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Abstract In this paper we prove that there exists no minimum cubature formula of
degree 4k and 4k + 2 for Gaussian measure on R

2 supported by k + 1 circles for any
positive integer k, except for two formulas of degree 4.

Keywords Cubature formula · Euclidean design · Gaussian design · Laguerre
polynomial

1 Introduction

A pair (X,w) of a finite subset X ⊂ R
n and a positive weight function w : X −→ R>0

is called a cubature formula of degree t for the Gaussian measure on R
n if

1

Vn

∫
Rn

f (x)e−‖x‖2
dx =

∑
x∈X

w(x)f (x)
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for any polynomial f (x) of degree at most t , where Vn = ∫
Rn e−‖x‖2

dx. Let
Homl (R

n) be the vector space of homogeneous polynomials of degree l in n vari-
ables, and Pe(R

n) = ∑e
l=0 Homl(R

n), P ∗
e (Rn) = ∑e

l=0,l≡e(2) Homl (R
n). It is known

that if (X,w) is such a cubature formula, then the following inequalities hold (see [4,
9–11], etc.):

|X| ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dim(Pe(R
n)) if t = 2e,

2 dim(P ∗
e (Rn)) − 1 if t = 2e + 1 (e = 2k), 0 ∈ X,

2 dim(P ∗
e (Rn))

if t = 2e + 1 (e = 2k), 0 	∈ X,

or if t = 2e + 1 (e = 2k + 1).

Here, dim(Pe(R
n)) = (

n+e
e

)
and dim(P ∗

e (Rn)) = ∑[e/2]
i=0

(
n+e−2i−1

e−2i

)
. A cubature for-

mula (X,w) is called a minimum formula if the equality holds for X in the inequali-
ties given above. We note that the present definition of minimum seems to be different
from the classical way in numerical analysis and related areas, where the minimum
is often discussed only for cubature formula of degree 4k + 1 containing the origin
(see, e.g., [9, 10]). This is also called a Gaussian tight t-design of R

n.
A fundamental problem is the existence of Gaussian tight t-designs of R

n sup-
ported by [ t

4 ] + 1 concentric spheres. “[ t
4 ] + 1” is the minimum in the sense that

if a Gaussian t-design exists, then the number of spheres over which the points are
distributed must be at least [ t

4 ] + 1; see, e.g., [4, 8]. The case n = 2 deserves a spe-
cial attention. The first and second authors [1] proved that if there exists a Gaussian
tight 4-design (X,w) on 2 concentric circles, then (X,w) is isomorphic to one of the
following designs:

(a) X = X1 ∪{0}, X1 is a regular pentagon on the circle of radius r1 = √
2, w(0) = 1

2 ,
and w(x) = 1

10 for x ∈ X1.
(b) X = X1 ∪ X2, X1, and X2 are regular triangles defined by

X1 = {(
r1 cos(iθ), r1 sin(iθ)

)∣∣i = 0,1,2
}
,

X2 =
{(

r2 cos

(
iθ + π

3

)
, r2 sin

(
iθ + π

3

)) ∣∣∣∣ i = 0,1,2

}
,

where θ = 2π
3 , r1 =

√
3 + √

5, r2 =
√

3 − √
5, w(x) = 1

6 −
√

5
15 on X1, and

w(x) = 1
6 +

√
5

15 on X2.

Cools and Schmid [7] considered the degree 4k + 1 case in general and showed that
there exists no Gaussian tight (4k + 1)-design supported by k + 1 concentric cir-
cles for any integer k with k ≥ 2. In the case of k = 1, there exists a Gaussian tight
5-design (X,w) on 2 concentric circles, and it is isomorphic to the following design
(see, e.g., [4, 8]):

(c) X = X1 ∪{0}, X1 is a regular hexagon on the circle of radius r1 = √
2, w(0) = 1

2 ,
and w(x) = 1

12 for x ∈ X1.

Following the work of Cools and Schmid, the third and fourth authors [8] consid-
ered the degree 4k + 3 case and proved that there exists no Gaussian tight t-design
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supported by k + 1 concentric circles for t = 4k + 1 (k ≥ 2) and t = 4k + 3
(k ≥ 1).

The purpose of the present paper is to solve the even-degree case.

Theorem 1 Let (X,w) be a Gaussian tight 2e-design of R
2 with e ≥ 2. Suppose that

X is supported by [ e
2 ] + 1 concentric circles. Then, e = 2, and (X,w) is isomorphic

to one of the two Gaussian tight 4-designs (a), (b).

The proof of Theorem 1 is based on the property of Laguerre polynomials and
uses some elementary identities in combinatorics. It is simple and so will be under-
stood by many researchers. Also, the proof can be applied to the odd-degree case. By
summarizing the results known so far, we obtain the following classification result as
a corollary.

Corollary 1 Let (X,w) be a Gaussian tight t-design of R
2 with t ≥ 4. Then, X is

supported by [ t
4 ] + 1 concentric circles if and only if t = 4,5. In particular, if t = 4,

then (X,w) is isomorphic to one of the designs (a) and (b), and if t = 5, then (X,w)

is isomorphic to the design (c).

For more information on cubature formula, we refer to [3, 11].

2 Remarks on basic facts

Let (X,w) be a Gaussian tight t-design of R
n. Let {r1, r2, . . . , rp} = {‖x‖ | x ∈ X}.

We assume that r1 > r2 > · · · > rp ≥ 0. Let Si = {x ∈ R
n | ‖x‖ = ri} be the sphere of

radius ri centered at the origin. We say that X is supported by p concentric spheres.
Let Xi = X ∩ Si for i = 1, . . . , p. We note that a Gaussian tight t-design is a Eu-
clidean t-design. We refer the readers to [2, 4, 5] about Euclidean (tight) t-designs.
The following proposition is known (see Proposition 1.7 in [2] and Proposition 2.4.4
in [4]).

Proposition 1 Let (X,w) be a Gaussian tight t-design of R
n. Suppose that X is

supported by p concentric spheres. Then the following hold.

(1) p ≥ [ t
4 ] + 1.

(2) If t ≡ 2 or 3 mod 4, then 0 	∈ X.
(3) (X,w) is a Euclidean tight t-design of R

n.

If t = 2e, then Lemma 1.10 in [2] implies that the weight function w is constant
on each Xi for 1 ≤ i ≤ p. For t = 2e + 1 (if e is even and 0 	∈ X, we need an extra
condition on X, such as p = [ t

4 ]+ 1), Theorem 2.3.5 and Theorem 2.3.6 in [4] imply
that X is antipodal. Then Lemma 1.7 in [5] implies that the weight function w is
constant on each Xi for 1 ≤ i ≤ p. Proposition 1 suggests that it is important to study
the case p = [ t

4 ]+1. Then, as we mentioned above, the weight function w is constant
on each Xi .
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From now on let (X,w) denote a Gaussian tight t-design supported by p = [ t
4 ]+1

concentric spheres. Let k = [ t
4 ] and w(x) = wi for x ∈ Xi (1 ≤ i ≤ k + 1). Then we

must have

Vn

|Sn−1|
k+1∑
i=1

|Xi |wir
2j
i =

∫ ∞

0
r2j rn−1e−r2

dr, 0 ≤ 2j ≤ t.

Therefore, wi is determined uniquely by r1, . . . , rp .

3 Laguerre polynomials

Let (X,w) be a Gaussian tight 2e-design of R
2 supported by [ e

2 ] + 1 concentric
circles. Let k = [ e

2 ]. Then we have

∑
x∈X

w(x)‖x‖2j = 1∫
R2 e−‖x‖2

dx

∫
R2

‖x‖2j e−‖x‖2
dx

= 1∫ ∞
0 re−r2

dr

∫ ∞

0
r2j re−r2

dr =
∫ ∞

0
yj e−y dy = j !

for j = 0,1, . . . , e. Let λi = ∑
x∈Xi

w(x) = |Xi |wi and Ri = r2
i for i = 1,2, . . . ,

k + 1. Then we obtain the following quadrature formula of degree e for the weight
function e−y on the interval [0,∞) with the Christoffel numbers λ1, . . . , λk+1:

∫ ∞

0
yj e−y dy =

k+1∑
i=1

λiR
j
i .

Hence, we have

k+1∑
i=1

λiR
j
i = j ! (1)

for j = 0,1, . . . , e.
Let Pl(x) be the orthogonal polynomial (Laguerre polynomial) of degree l for the

weight function e−y on [0,∞). It is well known that Laguerre polynomials are given
by

Pl(x) =
l∑

i=0

(
l

l − i

)
(−x)i

i!
(see [6, 12], etc.). We have the following proposition.

Proposition 2 Definitions and notation are as given above. Let F(x) =∏k+1
i=1 (x − Ri). Then the following hold.
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(1) If e = 2k + 1, then F(x) = ck+1Pk+1(x).
(2) If e = 2k, then F(x) = ck+1Pk+1(x) + ckPk(x).

Here, ck+1 = (−1)k+1(k + 1)!, and ck is a real number.

Proof There exist real numbers c0, . . . , ck+1 satisfying F(x) = ∑k+1
l=0 clPl(x). Since

the coefficient of xk+1 in Pk+1(x) is (−1)k+1 1
(k+1)! , we have ck+1 = (−1)k+1(k+1)!.

Moreover, for any l ≤ e − k − 1, we have

cl

∫ ∞

0
Pl(x)2e−y dy =

∫ ∞

0
Pl(x)F (x)e−y dy =

k+1∑
i=1

λiPl(Ri)F (Ri) = 0.

Hence, c0 = c1 = · · · = ce−k−1 = 0. Thus, if e = 2k + 1, then e − k − 1 = k, and we
obtain

F(x) = ck+1Pk+1(x).

On the other hand, if e = 2k, then e − k − 1 = k − 1, and we have

F(x) = ck+1Pk+1(x) + ckPk(x). �

For more information on orthogonal polynomials, please refer to [6, 12], etc.

4 Proof of the main theorem

Throughout this section we use the same notations ci , ri , Ri , t , w, wi , X, Xi , λi as
in the previous sections. We assume that r1 > · · · > rk+1 and so R1 > · · · > Rk+1.

Before giving the proof of Theorem 1, we state propositions.

Proposition 3 If Rk+1 	= 0, then both
∑k+1

i=1
(−1)i−1

riR
k−1
i

and
∑k+1

i=1
(−1)i−1

riR
k
i

are nonzero.

If Rk+1 = 0, then
∑k

i=1
(−1)i−1

riR
k−1
i

	= 0.

Proof Assume that Rk+1 	= 0. If k is odd, then since riR
k−1
i = r2k−1

i > r2k−1
i+1 =

ri+1R
k−1
i+1 , we have

k+1∑
i=1

(−1)i−1

riR
k−1
i

=
(

1

r1R
k−1
1

− 1

r2R
k−1
2

)
+ · · · +

(
1

rkR
k−1
k

− 1

rk+1R
k−1
k+1

)
< 0.

If k is even, then

k+1∑
i=1

(−1)i−1

riR
k−1
i

= 1

r1R
k−1
1

+
(

− 1

r2R
k−1
2

+ 1

r3R
k−1
3

)

+ · · · +
(

− 1

rkR
k−1
k

+ 1

rk+1R
k−1
k+1

)
> 0,
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which implies
∑k+1

i=1
(−1)i−1

riR
k−1
i

	= 0. The other assertions follow by the same argument

as above. �

Proposition 4 (i) If t = 4k + 2, then

∑
1≤l1<···<ls≤k+1

Rl1Rl2 · · ·Rls = (k + 1)!
(k + 1 − s)!

(
k + 1

s

)
.

(ii) If t = 4k and 0 ∈ X, then

k+1∏
i=1

(x − Ri) = x

k∑
j=0

(−1)k+j (k + 1)!
(

k

j

)
xj

(j + 1)! .

Moreover, for s = 1,2, . . . , k,

∑
1≤l1<l2<···<ls≤k

Rl1Rl2 · · ·Rls = (k + 1)!
(

k

k − s

)
1

(k − s + 1)! .

(iii) If t = 4k and 0 /∈ X, then

k+1∏
i=1

(x − Ri) = (k + 1)!
k+1∑
j=0

(
k + 1

k + 1 − j

)
(−1)k+1+j xj

j ! + ck

k∑
j=0

(
k

k − j

)
(−1)j xj

j ! .

Moreover, for s = 1,2, . . . , k + 1,
∑

1≤l1<···<ls≤k+1

Rl1Rl2 · · ·Rls

= (k + 1)!
(

k + 1

s

)
1

(k + 1 − s)! + ck

(
k

s − 1

)
(−1)k+1

(k + 1 − s)! .

Proof (i) Proposition 2(1) implies that ck+1Pk+1(x) = ∏k+1
i=1 (x − Ri) and ck+1 =

(−1)k+1(k + 1)!. Comparing the coefficients at xk+1−s , we obtain the result.
(ii) Let F(x) = ∏k+1

i=1 (x − Ri). By the assumption 0 ∈ X, we have F(x) =
x

∏k
i=1(x − Ri). Proposition 2(2) implies F(x) = ck+1Pk+1 + ckPk . Since F(0) = 0

and Pl(0) = 1 for any l, we must have ck+1 + ck = 0. This implies

F(x) = ck+1
(
Pk+1(x) − Pk(x)

)
.

By definition we have

Pk+1(x) − Pk(x) =
k+1∑
j=0

(
k + 1

k + 1 − j

)
(−x)j

j ! −
k∑

j=0

(
k

k − j

)
(−x)j

j !

= −x

k∑
j=0

(−1)j
(

k

j

)
xj

(j + 1)! .
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Since ck+1 = (−1)k+1(k + 1)!, we obtain the former assertion. Comparing the coef-
ficients at the terms of both sides of this equality, we obtain the latter assertion.

(iii) Let F(x) = ∏k+1
i=1 (x − Ri). Proposition 2(2) implies F(x) = ck+1Pk+1 +

ckPk . The result then follows by the same arguments as in the proof of (ii). �

We often use the following notation in the proof of the main theorem:

Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(k + 1)! + ∑k
s=1(−1)s(k + 1 − s)!∑ 1≤l1<···<ls≤k+1

l1,...,ls 	=i

Rl1 · · ·Rls ,

t = 4k + 2 or t = 4k, 0 /∈ X,

(k + 1)! + ∑k−1
s=1(−1)s(k + 1 − s)!∑ 1≤l1<l2<···<ls≤k

l1,...,ls 	=i

Rl1Rl2 · · ·Rls ,

t = 4k, 0 ∈ X.

We are now ready to show Theorem 1.

Proof of Theorem 1 The proof consists of three steps.

Case t = 4k + 2 (e = 2k + 1)
In this case, X does not contain 0. Hence, R1 > R2 > · · · > Rk > Rk+1 > 0.

Equations (1) for j = 1, . . . , k + 1 imply

λi = (−1)i−1Ai

Ri

∏i−1
l=1(Rl − Ri)

∏k+1
l=i+1(Ri − Rl)

. (2)

On the other hand, Theorem 3.1.7(2) in [4] gives

λi

λ1
= wi

w1
= r1

ri

Rk+1
1

Rk+1
i

∏i−1
l=2(R1 − Rl)

∏k+1
l=i+1(R1 − Rl)∏i−1

l=2(Rl − Ri)
∏k+1

l=i+1(Ri − Rl)
(3)

for i = 2,3, . . . , k + 1. (Note that there is a typo in the formula of Theorem 3.1.7(2)
in [4]: Since 0 	∈ X, p − 1 in the formula must be replaced by p.)

Since λ1 	= 0, (2) implies A1 	= 0. Hence, (2) and (3) imply

(−1)i−1 r1R
k
1

riR
k
i

A1 = Ai (4)

for any 1 ≤ i ≤ k+1. Then by taking the sum of both sides of (4) over i = 1, . . . , k+1
we obtain

r1R
k
1A1

k+1∑
i=1

(−1)i−1

riR
k
i

= (k + 1)(k + 1)! +
k∑

s=1

(−1)s(k + 1 − s)!
k+1∑
i=1

∑
1≤l1<···<ls≤k+1

l1,...,ls 	=i

Rl1 · · ·Rls
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= (k + 1)(k + 1)! +
k∑

s=1

(−1)s(k + 1 − s)!(k + 1 − s)
∑

1≤l1<···<ls≤k+1

Rl1 · · ·Rls .

(5)

Then Proposition 4(i) and (5) imply

r1R
k
1A1

k+1∑
i=1

(−1)i−1

riR
k
i

= (k + 1)(k + 1)!

+
k∑

s=1

(−1)s(k + 1 − s)!(k + 1 − s)(k + 1)!
(

k + 1

s

)
1

(k + 1 − s)!

= (k + 1)(k + 1)! + (k + 1)(k + 1)!
k∑

s=1

(−1)s
(

k

s

)

= (k + 1)(k + 1)!
k∑

s=0

(−1)s
(

k

s

)
= 0.

Since A1 	= 0, we must have

k+1∑
i=1

(−1)i−1

riR
k
i

= 0.

This is a contradiction by Proposition 3.

Case t = 4k (e = 2k) and 0 ∈ X

Let Rk+1 = 0. Then (1) implies

k∑
i=1

λiR
j
i = j ! (6)

for 1 ≤ j ≤ e (= 2k).
If k = 1, then λ1R1 = 1 and λ1R

2
1 = 2 imply R1 = 2, λ1 = 1

2 , λ2 = 1
2 . Hence,

w(x) = 1
10 and w(0) = 1

2 . In this case, X\{0} is a spherical tight 4-design and a
regular pentagon. This gives the Gaussian tight 4-design given in Corollary 1(1).

Next we assume that k ≥ 2. Using (6) for j = 2,3, . . . , k + 1, we obtain

λi = (−1)i−1Ai

R2
i

∏i−1
l=1(Rl − Ri)

∏k
l=i+1(Ri − Rl)
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for i = 1,2, . . . , k. On the other hand, Theorem 3.1.4(2) in [4] implies

λi = r1R
k+1
1

riR
k+1
i

∏i−1
j=2(R1 − Rj)

∏k
j=i+1(R1 − Rj )∏i−1

j=2(Rj − Ri)
∏k

j=i+1(Ri − Rj )
λ1

for i = 2, . . . , k. Then a similar argument given before implies that for i = 1,2, . . . k,

(−1)i−1 r1R
k−1
1

riR
k−1
i

A1 = Ai. (7)

Then, taking the sum of both sides of (7) over i = 1,2, . . . , k, we obtain

A1r1R
k−1
1

k∑
i=1

(−1)i−1

riR
k−1
i

= k(k + 1)! +
k−1∑
s=1

(−1)s(k − s + 1)!
k∑

i=1

∑
1≤l1<···<ls≤k

l1,l2,...,ls 	=i

Rl1Rl2 · · ·Rls

= k(k + 1)! +
k−1∑
s=1

(−1)s(k − s + 1)!(k − s)
∑

1≤l1<···<ls≤k

Rl1Rl2 · · ·Rls . (8)

Then Proposition 4(ii) and (8) imply

A1r1R
k−1
1

k∑
i=1

(−1)i−1

riR
k−1
i

= k(k + 1)! +
k−1∑
s=1

(−1)s(k − s + 1)!(k − s)(k + 1)!
(

k

k − s

)
1

(k − s + 1)!

= k(k + 1)!
k−1∑
s=0

(−1)s
(

k − 1

s

)
.

Since k ≥ 2, then k(k + 1)!∑k−1
s=0(−1)s

(
k−1

s

) = 0. Since A1 	= 0, this implies

k∑
i=1

(−1)i−1

riR
k−1
i

= 0.

This is a contradiction by Proposition 3.

Case t = 4k (e = 2k) and 0 	∈ X

If k = 1, then (X,w) is a Gaussian tight 4-design of R
2. Hence, X1 and X2 are

regular triangles. Theorem 3.1.5(2) in [4] implies λ1
λ2

= ( r2
r1

)3. This, together with



118 J Algebr Comb (2012) 35:109–119

∑2
i=1 λiRi = 1 and

∑2
i=1 λiR

2
i = 2, implies R1 = 3 + √

5, R2 = 3 − √
5, λ1 = 1

2 −
1√
5

= 3w1, and λ2 = 1
2 + 1√

5
= 3w2. This is the example given in Corollary 1(2).

Next we assume that k ≥ 2. Using (1) for j = 1,2, . . . , k + 1, we obtain

λi = (−1)i−1Ai

Ri

∏i−1
l=1(Rl − Ri)

∏k+1
l=i+1(Ri − Rl)

(9)

for i = 1,2, . . . , k + 1. On the other hand, Theorem 3.1.5(2) in [4] implies

λi = r1R
k
1

riR
k
i

∏i−1
j=2(R1 − Rj )

∏k+1
j=i+1(R1 − Rj )∏i−1

j=2(Rj − Ri)
∏k+1

j=i+1(Ri − Rj)
λ1. (10)

(Note that there is a typo in the formula of Theorem 3.1.5(2) in [4]: p − 1 in the
formula must be replaced by p, since 0 	∈ X in this case.)

Then (9) and (10) imply

(−1)i−1 r1R
k−1
1

riR
k−1
i

A1 = Ai

for i = 1,2, . . . , k + 1. Then, taking the sum over i = 1,2, . . . , k + 1, we obtain

r1R
k−1
1 A1

k+1∑
i=1

(−1)i−1

riR
k−1
i

= (k + 1)(k + 1)! +
k∑

s=1

(−1)s(k + 1 − s)!(k + 1 − s)
∑

1≤l1<···<ls≤k+1

Rl1Rl2 · · ·Rls .

(11)

Then Proposition 4(iii) and (11) imply

r1R
k−1
1 A1

k+1∑
i=1

(−1)i−1

riR
k−1
i

= (k + 1)(k + 1)! +
k∑

s=1

(−1)s(k + 1 − s)!(k + 1 − s)

×
(

(k + 1)!
(

k + 1

s

)
1

(k + 1 − s)! + ck

(
k

s − 1

)
(−1)k+1

(k + 1 − s)!
)

= (k + 1)(k + 1)! +
k∑

s=1

(−1)s(k + 1 − s)(k + 1)!
(

k + 1

s

)

+ ck

k∑
s=1

(−1)s(k + 1 − s)

(
k

s − 1

)
(−1)k+1
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= (k + 1)(k + 1)!
k∑

s=0

(−1)s
(

k

s

)
+ (−1)kkck

k−1∑
s=0

(−1)s
(

k − 1

s

)

= (−1)kkck

k−1∑
s=0

(−1)s
(

k − 1

s

)
.

Since k ≥ 2 and A1 	= 0, we have

k+1∑
i=1

(−1)i−1

riR
k−1
i

= 0.

This is a contradiction by Proposition 3, which completes the proof of the main the-
orem. �
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12. Szegő, G.: Orthogonal Polynomials. AMS Colloquium Publications, vol. 23 (1939)


	On the existence of minimum cubature formulas for Gaussian measure on R2 of degree t supported by [t4]+1 circles
	Abstract
	Introduction
	Remarks on basic facts
	Laguerre polynomials
	Proof of the main theorem
	Acknowledgements
	References


