is T � U = {12,34,1[1],23[1]}. Note that T � U is not the
unique Hom-configuration containing T . For instance, {12,34,23,123[1]} is also a
Hom-configuration, but it contains a module not in T .

Lemma 4.6 Let T be a Hom-configuration in C(Q) such that T ′ := T |KQ-mod is
sincere, and let i be a source in Q. Then R−

i (T ) |Kσi(Q)-mod is also sincere.

Proof We will use the following notation for simplicity: U = R−
i (T ), U ′ = R−

i (T )∩
Kσi(Q)- mod and U ′′ = U \ U ′.

Note that all KQ-modules except Si are mapped to Kσi(Q)-modules via R−
i , and

moreover, the support on all the vertices other than i remains unchanged, so we only
need to analyze what happens to the support on vertex i.

Suppose Si = Ii belongs to T . Let j be a neighbor of i in Q. There is a KQ-
module Y in T ′ with (dimY)j �= 0, by hypothesis. On the other hand, we must have
(dimY)i = 0, otherwise Hom(Y, Ii) �= 0, which contradicts the fact that T is Hom-
free. Therefore (dimR−

i (Y ))i �= 0 and the sincerity is preserved, as we wanted.
Suppose now that Ii does not lie in T . Assume, for a contradiction, that U ′

is not sincere, i.e., no Kσi(Q)-module in R−
i (T ) has support on i. Let I i be

the indecomposable injective Kσi(Q)-module associated to the vertex i. Then we
have HomKσi(Q)(X, I i) = 0, for all X ∈ U ′. We also have Ext1

Kσi(Q)
(X, I i) =

Hom(X, I i[1]) = 0, since I i is injective and d(X) = 0. Hence I i ∈ U ′⊥ . By Re-
mark 4.3, we have U ′⊥ 
G KQ′- mod, where Q′ is a union of Dynkin quivers and it
has n − |U ′| vertices. Let G(I i) → S → 0 be a surjection in KQ′- mod (note that ev-
ery module maps to a simple), and K its kernel. Then we have a short exact sequence
0 → G−1(K) → I i → G−1(S) → 0 in U ′⊥ . Since I i is injective, so is G−1(S). On
the other hand, the image of U ′′[−1] under G is the set of simple KQ′-modules
and U ′′[−1] does not contain any injective Kσi(Q)-module (see proof of Proposi-
tion 4.4), so G−1(S) is not injective, a contradiction. �

Proposition 4.7 The set of modules of any Hom-configuration in C(Q) is sincere.

Proof We prove this by induction on n. The proposition is trivial in the case when
n = 1. Now suppose the proposition holds for n−1 and let T be a Hom-configuration
in C(Q) with |Q0| = n. If T has a simple projective KQ-module Pi , then the set of
modules of the Hom-configuration FPi

(T \Pi) in C(Q′), with Q′ = Q\{i}, is sincere
by induction. So the set of modules in T \Pi has support on every vertex of Q except
i, by Remark 2.5(3). But Pi has support on i, so T |KQ-mod is sincere. Suppose now
that T does not have any simple projective module. Let X be an element of T . We
know that there is a sequence of reflections Ri1, . . . ,Rik such that Rik . . .Ri1(X) is a
simple projective Kσ(Q)-module, with σ(Q) = σik . . . σi1(Q). It follows from what
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was proved above that Rik . . .Ri1(T ) |Kσ(Q)-mod is sincere, and so the proposition
follows immediately from Lemma 4.6. �

Theorem 4.8 Let β be the map from the collection of sincere Hom-free sets in
KQ- mod to the collection of Hom-configurations in C(Q) defined as follows. Given
a sincere Hom-free set T in KQ- mod, β(T ) := T � U , where

U = {
S[1] | S simple object in T ⊥}

.

Then this map is a bijection, and its inverse is given by the restriction to KQ- mod.

Proof This follows immediately from Propositions 4.4 and 4.7. �

5 Positive noncrossing partitions

Let W be a finite Coxeter group, S the set of simple generators of W and T the set of
reflections. Fix a Coxeter element c in W . For w ∈ W , let lT (w) denote the absolute
length of w, which is the minimum length of w written as a product of reflections.
Given w ∈ W , we call a minimum length expression for w written as a product of
reflections as T -reduced expression. The absolute length naturally induces a partial
order ≤T on W , which will be called the absolute order.

Definition 5.1 The absolute order ≤T is defined by

u ≤T v ⇔ lT (v) = lT (u) + lT
(
u−1v

)
,

for all u,v ∈ W .

Another way to define absolute order is by saying that u ≤T v if there is a
T -reduced expression for v in which an expression for u appears as a prefix.

Definition 5.2 [2, 5] A noncrossing partition associated to W is an element w ∈
W satisfying 1 ≤T w ≤T c. The poset of noncrossing partitions associated to W is
denoted by NC(W).

We will state here a lemma proved by Reading [21] which will be useful later.

Lemma 5.3 [21, Lemma 5.2] Let x ≤T c, s be a simple reflection and WS\{s} be
the standard parabolic subgroup generated by every simple reflection but s. Then the
following are equivalent:

(1) x ∈ WS\{s}.
(2) Every reflection t in any T -reduced expression for x lies in WS\{s}.

Definition 5.4 [21] A noncrossing partition associated to W which is not contained
in any proper standard parabolic subgroup is said to be a positive noncrossing par-
tition. The subset of NC(W) consisting of positive noncrossing partitions will be
denoted by NC+(W).
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Let now WQ be the Coxeter group associated to the simply laced Dynkin quiver
Q, and fix a Coxeter element c = si1 . . . sin adapted to the quiver Q with respect to
sinks, i.e., i1 is a sink of Q, and ik is a sink of the quiver σik−1 . . . si2si1(Q), for each
k ≥ 2. The cardinality of NC(WQ) is given by the Catalan number associated to Q

(cf. [2]).
It was proved in [21] that the number of positive noncrossing partitions is given by

the so called positive Fuss–Catalan number C+(WQ), which is defined as (see [14])

n∏

i=1

ei + h − 1

ei + 1
,

where h is the Coxeter number of WQ and e1, . . . , en its exponents.
The following table (cf. Table 4 in [14]) shows the explicit formulas for Dynkin

type.

Q An Dn E6 E7 E8

C+(WQ) 1
n+1

(2n
n

) 3n−4
n

(2n−3
n−1

)
418 2431 17342

In order to prove that there is a bijection between positive noncrossing partitions
and Hom-configurations in C(Q) we will need to use the braid group action on the set
of exceptional sequences of a fixed length. This action can also be called mutations
of exceptional sequences.

We will now recall the notion of this braid group action and some useful facts. For
more details we refer the reader to [11].

Given an exceptional sequence E in KQ- mod, let C(E) denote the smallest full
subcategory of KQ- mod which contains E and is closed under extensions, kernels
and cokernels.

Let Br be the braid group on r strings, with generators σ1, . . . , σr−1 satisfying the
braid relations σiσj = σjσi if |i − j | ≥ 2 and σiσi+1σi = σi+1σiσi+1.

Proposition 5.5 [11] The following holds:

(1) Given an exceptional sequence E in KQ- mod, C(E) is equivalent to KQ′- mod
where Q′ is a quiver with no oriented cycles and with the number of vertices
given by the length of E.

(2) If (X,Y ) is an exceptional sequence in KQ- mod then there are unique indecom-
posable modules RY X,LX Y such that (Y,RY X), (LX Y,X) are exceptional se-
quences in C(X,Y ).

(3) Let E = (X1, . . . ,Xr) be an exceptional sequence and 1 ≤ i < r . Then
(X1, . . . ,Xi−1,Xi+1, Y,Xi+2, . . . ,Xr) is an exceptional sequence in C(E) if
and only if Y 
 RXi+1 Xi .

Analogously, (X1, . . . ,Xi−1,Z,Xi,Xi+2, . . . ,Xr) is an exceptional sequence
in C(E) if and only if Z 
 LXi

Xi+1.
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(4) The braid group Br acts on the set of exceptional sequences of length r by

σi(X1, . . . ,Xr) = (X1, . . . ,Xi−1,Xi+1,RXi+1 Xi,Xi+2, . . . ,Xr),

σ−1
i (X1, . . . ,Xr) = (X1, . . . ,Xi−1,LXi

Xi+1,Xi,Xi+2, . . . ,Xr).

(5) The braid group action preserves the product of the corresponding reflections in
the Weyl group.

(6) The braid group Bn on n strings acts transitively on the set of complete excep-
tional sequences.

The notion of exceptional sequences is related to Weyl group theory via the fol-
lowing theorem.

Theorem 5.6 [17, 18] Let c be a Coxeter element adapted to Q (with respect to sinks,
as above). Given a set of n positive roots β1, . . . , βn, the sequence (Mβ1 , . . . ,Mβn)

of modules associated to the positive roots (by Gabriel’s Theorem), is an exceptional
sequence if and only if tβ1 . . . tβn = c.

We note that the implication from left to right in Theorem 5.6 follows from Propo-
sition 5.5(5).

We are now able to prove the following theorem.

Theorem 5.7 There is a bijection between the positive noncrossing partitions and
the sincere Hom-free sets in KQ- mod.

Proof Let the map ϕ from NC+(WQ) to the set of sincere Hom-free sets in KQ- mod
be defined as follows. Given a positive noncrossing partition u with absolute length
r , there is a T -reduced expression for c which has a T -reduced expression tβ1 . . . tβr

for u as a prefix. By Theorem 5.6, the indecomposable modules corresponding to
the reflections in this T -reduced expression for c give rise to a complete exceptional
sequence, and so in particular, E = (E1, . . . ,Er), where Ei denotes the indecom-
posable module associated to tβi

, is an exceptional sequence. By Proposition 5.5(1)
C(E) is equivalent to KQ′- mod where Q′ is a quiver with r vertices and no oriented
cycles. We define ϕ(u) to be the set of simple objects S′ := {S′

1, . . . , S
′
r} in C(E).

Obviously, S′ is a Hom-free set in KQ- mod. Suppose, for a contradiction, that S′
is not sincere. Observe that the support of C(E), i.e., the support of the modules in
C(E), is the same as the support of E. Hence, E is not sincere either. But then u =
tβ1 . . . tβr would lie in the parabolic subgroup generated by the simple roots appearing
in the βi , for 1 ≤ i ≤ r , when they are written as linear combinations of the simple
roots. This subgroup is a proper parabolic subgroup since E is not sincere, which
contradicts the fact that u is a positive noncrossing partition. Hence ϕ(u) is indeed a
sincere Hom-free set in KQ- mod.

In order to check that this map is well defined we recall some results from [18].
In this paper the authors give a bijection, called cox, between the set of finitely gen-
erated wide subcategories of KQ- mod and NC(WQ). A wide subcategory is, by defi-
nition, an exact Abelian subcategory closed under extensions. Any finitely generated
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wide subcategory A of KQ- mod is of the form A = KQ′- mod, where Q′ is a finite
acyclic quiver (cf. [18, Corollary 2.22]). Given a finitely generated wide subcategory
A, cox(A) is defined to be tS′

1
. . . tS′

k
, where (S′

1, . . . , S
′
k) are the simple objects of A,

ordered into an exceptional sequence. By [18, Lemma 3.10], cox(A) = tF1 . . . tFr , for
any exceptional sequence (F1, . . . ,Fr) in A.

Let tγ1 . . . tγr be another T -reduced expression for u, and E′ = (E′
1, . . . ,E

′
r ) be the

corresponding exceptional sequence. Note that C(E) and C(E′) are finitely generated
wide subcategories of KQ- mod. We have cox(C(E)) = tβ1 . . . tβr = u = tγ1 . . . tγr =
cox(C(E′)). Because cox is an injective map, we have C(E) = C(E′) and so ϕ is
well defined.

In order to prove that ϕ is an injective map, let u,v ∈ NC+(W) be such that
ϕ(u) = ϕ(v) = S′. Then, in particular, u and v must have the same absolute length,
say r . Let u = tβ1 . . . tβr and v = tγ1 . . . tγr be T -reduced expressions. Let E and E′ be
the corresponding exceptional sequences of u and v, respectively. We know S′ can be
ordered into an exceptional sequence in KQ- mod, so let us now view S′ as such a se-
quence rather than just a set of modules. Due to the transitive action of the braid group
Br in C(E), S′ can be obtained from E by a sequence of mutations in C(E). Anal-
ogously, E′ can be obtained from S′ by a sequence of mutations in C(E′). Note that
all of these mutations can be seen as mutations in KQ- mod. So we have a sequence
of mutations in KQ- mod taking E′ to E. It follows then by Proposition 5.5(5) that
u = tβ1 . . . tβr = tγ1 . . . tγr = v, as we wanted.

To prove that ϕ is surjective let T be a sincere Hom-free set in KQ- mod and
T � U be the corresponding Hom-configuration (4.4). If we order the elements of
T � U with respect to the total order ≤, we obtain an exceptional sequence where
the first k terms are the modules (as ≤ satisfies (1)), using Proposition 3.6. Assume
(X1, . . . ,Xk,Xk+1, . . . ,Xn) is this ordering. Then (X1, . . . ,Xk,Xk+1, . . . ,Xn) is an
exceptional sequence in KQ- mod, by Lemma 3.2. By Theorem 5.6, we have

c = tX1 . . . tXk
tXk+1

. . . tXn
. (4)

Let u = tX1 . . . tXk
. By (4), u is a noncrossing partition. Suppose u is not positive.

Then u ∈ WS\{s}, for some simple reflection s. By Lemma 5.3, tXi
∈ WS\{s}, for all

1 ≤ i ≤ k. This means that T does not have support at the vertex associated to the
simple reflection s, which contradicts the hypothesis. Hence u is a positive noncross-
ing partition.

Since T is a Hom-free set with k elements, it follows from Lemma 4.2 that T is
the set of simple objects of C(T ), so ϕ(u) = T , and we are done. �

Corollary 5.8 The number of Hom-configurations in C(Q) is given by the positive
Fuss–Catalan number.

To summarize, we have a bijection ρ between NC+(WQ) and the set of Hom-
configurations in C(Q) (regarded as lying in E (Q)), given by ρ = β ϕ, where ϕ is
defined in Theorem 5.7 and β is defined in Theorem 4.8.

We will study the relation between the bijection ρ and the bijection θ be-
tween 1-noncrossing partitions and Hom≤0-configurations (contained in KQ- mod∪
KQ- mod[1]), given by A. Buan, I. Reiten and H. Thomas in [10, Theorem 7.3].
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Definition 5.9 A 1-noncrossing partition associated to WQ is a pair (u1, u2) of ele-
ments of WQ such that

c = u1u2 and lT (u1) + lT (u2) = n.

The pair (u1, u2) is said to be a positive 1-noncrossing partition if u1 is not contained
in any proper parabolic subgroup. We denote by NC1(WQ) (respectively, NC+

1 (WQ))
the set of 1-noncrossing partitions (respectively, positive 1-noncrossing partitions)
associated to WQ.

Note that the map nc sending (u1, u2) to u1 is a bijection between NC1(WQ) and
NC(WQ). Moreover, the restriction of nc to NC+

1 (WQ) is a bijection between this set
and NC+(WQ).

The bijection ρ can be described as follows:

Remark 5.10 Let (u1, u2) ∈ NC+
1 (WQ), and let t1 · · · tr and tr+1 · · · tn be

T -reduced expressions for u1 and u2 respectively. Let E1 = (E1, . . . ,Er) and
E2 = (Er+1, . . . ,En) be the corresponding exceptional sequences in KQ- mod. Let
Si be the set of simple objects in C(Ei ), for i = 1,2.

Then ρ(u1) = S1 ∪ S2[1].

Proof We have ρ(u1) = S1 ∪U [1], where U is the set of simple objects in S ⊥
1 . If we

prove that S ⊥
1 = C(E2) then we are done.

Note that (E1, E2) is a complete exceptional sequence in KQ- mod. Also, S1 can
be ordered into an exceptional sequence and this sequence can be obtained from E1

by a sequence of mutations due to the transitive action of the braid group in C(E1).
These mutations can be seen as mutations in KQ- mod, so that (S1, E2) is a complete
exceptional sequence in KQ- mod. This implies that S1 is a complete exceptional
sequence for ⊥E2. Hence, by [11, Lemma 4(b)], it follows that C(E2) = S ⊥

1 , as we
wanted to prove. �

The bijection θ from NC1(WQ) to the set of Hom≤0-configurations contained in
KQ- mod∪KQ- mod[1], in [10, Theorem 7.3] (for m = 1), has a similar description
to the one in Remark 5.10. Before describing θ explicitly, we note that the Coxeter
element c′ used in [10] is adapted to Q with respect to sources, i.e., c′ = c−1. Also,
the notion of exceptional sequence in [10] is the conventional one, i.e., (E1, . . . ,Er)

is an exceptional sequence (in the conventional sense) if

ExtKQ(Ej ,Ei) = 0 = HomKQ(Ej ,Ei),

for j > i.
We will now describe θ . Let (u1, u2) ∈ NC1(WQ). Pick an exceptional sequence

(in the conventional sense) (E1, . . . ,En) such that the first lT (u1) terms (respectively,
last lT (u2) terms) correspond to a factorization of u1 (respectively, u2) into reflec-
tions. Let Ei denote the exceptional sequence corresponding to ui and Fi denote the
set of simples of C(Ei ), for i = 1,2. Then θ(u1, u2) = F2 ∪ F1[1].
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The inverse of θ is described as follows (for more details see the proof of [10,
Theorem 7.3]): Let X be a Hom≤0-configuration in Db(Q) and order it into an
exceptional sequence (in the conventional sense) in such a way that the objects in
KQ- mod[1] appear before than those in KQ- mod. Then θ−1(X ) = (u1, u2), where
u1 (respectively, u2) is obtained by taking the product of the summands of X in
KQ- mod[1] (respectively, KQ- mod), respecting the order of the exceptional se-
quence.

Recall the 1-1 correspondence μ between Hom-configurations in C(Q) (lying in
E (Q)) and Hom≤0-configurations contained in D(≥0)−

≤1 given in Remark 3.8. The
relationship between the bijections ρ and φ is given in the following proposition.

Proposition 5.11 Let T be a Hom-configuration in C(Q), regarded as lying in E (Q).
Then nc ◦ θ−1(μ(T )) = (ρ−1(T ))−1. Hence, in particular, the set of noncrossing
partitions corresponding under the bijection θ to Hom≤0-configurations contained
in D(≥0)−

≤1 is in fact NC+
1 (WQ).

Proof Let

T = {
X1, . . . ,Xr,Xr+1[1], . . . ,Xn[1]}

be a Hom-configuration in C(Q), whose objects lie in E (Q) and are ordered into an
exceptional sequence with respect to the total order ≤.

Then

μ(T ) = {
τ−1Xr+1, . . . , τ

−1Xn,X1[1], . . . ,Xr [1]}

is a Hom≤0-configuration contained in D(≥0)−
≤1 , and the elements are ordered into an

exceptional sequence with respect to the total order ≤.
The corresponding exceptional sequence in the conventional sense (as in [10]) is

(Xr [1], . . . ,X1[1], τ−1Xn, . . . , τ
−1Xr+1). Hence we have

θ−1(μ(T )
) = (tr · · · t1, tτ−1Xn

· · · tτ−1Xr+1
).

On the other hand, ρ−1(T ) = t1 · · · tr = (nc ◦ θ−1(μ(T )))−1, and the proposition
follows. �

6 Riedtmann combinatorial configurations

In this section we give a link between Hom-configurations in C(Q) and the notion of
configurations introduced by Riedtmann.

Definition 6.1 A set T of isomorphism classes of indecomposable objects of Db(Q)

is called a (Riedtmann) combinatorial configuration if it satisfies the following prop-
erties:

(1) Hom(X,Y ) = 0 for all X,Y in T , X �= Y ,
(2) For all Z ∈ ind Db(Q), there exists X ∈ T such that Hom(Z,X) �= 0.
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A combinatorial configuration T is said to be τ [2]-periodic (or just periodic) if for
every object X in T , we have τ kX[2k] ∈ T for all k ∈ Z.

Riedtmann proved that these combinatorial configurations are τ [2]-periodic in the
cases when Q is of type A or D (cf. [22, 23]).

We will only consider periodic combinatorial configurations and our aim is to
prove that they are in bijection with Hom-configurations in C(Q).

Lemma 6.2 If T is a periodic combinatorial configuration, then the restriction of T
to E (Q), viewed as a set of objects in C(Q), is a Hom-configuration in C(Q).

Proof Let us denote the restriction of T to E (Q) by T ′. It follows from property 1 of
Definition 6.1 and from the periodicity of T that T ′ is a Hom-free set in C(Q). The
maximality follows also from the fact that T is periodic, since this means that every
object Y in T is of the form Y = τ iY ′[2i] for some i ∈ Z and some object Y ′ ∈ T ′,
and from property 2 of Definition 6.1. �

Using Lemma 6.2 and the fact that the number of Hom-configurations in C(Q)

is given by the positive Fuss–Catalan number, it is enough to show that the number
of periodic combinatorial configurations is also given by the positive Fuss–Catalan
number to get the bijection between these two notions of configurations.

In order to check this, we use some results presented in [6]. Namely the authors in-
troduce another notion of configuration, which we shall refer to as BLR-configuration.
Such configurations are periodic (cf. [6, Proposition 1.1]), and they are a subset of
the set of periodic combinatorial configurations (for more details see the introduction
in [6]).

Theorem 6.3 There is a bijection between the following objects:

(1) BLR-configurations in Db(Q);
(2) periodic combinatorial configurations in Db(Q);
(3) Hom-configurations in C(Q).

Remark 6.4 We have just seen that the following hold:

{BLR-configurations} ⊆ {periodic combinatorial configurations}
↪→ {

Hom-configurations in C(Q)
}
.

Hence, the only thing we need to check to prove Theorem 6.3 is that the number
of BLR-configurations is given by the positive Fuss–Catalan number, i.e., the number
of Hom-configurations in C(Q), by Corollary 5.8.

If Q is a quiver of type A, Bretscher, Läser and Riedtmann prove that BLR-
configurations in Db(Q) are in bijection with pedigrees with n vertices (cf. main
theorem in introduction and Sect. 6.2 in [6]). By definition, a pedigree is a subtree of
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the oriented tree:

...

•

β

• •

β

• •

β

• •

β

•

•

β

α

•
α

•

β

α

•
α

•
α

β

•
α

1

α

which contains the lowest vertex 1.
Pedigrees with n vertices are in 1-1 correspondence with binary trees. We recall

that a binary tree is a rooted tree (trees are drawn growing upwards, by convention)
in which each vertex i has at most two children, i.e., vertices adjacent to i which are
above it in the tree. Each child of a vertex is designated as its left or right child.

The correspondence is described as follows: the lowest vertex 1 corresponds to the

root, and x is a right (left) child of y if and only if we have y
α

x (x
β

y)

in the pedigree.
It is known that the number of binary trees with n vertices is given by 1

n+1

(2n
n

)
,

which is the positive Fuss–Catalan number C+(An). So we are done in type A.
It is proved in [6] (see end of Sect. 7.5) that the number of BLR-configurations

in type Dn is also given by the corresponding positive Fuss–Catalan number. So it
remains to check type E.

In [6], the authors define two partitions of BLR-configurations into classes, the
isomorphism classes and the equivalence classes. In order to define isomorphisms
and equivalences of BLR-configurations, we need to define reflection in a horizontal
line for type E6 and reflection in a vertical line for types E6, E7 and E8.

In type E6, whose Dynkin diagram is given by

6

1 2 3 4 5

the nontrivial diagram automorphism α of the Dynkin diagram is given by α(x) =
(6 − x)mod 6, for x = 1, . . . ,6. Here we use modular arithmetic using the repre-
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sentatives {1, . . . ,6}. This diagram automorphism induces an automorphism of the
translation quiver ZE6, which shall be called reflection in a horizontal line.

Now for types E6, E7 and E8, fix an alternating orientation of the corresponding
Dynkin diagrams and take a copy of the resulting quiver Δ in the translation quivers
ZE, where E is E6, E7 or E8. The line connecting the sources is called a vertical line
and the corresponding reflection is the automorphism φ of the underlying unoriented
graph of ZE which is defined by induction as follows: φ(x) = x, for x a point of
ZE in the vertical line, and given x → y in ZE with φ(x) already defined, define
φ(y) as the unique vertex of ZE such that φ(y) → φ(x) is an arrow in ZE and φ(y)

belongs to the τ -orbit of y. There is a second kind of vertical line, which is the line
connecting the sinks of the copy of Δ in ZE. The corresponding automorphism of
the underlying unoriented graph of ZE is defined similarly.

Isomorphisms of BLR-configurations come from automorphisms of the translation
quiver, which are given by τ k , with k ∈ Z, or by reflection in a horizontal line in type
E6. Two BLR-configurations are said to be equivalent if they are isomorphic or one
is isomorphic to the reflection of the other in a vertical line.

In types E7 and E8 there is no reflection in a horizontal line. Hence, each isomor-
phism class has h − 1 elements: a representative T and τ k(T ), with 1 ≤ k ≤ h − 2,
as τh−1(T ) = T . Hence the number of BLR-configurations is given by multiplying
the number of isomorphism classes with h − 1. In [6] the authors state that there are
143 and 598 isomorphism classes for type E7 and E8 respectively. Since h−1 equals
17 for type E7 and 29 for type E8, the number of BLR-configurations is 2431 and
17342 for type E7 and E8 respectively, which is the positive Fuss–Catalan number,
as we wanted.

For type E6 there are 17 equivalence classes. The authors of [6] list a representa-
tive for each of these equivalence classes. One can see that 12 of these equivalence
classes are invariant under reflection in a vertical line. Thus there are 12 + 2 × 5 = 22
isomorphism classes. One can easily check that 6 of these isomorphism classes are in-
variant under reflection in a horizontal line. Therefore, there are 6+16×2 = 38 BLR-
configurations up to τ -translation. Hence there are 38 × (h − 1) = 38 × 11 = 418
BLR-configurations in total, which is the positive Fuss–Catalan number for type E6.

7 Riedtmann’s bijection for type A

The notion of classical noncrossing partitions of {1, . . . , n} = [n] was introduced by
Kreweras [20] in 1972 and it is defined as follows.

Definition 7.1 [20] A classical noncrossing partition of [n] is a partition P =
{B1, . . . , Bm} of the set {1, . . . , n}, where we call Bi a block of P for 1 ≤ i ≤ m,
with the property that if 1 ≤ a < b < c < d ≤ n, with a, c ∈ Bi and b, d ∈ Bj , then
Bi = Bj .

One can interpret this as being a partition of the vertices of a regular n-gon, whose
vertices are ordered clockwise from 1 to n, such that the convex hulls of its blocks
are disjoint from each other.
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The set of classical noncrossing partitions of [n] form a poset under refinement of
partitions, and we denote this poset by NC(n). It was proved by Biane that NC(n)

and NC(An−1) are isomorphic posets:

Theorem 7.2 [3, Theorem 1] Given a permutation π of [n] write it as a product
of disjoint cycles (including 1-cycles) and let {π} denote the partition of [n] given
by these cycles. The map π �→ {π} is a poset isomorphism between NC(An−1) and
NC(n).

In this section Q denotes the quiver of type An with linear orientation:

Q : n n − 1 · · · 1 .

Riedtmann [22] proved that there is a bijection between the set of combinatorial
configurations of Db(Q) and NC(n). In order to describe this map we need the fol-
lowing notation.

We know there is a bijection between the AR-quiver Γ (Db(Q)) of Db(Q) and the
stable translation quiver ZQop , which is defined as follows:

(1) Vertices: (ZQop)0 := Z × Q
op

0 .

(2) Arrows: for vertices (x, a), (y, b) of ZQop , (x, a) (y, b) is an arrow

in ZQop if x = y and a b is an arrow in Qop or y = x + 1 and

b a is an arrow in Qop .

This bijection can be chosen so that the indecomposable projective Pi corresponds
to (1, i), for i ∈ [n]. Observe that the indecomposable KQ-modules are the objects of
ZQop written in the form (i, j) with 2 ≤ i + j ≤ n + 1, with i ≥ 1.

Recall that combinatorial configurations of type A are periodic and so by
Lemma 6.2 they can be regarded as Hom-configurations in C(Q). Moreover, it was
seen in Sect. 6 that the map in Lemma 6.2, which is the restriction of a combinatorial
configuration to the fundamental domain E (Q), is in fact a bijection. The composition
of this bijection with Riedtmann’s map (cf. [22, 2.6]) can be described as follows.

Theorem 7.3 [22, 2.6] Let P = {B1, . . . , Bm} be a classical noncrossing partition of
the vertices of a regular n-gon, and assume the elements of each Bi are in numerical
order. Given k ∈ [n], let B = {k1, . . . , ks} be the block that contains k. So k = kr

for some 1 ≤ r ≤ s. Let ψ(kr) := (k(r+1) mod s − kr) mod n. Here we use modular
arithmetic using the representatives {1,2, . . . , l} when working mod l.

Then the set {(i,ψ(i)) | i ∈ [n]} is a Hom-configuration in C(Q) and the map
defined this way, which we will call γ , is a bijection between NC(n) and the set of
Hom-configurations in C(Q).

Example 7.4 Consider the noncrossing partition P = {{1,3}, {2}, {4}} of {1,2,3,4}.
Then the image under γ is {(1,2), (2,4), (3,2), (4,4)} = {12,1[1],34,3[1]}, with
the notation we introduced in Example 4.5 (but note that the quiver we are using here
has linear orientation).
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Our aim is to check that the composition of the bijections in Theorems 5.7 and 4.8
gives a generalization of this result.

First, we will give a combinatorial description for the positive noncrossing parti-
tions of type A.

Proposition 7.5 A classical noncrossing partition of [n + 1] is positive if and only if
the vertices 1 and n + 1 lie in the same block.

Proof Let P = {B1, . . . , Bm} be a classical noncrossing partition of [n + 1] and u be
the corresponding noncrossing partition of type An.

Suppose 1 and n + 1 do not lie in the same block. Let B1 be the block which con-
tains the vertex 1, and write B1 = {1, k2, . . . , ks} in numerical order. By assumption,
ks �= n + 1. This block corresponds to the cycle (1 k2 . . . ks), which can be written as
a product of reflections (i.e., transpositions in this case):

(1 k2 . . . ks) = (1 k2)(k2 k3) . . . (ks−1 ks)

= tα1+···+αk2−1 tαk2 +···+αk3−1 · · · tαks−1 +···+αks−1 .

This element belongs to the parabolic subgroup W1 generated by the simple reflec-
tions sα1, sα2 , . . . , sαks −1. Note that this subgroup is proper as sαks

�∈ W1.
Since P is noncrossing, there are no vertices l and m lying in the same block with

l < ks < m. Hence, the cycle ci corresponding to the block Bi lies in a parabolic
subgroup Wi which does not contain sαks

, and so u = ∏m
i=1 ci belongs to the product

of the parabolic subgroups Wi (1 ≤ i ≤ m), which is a proper parabolic subgroup.
Hence the noncrossing partition u is not positive.

Now suppose 1 and n + 1 are in the same block, say B1. We have

B1 = {1, k1,2, . . . , k1,s−1, n + 1}
with 1 < k1,2 < · · · < k1,s−1 < n + 1. The corresponding cycle c1 = (1 k1,2 . . .

k1,s−1 n + 1) can be written in the form

c1 = tα1+···+αk1,2−1 tαk1,2+···+αk1,3−1 · · · tαk1,s−1+···+αn .

Note that lT (c1) = s −1, since s is the length of the cycle (cf. [4, Proposition 2.3]).
Hence the product of reflections above is a T -reduced expression for c1. Moreover,
if ci is the cycle corresponding to Bi , we have an expression for u as a product of
disjoint cycles, u = ∏m

i=1 ci , and so lT (u) = ∑m
i=1 lT (ci) (cf. [4, Lemma 2.2]).

Let E be the exceptional sequence in KQ- mod associated to this T -reduced ex-
pression of u, by Theorem 5.6. Due to the T -reduced expression for c1, we see that
E has support on every vertex of Q, i.e., E is sincere.

Consider C(E) 
 KQ′- mod, where the number of vertices of Q′ equals r , the
number of terms in E (cf. [11, Lemma 5]). Let S′ = {S′

1, . . . , S
′
r} be the set of simple

objects in C(E), ordered into an exceptional sequence. Due to the transitive action
of the set of mutations on complete exceptional sequences in C(E), E can be ob-
tained from S′ by a sequence of mutations. Hence u = tdimS′

1
. . . tdimS′

r
, by Proposi-

tion 5.5(5).
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On the other hand, suppS′ = suppC(E) = supp(E), which implies that S′ is a
sincere Hom-free set in KQ- mod. By Theorem 5.7, ϕ−1(S′) = tdimS′

1
. . . tdimS′

r
is a

positive noncrossing partition, i.e., u ∈ NC+(An), as we wanted. �

The following proposition follows easily from Proposition 7.5.

Proposition 7.6 Given a classical noncrossing partition P = {B1, . . . , Bm} of [n],
where 1 ∈ B1, let f (P ) be the partition {B′

1, . . . , B′
m} of [n + 1] defined by

B′
i =

{
B1 ∪ {n + 1} if i = 1

Bi if i �= 1.

Then f (P ) is a positive noncrossing partition and f : NC(n) → NC+(n + 1), where
NC+(n + 1) is the image of NC+(An) under the isomorphism between NC(An) and
NC(n + 1), is a bijection.

Theorem 7.7 Let ρ : NC+(An) → {Hom-configurations in C(Q)} be the composi-
tion of the bijection ϕ in Theorem 5.7 followed by the bijection β in Theorem 4.8. Let
γ be Riedtmann’s bijection (see Theorem 7.3). Then we have ρ−1 ◦ γ = f .

Proof We recall that here we are using the notation for the stable translation quiver
ZQop . Observe that the element (i, j) ∈ ZQop with i ≥ 1 and i + j ≤ n + 1 corre-
sponds to the indecomposable module Mij whose dimension vector is given by

(dimMij )l =
{

1 if l ∈ {i, i + 1, . . . , i + j − 1}
0 otherwise.

Note also that this indecomposable module corresponds to the transposition
(i i + j) = tαi+···+αi+j−1 .

Let P = {B1, . . . , Bm} ∈ NC(n). Let ≤ be the refinement to a total order of the
partial order 	 which was fixed in the beginning of this paper. Then the elements
of the Hom-configuration γ (P ) ordered with respect to this refinement form an ex-
ceptional sequence where the modules are the first elements. We can assume this
refinement satisfies the following property: if the indecomposable objects (i,ψ(i))

and (j,ψ(j)) have the same degree, then (i,ψ(i)) ≤ (j,ψ(j)) if i < j . This means
that the modules in γ (P ) are ordered into an exceptional sequence in the following
way:

Mi1,ψ(i1), . . . , Mik,ψ(ik),

where 1 ≤ i1 < · · · < ik and ij + ψ(ij ) ≤ n + 1. So we have

ρ−1(γ (P )
) = tdimMi1,ψ(i1)

· · · tdimMik,ψ(ik )
. (5)

Note that if (i,ψ(i)), (j,ψ(j)) ∈ γ (P )∩ KQ- mod are such that i and j belong to
different blocks, then the corresponding reflections commute.
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Hence we can write

ρ−1(γ (P )
) =

m∏

j=1

∏

i∈Bj

i+ψ(i)≤n+1

tdimMiψ(i)
, (6)

where the product corresponding to each block Bj respects the order in (5).
Given this, consider the block B1 = {k11 = 1, k12, . . . , k1,r1−1, k1r1} of P . This

block gives rise to the following elements in γ (P ):

(1, k12 −1), (k12, k13 −k12), . . . , (k1,r1−1, k1r1 −k1,r1−1), (k1r1 , n−k1r1 +1).

We denote this set of elements by T1.
The corresponding indecomposable objects lie in KQ- mod, since they are of the

form (i, j) with i ≥ 1 and i + j ≤ n + 1.
The reflections associated to the elements of T1 are:

(1 k12), (k12 k13), . . . , (k1r1 n + 1),

respectively.
The part of the product in (6) corresponding to B1 is the following product:

∏

i∈B1

tdimMi,ψ(i)
= (1 k12)(k12 k13) . . . (k1r1 n + 1)

= (1 k12 k13 . . . k1r1 n + 1).

Let Bj be any other block of P , and write Bj = {kj1, kj2, . . . , kjrj }, with kj1 <

kj2 < · · · < kjrj . Following the same argument as before, this block gives rise to the
following objects in γ (P ):

(kj1, kj2 − kj1), (kj2, kj3 − kj2), . . . , (kj,rj −1, kjrj − kj,rj −1),

(kjrj , n − kjrj + kj1).

All these objects but the last one lie in KQ- mod (note that (kjrj , n− kjrj + kj1) �∈
KQ- mod since kjrj + (n − kjrj + kj1) = n + kj1 ≥ n + 2 as kj1 �= 1).

We have
∏

i∈Bj

i+ψ(i)≤n+1

tdimMi,ψ(i)
= (kj1 kj2)(kj2 kj3) . . . (kj,rj −1 kjrj )

= (kj1 kj2 . . . kj,rj −1 kjrj ).

Hence the blocks of ρ−1(γ (P )) are {kj1, . . . , kjrj } = Bj , with 2 ≤ j ≤ m, and
{1, k12, . . . , k1r1, n+1} = B1 ∪{n+1}, which allow us to conclude that ρ−1 ◦γ = f ,
as we wanted. �
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8 Mutations of Hom-configurations

In this section we give a definition of mutation of Hom-configurations in C(Q), which
will rely on Proposition 2.3. The first thing we need to do is to generalize, in the
obvious way, this result.

Corollary 8.1 Let {X1, . . . ,Xk} be a Hom-free set in ind C(Q). Then

⊥{X1, . . . ,Xk}⊥ = {
Y ∈ C(Q) | HomC(Q)(Xi, Y ) = 0 = HomC(Q)(Y,Xi),∀i ∈ [k]}

is equivalent to C(Q′) where Q′ is a disjoint union of quivers of Dynkin type and
whose number of vertices is n − k.

Proof We prove this by induction on k. The case when k = 1 is Proposition 2.3.
Let {X1, . . . ,Xk,Xk+1} be a Hom-free set in C(Q). Then so is {X1, . . . ,Xk} and by
induction we have

⊥{X1, . . . ,Xk}⊥ 
 C(Q′), (7)

where Q′ is a disjoint union of quivers of Dynkin type, whose sum of vertices is n−k,
in other words, Q′ = ⊔t

i=1 Qi , where each Qi is a Dynkin quiver and
∑t

i=1 |Qi
0| =

n − k.
We have Xk+1 ∈ ⊥{X1, . . . ,Xk}⊥Q, and so by (7), there exists a unique i ∈ [t] for

which Xk+1 ∈ C(Qi). Given Y ∈ C(Qj ), with j �= i, we have

HomC(Q)(Xk+1, Y ) = 0 = HomC(Q)(Y,Xk+1)

since C(Ql), l ∈ [t], are pairwise orthogonal. Hence
⊔

j �=i C(Qj ) ⊆ ⊥(Xk+1)
⊥
Q.

Therefore,

⊥{X1, . . . ,Xk+1}⊥Q = ⊥(Xk+1)
⊥
Q ∩ ⊥{X1, . . . ,Xk}⊥Q


 ⊥(Xk+1)
⊥
Q ∩

(⊔

l∈[t]
C
(
Ql

)) (
by (7)

)

= (⊥(Xk+1)
⊥
Q ∩ C

(
Qi

)) �
(

⊥(Xk+1)
⊥
Q ∩

⊔

j �=i

C
(
Qj

)
)

= (⊥(Xk+1)
⊥
Q ∩ C

(
Qi

)) �
(⊔

j �=i

C
(
Qj

))
.

Note that ⊥(Xk+1)
⊥
Q ∩ C(Qi)) 
 ⊥(Xk+1)

⊥
Qi , which, by Proposition 2.3, is equiv-

alent to C(Q′′), where Q′′ is a disjoint union of quivers of Dynkin type whose sum of
vertices is |Qi

0| − 1, and we are done. �

In representation theory, mutations are operations that act on a certain class of
objects, and construct a new one from a given one by replacing a summand. For
example, mutations of exceptional sequences and cluster mutations are of this type.
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In this case, however, this will not make much sense. Indeed, let T = {X1, . . . ,Xn}
be a Hom-configuration in C(Q), and suppose we remove one object Xi . Then, by
Corollary 8.1, ⊥(T \Xi)

⊥
Q is equivalent to C(Q′) where Q′ is of type A1. Hence, the

only completion of T , i.e., the only object Y of C(Q) for which T ∪ Y is a Hom-
configuration is Xi . Therefore, in order to define mutations of Hom-configurations,
we need to remove more than one object.

A particular case of Corollary 8.1, which will be useful later, is the following:

Corollary 8.2 Let {X1, . . . ,Xn} be a Hom-configuration in C(Q). If we remove two
objects, say Xi , and Xj , with i �= j , then ⊥{Xk | k �= i, j}⊥Q 
 C(Q′), where Q′ is a
quiver with two vertices which are either connected by a single arrow, i.e., Q′ is of
type A2, or they are disconnected, i.e., Q′ is of type A1 × A1.

Lemma 8.3 Let Q′ be a quiver of type A2. Then the only two Hom-configurations
in C(Q′) are the set of simple modules, and {P,P ′[1]}, where P is the injective-
projective KQ′-module and P ′ is the simple projective KQ′-module.

Given these results, we are able to give a definition of mutation of Hom-
configurations in C(Q).

Definition 8.4 Let i, j ∈ [n], i < j . The mutation μi,j of the Hom-configuration
T := {X1, . . . ,Xn} in C(Q) is defined as follows:

(1) If ⊥{T \ {Xi,Xj }}⊥Q is equivalent to C(Q′) where Q′ is a quiver of type
A2, then μi,j (T ) is the Hom-configuration obtained from T by replacing the
Hom-configuration {Xi,Xj } in C(Q′) by the other possible Hom-configuration
{X′

i ,X
′
j } in this category (cf. Lemma 8.3).

(2) For the remaining case, i.e., if ⊥{T \ {Xi,Xj }}⊥Q is equivalent to C(Q′) where
Q′ is of type A1 × A1, then μi,j (T ) = T .

Example 8.5 Consider the quiver Q of type A3: 3 2 1 . The follow-

ing figure shows the graph of mutations of the Hom-configurations in C(Q), where
the vertices correspond to Hom-configurations and the edges correspond to muta-
tions:

{1,2,3}

{1,23,2[1]} {2,123,12[1]} {3,12,1[1]}

{123,1[1],2[1]}

Proposition 8.6 The graph of mutations G(Q) of Hom-configurations in C(Q) is
connected.
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Proof We prove this by induction on the number of vertices n. For n = 1 there is
nothing to prove.

It is easy to check that this proposition holds in the cases when Q is of type A2,
A3 and D4.

Let now Q be any other Dynkin quiver with n vertices. Note that given a vertex i of
Q there exists a vertex j which is not a neighbor of i, i.e., there is no arrow between i

and j . First we claim that two Hom-configurations T and T ′ in C(Q) with a common
object X are connected by a path in G(Q). Let F be the equivalence between ⊥X⊥
and C(Q′), where Q′ is a Dynkin quiver with n − 1 vertices (see Proposition 2.3).
Note that F(T \ X) and F(T ′ \ X) are Hom-configurations in C(Q′). By induction
G(Q′) is connected, so F(T \ X) and F(T ′ \ X) are connected by a path in G(Q′),
i.e., there is a sequence of mutations μ1, . . . ,μk such that μ1 . . .μk(F (T \ X)) =
F(T ′ \ X). This sequence of mutations can be lifted to a sequence of mutations in
C(Q) fixing the object X. Hence T and T ′ are connected by a path in G(Q), as we
wanted to prove.

Now fix a Hom-configuration T in C(Q). We want to prove that T is con-
nected to the simple Hom-configuration S by a path in G(Q). By Lemma 4.2(2)
there exists a KQ-module X in T , and there is a sequence of reflection functors
R = Rik . . .Ri1 , where ij is a sink in σij−1 . . . σi1(Q), such that Rik . . .Ri1(X) is a
simple KσR(Q)-module. Since R(T ) is a Hom-configuration in C(σR(Q)) and it
contains a simple module, it follows from what we claimed above that R(T ) and
the set of simple KσR(Q)-modules SσR(Q) are connected by a path in G(σR(Q)).
Note that ik is a source in σR(Q) and by assumption, there is a vertex j which is not
a neighbor of ik . Hence R−

ik
(SσR(Q)(j)) = Sσik

σR(Q)(j) (cf. [1, VII.5.4]). Therefore

R−
ik

(SσR(Q)) is connected to Sσik
σR(Q) by a path in G(σikσR(Q)) since it contains a

simple KσikσR(Q)-module. Since R−
ik

R(T ) and R−
ik

(SσR(Q)) are connected by a path

in G(σikσR(Q)), it follows that R−
ik

R(T ) is also connected to Sσik
σR(Q) by a path in

G(σikσR(Q)). Using the same argument when we apply the reflections R−
ik−1

. . .R−
i1

,
we deduce that T is connected to SQ by a path in G(Q). �
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