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Abstract We introduce a concept of multiplicity lattices of 2-multiarrangements,
determine the combinatorics and geometry of that lattice, and give a criterion and
method to construct a basis for derivation modules effectively.
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1 Introduction

Let K be a field and V a two-dimensional vector space over K. Fix a basis {x, y}
for V ∗ and define S := Sym(V ∗) � K[x, y]. A hyperplane arrangement A is a finite
collection of affine hyperplanes in V . In this article, we assume that any H ∈ A
contains the origin. In other words, all hyperplane arrangements are central. For
each H ∈ A, let us fix a linear form αH ∈ V ∗ such that ker(αH ) = H . For a hy-
perplane arrangement A, a map μ : A → N = Z≥0 is called a multiplicity and a pair
(A,μ) a multiarrangement. When we want to make it clear that all multiarrange-
ments are considered in V � K

2, we use the term 2-multiarrangement. (Ordinarily,
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a 2-multiarrangement is defined as a pair (A,m) of a central hyperplane arrangement
A and multiplicity function m : A → Z>0. From a 2-multiarrangement (A,μ) in
our definition, we can obtain a 2-multiarrangement (A′,m) in the original definition
by assigning A′ = μ−1(Z>0) and m = μ|A′ . We identify ours with the original one
in this manner.) To each multiarrangement (A,μ), we can associate the S-module
D(A,μ), called the derivation module in the following manner:

D(A,μ) := {
δ ∈ DerK(S)

∣
∣ δ(αH ) ∈ S · αμ(H)

H (∀H ∈ A)
}
,

where DerK(S) := S · ∂x ⊕ S · ∂y is the module of derivations. It is known that
D(A,μ) is a free graded S-module because we only consider 2-multiarrangements
(see [7, 8, 16]). If we choose a homogeneous basis {θ, θ ′} for D(A,μ), then the
exponents of (A,μ), denoted by exp(A,μ), is a multiset defined by

exp(A) := (
deg(θ),deg(θ ′)

)
,

where the degree is a polynomial degree.
Multiarrangements were originally introduced by Ziegler in [16] and there are a

lot of studies related to a multiarrangement and its derivation module. Especially,
Yoshinaga characterized the freeness of hyperplane arrangements by using the free-
ness of multiarrangements [14, 15]. In particular, according to the results in [15],
we can obtain the necessary and sufficient condition for a hyperplane arrangement in
three-dimensional vector space to be free in terms of the combinatorics of hyperplane
arrangements, and the explicit description of exponents of 2-multiarrangements. This
is closely related to the Terao conjecture, which asserts that the freeness of hyper-
plane arrangements depends only on the combinatorics. However, instead of the
simple description of the exponents of hyperplane arrangements, it is shown by
Wakefield and Yuzvinsky in [12] that the general description of the exponents of
2-multiarrangements is very difficult. In fact, there are only few results related to
them [1, 3, 10]. Recently, some theory to study the freeness of multiarrangements has
been developed by the first author, Terao and Wakefield in [5, 6], and some results
on the free multiplicities are appearing [2]. In these papers, the importance of the
exponents of 2-multiarrangements is emphasized too. Hence it is very important to
establish some general theory for the exponents of 2-multiarrangements.

The aim of this article is to give some answers to this problem. Our idea is to
introduce the concept of the multiplicity lattice of a fixed hyperplane arrangement.
The aim of the study of this lattice is similar to, but the method is contrary to the
study in [12], for Wakefield and Yuzvinsky fixed one multiplicity and consider all
hyperplane arrangements with it, but we fix one hyperplane arrangement and consider
all multiplicities on it. Let us fix a central hyperplane arrangement A = {H1, . . . ,Hn}
and the lattice Λ = N

|A|. We identify μ ∈ Λ with the map A → N such that μ(Hi) =
μi for Hi ∈ A. Define a map Δ : Λ → Z≥0 by

Δ(μ) := deg(θ ′
μ) − deg(θμ),

where {θμ, θ ′
μ} is a basis for D(A,μ) such that deg(θμ) ≤ deg(θ ′

μ). If we put Λ′ :=
Λ \ Δ−1({0}), then θμ is unique up to a scalar for each μ ∈ Λ′, though θ ′

μ is not.
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Hence θμ for μ ∈ Λ′ is expected to have some good properties. Our main results are
the investigations of these properties through considering the shape, topology and
combinatorics of Λ′. For details, see Sect. 3, or Theorems 3.1, 3.2 and 3.4. These
results, combined with Saito’s criterion (Theorem 4.1), allow us to construct a basis
for 2-multiarrangements effectively, see Theorem 3.9 for details.

Now the organization of this article is as follows. In Sect. 2, we introduce some
notation and examples related to our new definitions. In Sect. 3, we state the main
results. In Sect. 4, we recall elementary results about hyperplane arrangement theory
and prove the main results. In Sect. 5, we show some applications of main results,
especially we determine some exponents of multiarrangements of the Coxeter type.

2 Definition and notation

In this section, we introduce some basic terms and notation. Let K be a field, V a two-
dimensional vector space over K, and S a symmetric algebra of V ∗. By choosing a
basis {x, y} for V ∗, S can be identified with a polynomial ring K[x, y]. The algebra
S can be graded by polynomial degree as S = ⊕

i∈N
Si , where Si is a vector space

whose basis is {xjyi−j |j = 0, . . . , i}.
Let us fix a central hyperplane arrangement A in V , i.e., a finite collection

{H1, . . . ,Hn} of linear hyperplanes in V . For H ∈ A, fix αH ∈ S1 such that
ker(αH ) = H . The following new definition plays the key role in this article.

Definition 2.1 We define the multiplicity lattice Λ of A by

Λ := N
|A| = N

n.

Let us identify μ = (μ1, . . . ,μn) ∈ Λ with the multiplicity μ : A → N defined by
μ(Hi) := μHi

= μi . Hence a pair (A,μ) can be considered as a multiarrangement.
The set Λ has the partial order ⊂ defined by

μ ⊂ ν ⇐⇒ μH ≤ νH for all H.

For μ,ν ∈ Λ, the binary operations ∧ and ∨ are defined by

μ ∧ ν := inf{μ,ν},
μ ∨ ν := sup{μ,ν},

i.e., (μ ∧ ν)H = min{μH ,νH } and (μ ∨ ν)H = max{μH ,νH }. For μ ∈ Λ, we define
the size |μ| of μ by |μ| := ∑

H∈A μH . The element 0, which is defined by 0H = 0
for all H ∈ A, is the minimum element. The covering relation μ ⊂̇ ν is defined by
μ ⊂ ν and |μ| + 1 = |ν|. The graph whose set of edges is {(μ, ν) ∈ Λ2|μ ⊂̇ ν} and
whose set of vertices is Λ is called the Hasse graph of Λ. We identify Λ and its subset
with (the set of vertices of) the Hasse graph and its induced subgraph, respectively.
For μ,ν ∈ Λ, we define the distance d(μ, ν) by d(μ, ν) := ∑

H∈A |μH − νH |. For
C,C′ ⊂ Λ, we define d(C,C′) by d(C,C′) := min{d(μ,μ′)|μ ∈ C,μ′ ∈ C′}. For
μ ∈ Λ and r ∈ N, we define the ball B(μ, r) with the radius r and center μ by
B(μ, r) := {ν ∈ Λ|d(μ, ν) < r}.
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Definition 2.2 We define a map Δ : Λ → N by

Δ(μ) := |d1 − d2|,
where (d1, d2) are the exponents of the free multiarrangement (A,μ).

Definition 2.3 Let Λ′ denote the support Δ−1(Z>0). For H ∈ A, let us define ΛH

to be the set
{
μ ∈ Λ

∣∣∣∣ μH >
1

2
|μ|

}
.

We define Λ∅ and Λ′∅ by

Λ∅ := Λ \
( ⋃

H∈A
ΛH

)
=

{
μ ∈ Λ

∣∣∣∣ μH ≤ 1

2
|μ|(∀H ∈ A)

}
,

Λ′∅ := Λ∅ ∩ Λ′.

Roughly speaking, Λ∅ consists of balanced elements while ΛH consists of elements
such that H monopolizes at least half of their multiplicities.

Example 2.4 Let A consist of three lines. In this case,

Λ = {
(μ1,μ2,μ3)

∣∣μi ∈ N
}
,

Λ1 = {
(μ1,μ2,μ3) ∈ Λ

∣∣μ1 > μ2 + μ3
}
,

Λ2 = {
(μ1,μ2,μ3) ∈ Λ

∣∣μ2 > μ1 + μ3
}
,

Λ3 = {
(μ1,μ2,μ3) ∈ Λ

∣∣μ3 > μ1 + μ2
}
,

and

Λ∅ =
⎧
⎨

⎩
(μ1,μ2,μ3) ∈ Λ

∣∣∣∣
∣∣

μ1 ≤ μ2 + μ3;
μ2 ≤ μ1 + μ3;
μ3 ≤ μ1 + μ2

⎫
⎬

⎭
.

By the result in Wakamiko [10], the exponents in this case can be described explicitly,
and we have

Δ(μ) =

⎧
⎪⎨

⎪⎩

1 if μ ∈ Λ∅ and |μ| is odd,

0 if μ ∈ Λ∅ and |μ| is even,

2μi − |μ| if 2μi > |μ|.
Hence we have Λ′∅ = {μ ∈ Λ∅||μ| is odd}.

For each μ ∈ Λ′, there exist θμ and θ ′
μ such that deg(θμ) < deg(θ ′

μ) and {θμ, θ ′
μ}

is a homogeneous basis for D(A,μ). Since Δ(μ) �= 0, θμ is unique up to a nonzero
scalar for each μ ∈ Λ′. Hence we can define a map θ : Λ′ → D(A,0) = DerK(S)
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by θ(μ) := θμ (up to a scalar, or regard the image of θ as a one-dimensional vector
space of D(A,0)).

Definition 2.5 Let us define cc(Λ′), cc0(Λ
′) and cc∞(Λ′) by

cc(Λ′) := {connected components of Λ′},
cc0(Λ

′) := {
C ∈ cc(Λ′)

∣∣ |C| < ∞}
,

cc∞(Λ′) := {
C ∈ cc(Λ′)

∣∣ |C| = ∞}
,

where μ and ν are said to be connected if there exists a path from μ to ν in the
induced subgraph Λ′ of the Hasse graph. For C ∈ cc(Λ′), μ ∈ C and H ∈ A, define
Cμ,H to be the set of ν ∈ C satisfying the following two conditions:

(1) νH ′ = μH ′ for each H ′ ∈ A \ {H }.
(2) If ν ⊂ κ ⊂ μ or μ ⊂ κ ⊂ ν, then κ ∈ C.

Definition 2.6 For C ∈ cc0(Λ
′), we define P(C) by

P(C) := {
μ ∈ C

∣∣ Δ(μ) = max
{
Δ(ν)

∣∣ ν ∈ C
}}

and P(Λ′) by

P(Λ′) :=
⋃

C∈cc0(Λ
′)
P (C).

Example 2.7 Let us consider the same A as Example 2.4, i.e., an arrangement con-
sisting of three lines. In this case,

cc0(Λ
′) = {{μ} ∣∣μ ∈ Λ′∅

}
,

cc∞(Λ′) = {Λ1,Λ2,Λ3},
cc(Λ′) = cc0(Λ

′) ∪ {Λ1,Λ2,Λ3}.

Definition 2.8 For a saturated chain ρ in Λ, i.e., a sequence ρ = (ρ(0), . . . , ρ(k)) of
elements in Λ satisfying ρ(i) ⊂̇ ρ(i+1), we define α(ρ) by

α(ρ) =
∏

i: Δ(ρ(i)) > Δ(ρ(i+1))

α(i),

where α(i) = αH such that ρ
(i)
H + 1 = ρ

(i+1)
H .

3 Main Results

In this section we state the main results. First let us give three theorems which show
the structure of Λ′.
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Theorem 3.1 We have the following:

(1) For each C ∈ cc0(Λ
′), it holds that C ⊂ Λ′

∅. Moreover,
⋃

C∈cc0(Λ
′) C = Λ′∅.

(2) cc∞(Λ′) = {ΛH |H ∈ A}.
(3) Any maximal connected component of Λ \ Λ′ = Δ−1({0}) consists of one point.

Theorem 3.2 Let C ∈ cc0(Λ
′) and μ ∈ P(C). Then

C = B
(
μ,Δ(μ)

)
,

and, for ν ∈ C,

Δ(ν) = Δ(μ) − d(μ, ν).

In particular, for C ∈ cc0(Λ
′), P(C) consists of one point.

Corollary 3.3 For C ∈ cc0(Λ
′), μ ∈ P(C) and ν ∈ Λ satisfying d(μ, ν) < Δ(μ) +

2,

Δ(ν) = ∣
∣Δ(μ) − d(μ, ν)

∣
∣.

The following result implies the independency of “low-degree” bases.

Theorem 3.4 Let C,C′ ∈ cc0(Λ
′) such that d(C,C′) = 2. If μ ∈ C and μ′ ∈ C′,

then {θμ, θμ′ } is S-linearly independent. Moreover, if C ∈ cc(Λ′) and μ,μ′ ∈ C, then
{θμ, θμ′ } is S-linearly dependent.

The theorems above imply the following three corollaries, which enable us to con-
struct the basis for D(A,μ) effectively.

Corollary 3.5 Let N ⊂ Λ∅ be such that Λ∅ \N does not have any connected compo-
nent whose size is larger than 1, and let ϑ : N → D(A,0) be such that ϑμ ∈ D(A,μ)

and degϑμ <
|μ|
2 . Then the following are equivalent:

• {ϑμ,ϑν} is S-linearly independent if

min

{
d(μ′, ν′)

∣∣∣∣
μ and μ′ are in the same connected component in N

ν and ν′ are in the same connected component in N

}
= 2.

• N = Λ′∅ .

Corollary 3.6 Let N ⊂ Λ∅ and ϑ : N → D(A,0) be such that ϑμ ∈ D(A,μ),
degϑμ <

|μ|
2 and Δ′(μ) = |μ| − 2 degϑμ > 0. Assume that B(μ,Δ′(μ)) and

B(ν,Δ′(ν)) are disjoint for μ �= ν ∈ N , and that Λ∅ \ ⋃
μ∈N B(μ,Δ′(μ)) has no

connected components whose size is larger than 1. Then the following are equiva-
lent:

• {ϑμ,ϑν} are S-linearly independent if Δ′(μ) + Δ′(ν) = d(μ, ν).
• N = P(Λ′) and ϑμ = θμ for each μ ∈ P(Λ′).
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Corollary 3.7 Let N = {μ ∈ Λ∅
∣∣ |μ| is odd} and ϑ : N → D(A,0) be such that

ϑμ ∈ D(A,μ) and deg θμ <
|μ|
2 . Define the equivalence relation ∼ generated by

μ ∼ ν ⇐⇒ {ϑμ,ϑν} is S-linearly dependent and d(μ, ν) = 2.

Then the following are equivalent for μ,ν ∈ N :

• μ ∼ ν.
• μ,ν ∈ C ∈ cc0(Λ

′).

Remark 3.8 In Corollaries 3.5, 3.6 and 3.7, we do not require the condition
deg(ϑμ) = deg(θμ).

Finally we state the theorems which describe the behavior of the basis near, or
between the centers of connected balls.

Theorem 3.9 Assume that μ,ν ∈ Λ′ belong to distinct connected components and
satisfy Δ(μ) + Δ(ν) = d(μ, ν). Let κ ∈ Λ be such that μ ∧ ν ⊂ κ ⊂ μ ∨ ν, and

αμ,κ =
∏

H∈A
α

max{κH −μH ,0}
H ,

αν,κ =
∏

H∈A
α

max{κH −νH ,0}
H .

Then {αμ,κθμ,αν,κθν} is a homogeneous basis for D(A, κ).

Corollary 3.10 For each μ ∈ Λ∅, we can construct a homogeneous basis for
D(A,μ) from the restricted map θ |P(Λ′).

4 Proofs of main results

In this section, we prove the main results. To prove them, first we recall a result
about hyperplane arrangements and derivation modules. The following is the two-
dimensional version of the famous Saito’s criterion, which is very useful to find the
basis for D(A,m). See Theorem 8 in [16] and Theorem 4.19 in [7] for the proof.

Theorem 4.1 (Saito’s criterion) Let (A,μ) be a 2-multiarrangement and θ1, θ2 ∈
D(A,μ). Then {θ1, θ2} forms a basis for D(A,μ) if and only if {θ1, θ2} is indepen-
dent and deg(θ1) + deg(θ2) = |μ|.

4.1 Proofs of Theorems 3.1 and 3.2

Lemma 4.2 If μ,ν ∈ Λ and μ ⊂̇ ν, then |Δ(μ) − Δ(ν)| = 1.

Proof It follows from the fact that D(A,μ) ⊃ D(A, ν) and Saito’s criterion. �



8 J Algebr Comb (2012) 35:1–17

Lemma 4.3 Assume that μ,ν ∈ Λ′ and μ ⊂̇ ν with νH = μH + 1 for some H ∈ A.
Then

θν =
{

αH θμ if Δ(μ) > Δ(ν),

θμ if Δ(μ) < Δ(ν).

Proof Fix a homogeneous basis {θμ, θ ′} for D(A,μ), where deg(θμ) < deg(θ ′). If
Δ(μ) > Δ(ν), then Saito’s criterion implies θμ /∈ D(A, ν). Since αH θμ ∈ D(A, ν),
Lemma 4.2 implies αH θμ is a part of a homogeneous basis for D(A, ν). Hence
we may assume that {αH θμ, θ ′′} is a basis for D(A, ν). If Δ(μ) < Δ(ν), then
θμ ∈ D(A, ν), which completes the proof. �

Corollary 4.4 Let μ,ν ∈ C ∈ cc(Λ′) with μ ⊂ ν, and ρ be a saturated chain from μ

to ν. Then θν = α(ρ)θμ.

Proof Apply Lemma 4.3 repeatedly. �

Lemma 4.5 Let C ∈ cc(Λ′), μ ∈ C, and H ∈ A. If |Cμ,H | < ∞, then Δ|Cμ,H
is

unimodal, or equivalently, there exists a unique element κ ∈ Cμ,H such that

Δ(ν′) ≤ Δ(ν) for ν′ ⊂ ν ⊂ κ or κ ⊂ ν ⊂ ν′.

If |Cμ,H | = ∞, then Δ|Cμ,H
is monotonic, or equivalently,

Δ(ν′) ≤ Δ(ν) for ν′ ⊂ ν.

Proof Let ν, ν′, ν′′ ∈ Cμ,H satisfy ν ⊂̇ ν′ ⊂̇ ν′′. Assume that Δ(ν) > Δ(ν′) <

Δ(ν′′). By Lemma 4.3, we may choose a basis {αH θν, θ
′} for D(A, ν′) such that

{αH θν,αH θ ′} is a basis for D(A, ν′′). Hence αH θν(αH ) ∈ S · α
ν′′
H

H = S · α
νH +2
H and

θν(αH ) ∈ S · α
νH +1
H . Then θν ∈ D(A, ν′), which is a contradiction. Since it follows

from Lemma 4.2 that min{Δ(μ′)|μ′ ∈ Cμ,H } = 1, we have the lemma. �

Definition 4.6 For H ∈ A, C ∈ cc0(Λ
′) and μ ∈ C, we may choose, by Lemma 4.5,

the unique element κ ∈ Cμ,H such that Δ(κ) ≥ Δ(μ′) for any μ′ ∈ Cμ,H . We call
this κ the peak element with respect to Cμ,H .

Corollary 4.7 Let C ∈ cc0(Λ
′), μ ∈ C and H ∈ A. Let κ ∈ C be the peak element

with respect to Cμ,H . Then, for μ′ ∈ Cμ,H ,

θμ′ =
{

θκ (μ′ ⊂ κ),

α
|μ′|−|κ|
H θκ (κ ⊂ μ′).

Proof Apply Lemmas 4.3 and 4.5. �

Lemma 4.8 Let C ∈ cc(Λ′), and κ,μ,μ′, ν ∈ Λ. Assume that κ ⊂̇ μ ⊂̇ ν, κ ⊂̇
μ′ ⊂̇ ν, and μ �= μ′.
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(1) Assume that κ,μ,μ′ ∈ C. Then

Δ(κ) > Δ(μ) and Δ(κ) > Δ(μ′) =⇒ Δ(μ) > Δ(ν) and Δ(μ′) > Δ(ν);
Δ(κ) < Δ(μ) and Δ(κ) < Δ(μ′) =⇒ Δ(μ) < Δ(ν) and Δ(μ′) < Δ(ν);
Δ(κ) < Δ(μ) and Δ(κ) > Δ(μ′) =⇒ Δ(μ) > Δ(ν) and Δ(μ′) < Δ(ν).

(2) Assume that μ,μ′, ν ∈ C. Then

Δ(μ) > Δ(ν) and Δ(μ′) > Δ(ν) =⇒ Δ(κ) > Δ(μ) and Δ(κ) > Δ(μ′);
Δ(μ) < Δ(ν) and Δ(μ′) < Δ(ν) =⇒ Δ(κ) < Δ(μ) and Δ(κ) < Δ(μ′);
Δ(μ) < Δ(ν) and Δ(μ′) > Δ(ν) =⇒ Δ(κ) > Δ(μ) and Δ(κ) < Δ(μ′).

(3) Assume that κ,μ, ν ∈ C. Then

Δ(κ) > Δ(μ) > Δ(ν) =⇒ Δ(κ) > Δ(μ′) > Δ(ν);
Δ(κ) < Δ(μ) < Δ(ν) =⇒ Δ(κ) < Δ(μ′) < Δ(ν);
Δ(κ) < Δ(μ) > Δ(ν) =⇒ Δ(κ) > Δ(μ′) < Δ(ν);
Δ(κ) > Δ(μ) < Δ(ν) =⇒ Δ(κ) < Δ(μ′) > Δ(ν).

Proof (1) Assume that κH + 1 = μH and κH ′ + 1 = μ′
H ′ for some H �= H ′ ∈ A.

Since ν = μ ∨ μ′, μH ′ + 1 = νH ′ and μ′
H + 1 = νH . First we consider the case when

Δ(κ) > Δ(μ) and Δ(κ) > Δ(μ′). Then Δ(μ) = Δ(μ′). It follows from Lemma 4.3
that θμ = αH θκ , θμ′ = αH ′θκ . If Δ(μ) = Δ(μ′) < Δ(ν), then Δ(ν) > 0, i.e., ν ∈ Λ′.
Then Lemma 4.3 implies that

αH ′θκ = θμ′ = θν = θμ = αH θκ,

which is a contradiction.
Next we consider the case when Δ(κ) < Δ(μ) and Δ(κ) < Δ(μ′). Then Δ(μ) =

Δ(μ′) and Δ(κ) ≤ Δ(ν). Hence ν ∈ C. It follows from Lemma 4.3 that θμ = θκ ,
θμ′ = θκ . If Δ(μ) = Δ(μ′) > Δ(μ), then Lemma 4.3 implies that

αH θκ = αH θμ′ = θν = αH ′θμ = αH ′θκ,

which is a contradiction.
Finally we consider the case when Δ(κ) < Δ(μ) and Δ(κ) > Δ(μ′). Then

Δ(μ) − 1 = Δ(μ′) + 1 = Δ(κ). Hence Δ(ν) = Δ(μ) − 1 = Δ(μ′) + 1 = Δ(κ).
The same argument is valid for (2) and (3), which completes the proof. �

Remark 4.9 In cases (1), (2) and (3) in Lemma 4.8, Δ(ν) = 0, Δ(κ) = 0 and Δ(μ′) =
0 may happen, respectively.

Lemma 4.10 Let μ,μ′ ∈ Λ be such that |μ| = |μ′|, μ �= μ′ and d(μ,μ′) = 2. Then
the following are equivalent:
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(1) At least three of {μ ∧ μ′,μ,μ′,μ ∨ μ′} are in the same connected component
C ∈ cc(Λ′).

(2) At least three of Δ(μ ∧ μ′), Δ(μ), Δ(μ′) and Δ(μ ∨ μ′) are positive.
(3) Δ(μ ∨ μ′) − Δ(μ′) = Δ(μ) − Δ(μ ∧ μ′).
(4) Δ(μ ∨ μ′) − Δ(μ) = Δ(μ′) − Δ(μ ∧ μ′).

Proof By the assumption, |μ ∨ μ′| − 1 = |μ| = |μ′| = |μ ∧ μ′| + 1. It follows from
Lemma 4.2 that |Δ(μ∨μ′)−Δ(μ′)| = |Δ(μ)−Δ(μ∧μ′)| = |Δ(μ∨μ′)−Δ(μ)| =
|Δ(μ′) − Δ(μ ∧ μ′)| = 1. It is clear that Conditions (3) and (4) are equivalent. It is
also clear that Conditions (1) and (2) are equivalent. It follows from Lemma 4.8 that
Condition (1) implies Condition (3). Now we show that Condition (3) implies Condi-
tion (2). If two of Δ(μ ∨ μ′), Δ(μ′), Δ(μ) and Δ(μ ∧ μ′) are zero, then Lemma 4.2
shows that we have one of the following two:

• Δ(μ ∨ μ′) = Δ(μ ∧ μ′) = 1 and Δ(μ′) = Δ(μ) = 0; or
• Δ(μ ∨ μ′) = Δ(μ ∧ μ′) = 0 and Δ(μ′) = Δ(μ) = 1.

Both contradict Condition (3). �

Lemma 4.11 For μ ∈ C ∈ cc(Λ′), define Xμ by Xμ := ⋃
H∈A Cμ,H . If μ satisfies

Δ(μ) = max{Δ(ν)|ν ∈ Xμ}, then

Δ(κ) = Δ(μ) − d(κ,μ)

for κ ∈ Λ with d(κ,μ) ≤ Δ(μ). In particular, C is the ball B(μ,Δ(μ)).

Proof If Δ(μ) = 1 then there is nothing to prove. Assume that Δ(μ) > 1. Since μ

satisfies Δ(μ) = max{Δ(ν)|ν ∈ Xμ}, it follows from Lemma 4.5 that Δ(κ) = Δ(μ)−
d(κ,μ) for κ ∈ Xμ. In particular, we have the lemma for d(κ,μ) = 1.

Now we prove the lemma by the induction on d(κ,μ). Let d(κ,μ) > 1. By the pre-
vious paragraph it suffices treat the case of κ /∈ Xμ. In this case, there exists H ′ �= H ′′
such that μH ′ �= κH ′ and μH ′′ �= κH ′′ . Let us define κ ′, κ ′′, κ ′′′ by

κ ′
H =

⎧
⎪⎨

⎪⎩

κH if H �= H ′,
κH ′ − 1 if H = H ′ and κH ′ > μH ′ ,

κH ′ + 1 if H = H ′ and κH ′ < μH ′ ,

κ ′′
H =

⎧
⎪⎨

⎪⎩

κH if H �= H ′′,
κH ′′ − 1 if H = H ′′ and κH ′′ > μH ′′ ,

κH ′′ + 1 if H = H ′′ and κH ′′ < μH ′′ ,

κ ′′′
H =

⎧
⎪⎨

⎪⎩

κH if H ′ �= H �= H ′′,
κ ′
H ′ if H = H ′,

κ ′′
H ′′ if H = H ′′.

Then d(κ,μ) − 1 = d(κ ′,μ) = d(κ ′′,μ) = d(κ ′′′,μ) + 1. By the induction hypoth-
esis, Δ(κ ′) = Δ(κ ′′) = Δ(κ ′′′) − 1 = Δ(μ) − d(κ,μ) + 1 > 0. It follows from
Lemma 4.10 that Δ(κ) − Δ(κ ′) = Δ(κ ′′) − Δ(κ ′′′) = −1. Hence Δ(κ) = Δ(μ) −
d(κ,μ). �
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Proof of Theorem 3.2 Let C ∈ cc0(Λ
′) and μ ∈ P(C). Then it follows from

Lemma 4.5 that Δ|Cμ,H
is unimodal for all H ∈ A. Hence Lemma 4.11 completes

the proof. �

Lemma 4.12 Let H ∈ A and μ,μ′ ∈ C ∈ cc∞(Λ′) satisfy μ ⊂̇ μ′ with μH + 1 =
μ′

H . If |Cμ,H ′ | < ∞ for some H ′ ∈ A \ {H }, then |Cμ′,H ′ | < ∞. Moreover, for H ′ ∈
A \ {H }, μ is the peak element with respect to Cμ,H ′ if and only if μ′ is the peak
element with respect to Cμ′,H ′ .

Proof First consider the case when |Cμ,H ′ | = 1. In this case, Δ(μ) = 1 and

Δ(μ′) = 2. Define μ(1) by μ ⊂̇ μ(1) with μH ′ + 1 = μ
(1)

H ′ . Then μ(1) ∨ μ′ ∈ Cμ′,H ′ .
By the assumption Δ(μ(1)) = 0. So Lemma 4.10 implies Δ(μ(1) ∨ μ′) = 1. Define
μ′(−1) by μ′(−1) ⊂̇ μ′ with μ

′(−1)

H ′ + 1 = μ′
H ′ . Then μ′(−1) ∈ Cμ′,H ′ . By the assump-

tion Δ(μ ∧ μ′(−1)) = 0. So Lemma 4.10 implies Δ(μ′(−1)) = 1. Since μ′(−1) ⊂̇ μ′ ⊂̇
μ(1) ∨ μ′ and Δ(μ(1) ∨ μ′) < Δ(μ′) > Δ(μ′(−1)), by Lemma 4.5, μ′ is the peak
element with respect to Cμ′,H ′ , and |Cμ′,H ′ | = 3 < ∞.

Next consider the case when |Cμ,H ′ | > 1. Let μ(0) be the peak element with re-
spect to Cμ,H ′ , and

Cμ,H ′ = {
μ(i)

∣
∣ · · · ⊂̇ μ(−1) ⊂̇ μ(0) ⊂̇ μ(1) ⊂̇ · · ·}.

Then Δ(μ(−i)) = Δ(μ(i)). Let us define μ′(i) by μ(i) ⊂̇ μ′(i) and μ
(i)
H + 1 = μ

′(i)
H . If

μ = μ(j), then μ′ = μ′(j). By direct calculation, we have μ′(i) ∨μ(i+1) = μ′(i+1) and
μ′(i) ∧ μ(i+1) = μ(i). For i < 0, Δ(μ(i+1)) > Δ(μ(i)) > 0. Hence Δ(μ′(i+1)) > 0. It
follows from Lemma 4.10 that

Δ
(
μ′(i+1)

) − Δ
(
μ′(i)) = Δ

(
μ(i+1)

) − Δ
(
μ(i)

) = 1.

On the other hand, for i > 0, the same argument implies that

Δ
(
μ′(i−1)

) − Δ
(
μ′(i)) = Δ

(
μ(i−1)

) − Δ
(
μ(i)

) = 1.

Hence, by Lemma 4.5, μ′(k) is the peak element with respect to Cμ′,H ′ , and |Cμ′,H ′ | <
∞. The same proof is valid if μ is replaced by μ′. �

Lemma 4.13 Let C ∈ cc(Λ′). If there exists μ ∈ C satisfying |Cμ,H | < ∞ for any
H ∈ A, then C ∈ cc0(Λ

′). Hence, for μ ∈ C ∈ cc∞(Λ′), there exists H ∈ A such that
|Cμ,H | = ∞.

Proof For H ∈ A, C ∈ cc(Λ′) and μ ∈ C, define mμ,H and Bμ by mμ,H :=
max{Δ(μ′)|μ′ ∈ Cμ,H } and Bμ := {H ∈ A|Δ(μ) = mμ,H }. Assume that |Cμ,H | < ∞
for all H ∈ A. Let us construct ν as follows:

(1) Let ν be μ.
(2) Repeat the following until A = Bν :

(a) Choose H0 ∈ A \ Bν and the peak element ν′ with respect to Cν,H0 .
(b) Let ν be ν′.
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By the assumption and Lemma 4.12, |Cν′,H | < ∞ for all H ∈ A and Δ(ν′) = mν′,H
for all H ∈ Bν . Hence, by Lemma 4.12, Bν′ = Bν ∪ {H0}. Since |A| < ∞, we can
always find ν ∈ C such that Δ(ν) = mν,H for all H ∈ A. Hence Lemma 4.11 implies
that C ∈ cc0(Λ

′). �

Lemma 4.14 cc∞(Λ′) = {ΛH |H ∈ A}.

Proof Lemma 4.13 implies that, for μ ∈ C ∈ cc∞(Λ′), there exists H such that
|Cμ,H | = ∞. Hence if ν ∈ Λ satisfies

νH ′ =
{

μH + |μ| (H = H ′),
μH ′ (H �= H ′),

then ν ∈ Cμ,H . By definition, ν ∈ ΛH . Since μ and ν belong to the same component
C, μ is also in ΛH . On the other hand, ΛH ∈ cc∞(Λ′). Since ΛH is connected,
C = ΛH . �

Proof of Theorem 3.1 Apply Lemmas 4.2 and 4.14. �

4.2 Proof of Theorem 3.4

In this subsection we prove Theorem 3.4. Roughly speaking, the proof is based on
the observation of θμ for μ in some finite balls in Theorem 3.2.

Lemma 4.15 Let C ∈ cc0(Λ
′), κ ∈ C and μ ∈ P(C). Then we can construct θμ

from θκ , and vice versa.

Proof By Theorem 3.2, μ ∧ κ ∈ C. It follows from Lemma 4.4 that

θμ = α(ρ)θμ∧κ ,

θκ = α(ρ′)θμ∧κ

for some saturated chains ρ and ρ′. Hence we have

θμ = α(ρ)

α(ρ′) θκ ,

θκ = α(ρ′)

α(ρ)
θμ. �

Lemma 4.16 Let C ∈ cc0(Λ
′) and μ,ν ∈ C. Then {θμ, θν} is S-linearly dependent.

Proof The lemma follows from Lemma 4.15. �

Lemma 4.17 Let μ,ν ∈ Λ′ satisfy d(μ, ν) = 2. If Δ(κ) = 0 for all κ ∈ Λ such that
d(μ,κ) = d(ν, κ) = 1, then {θμ, θν} is S-linearly independent.
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Proof First assume that μH + 2 = νH for some H ∈ A and μH ′′ = νH ′′ for H ′′ ∈
A \ {H }. Let κ ∈ Λ be the element such that μ ⊂̇ κ ⊂̇ ν. Since Δ(κ) = 0, θμ /∈
D(A, κ). Hence αH θμ ∈ D(A, κ) and is a part of basis. Let {αH θμ, θ ′} be a basis
for the S-module D(A, κ). Since D(A, ν) ⊂ D(A, κ), θν = aαH θμ + bθ ′ for some
a, b ∈ K. If {θμ, θν} is S-linearly dependent, then b = 0, i.e., θν = aαH θμ. Since

αH θμ ∈ D(A, ν), αH θμ(αH ) ∈ S · α
νH

H = S · α
κH +1
H . Hence θμ(αH ) ∈ S · α

κH

H and
θμ ∈ D(A, κ), which is a contradiction.

Next assume that μH + 1 = νH and μH ′ + 1 = νH ′ for some H,H ′ ∈ A and
μH ′′ = νH ′′ for H ′′ ∈ A \ {H,H ′}. Let κ ∈ Λ be the element such that κH = μH + 1
and κH ′′ = νH ′′ for H ′′ ∈ A \{H }, and κ ′ ∈ Λ such that κH ′ = μH ′ +1 and κH ′′ = νH ′′
for H ′′ ∈ A \ {H ′}. By the assumption, Δ(κ) = Δ(κ ′) = 0. Hence θμ /∈ D(A, κ)

and θμ /∈ D(A, κ ′). Let {αH θμ, θ ′} be a basis for the S-module D(A, κ). Since θν ∈
D(A, ν) ⊂ D(A, κ), θν = aαH θμ + bθ ′ for some a, b ∈ K. If {θμ, θν} is S-linearly

dependent, then θν = aαH θμ. Since θν(αH ′) = aαH θμ(αH ′) ∈ S · α
νH ′
H ′ = S · α

κ ′
H ′

H ′ ,

θμ(αH ′) ∈ S · ακ ′
H ′

H ′ . Hence θμ ∈ D(A, κ ′), which is contradiction.
Finally assume that μH +1 = νH , μH ′ = νH ′ +1 for some H,H ′ ∈ A and μH ′′ =

νH ′′ for H ′′ ∈ A \{H,H ′}. Let κ = μ∧ν and κ ′ = μ∨ν. By the assumption, Δ(κ ′) =
Δ(κ) = 0. Hence θμ, θν /∈ D(A, κ ′). We may choose a basis {θμ, θ ′} for D(A, κ)

such that {θμ,αH ′θ ′} is a basis for D(A,μ). Since D(A, ν) ⊂ D(A, κ), θν = aθμ +
bθ ′ for some a, b ∈ K. If {θμ, θν} is S-linearly dependent, then θν = aθμ. Since θν =
aθμ ∈ D(A,μ) ∩ D(A, ν), θν ∈ D(A, κ ′) which is a contradiction. �

Lemma 4.18 If μ,ν ∈ P(Λ′) satisfy d(μ, ν) = Δ(μ) + Δ(ν), then {θμ, θν} is S-
linearly independent.

Proof By the assumption, there exist some μ′, ν′ ∈ Λ′ such that

• d(μ′, ν′) = 2,
• Δ(κ) = 0 for all κ ∈ Λ such that d(μ′, κ) = d(ν′, κ) = 1,
• μ,μ′ ∈ C ∈ cc0(Λ

′), and
• ν, ν′ ∈ C′ ∈ cc0(Λ

′).

By Lemma 4.17 {θμ′, θν′ } is S-linearly independent. Hence Lemma 4.15 completes
the proof. �

Proof of Theorem 3.4 Apply Lemmas 4.16 and 4.18. �

4.3 Proof of Theorem 3.9

Lemma 4.19 Assume that μ,ν ∈ Λ′ satisfy Δ(μ) + Δ(ν) = d(μ, ν), and that
{θμ, θν} is S-linearly independent. Then {θμ, θν} is a basis for D(A,μ ∧ ν).

Proof Since (μ ∧ ν)H = min{μH ,νH } for H ∈ A,

|μ ∧ ν| =
∑

H∈A
min{μH ,νH }.
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On the other hand,

deg(θμ) + deg(θν) = |μ| − Δ(μ)

2
+ |ν| − Δ(ν)

2

= |μ| + |ν| − Δ(μ) − Δ(ν)

2

= |μ| + |ν| − d(μ, ν)

2

=
∑

H∈A

μH + νH − |μH − νH |
2

=
∑

H∈A
min{μH ,νH } = |μ ∧ ν|.

Since μ ∧ ν ⊂ μ,ν, it follows from Saito’s criterion that {θμ, θν} is a basis for
D(A,μ ∧ ν). �

Lemma 4.20 Assume that μ,ν ∈ Λ′ satisfy Δ(μ)+Δ(ν) = d(μ, ν) and that {θμ, θν}
is S-linearly independent. For κ ∈ Λ such that μ ∧ ν ⊂ κ ⊂ μ ∨ ν, let us define

αμ,κ =
∏

H∈A
α

max{κH −μH ,0}
H ,

αν,κ =
∏

H∈A
α

max{κH −νH ,0}
H .

Then {αμ,κθμ,αν,κθν} is a basis for D(A, κ).

Proof Note that deg(αμ,κ ) + deg(αν,κ ) = d(κ,μ ∧ ν) and that αμ,κθμ, αν,κθν ∈
D(A, κ). Thus Saito’s criterion and Lemma 4.19 completes the proof. �

Proof of Theorem 3.9 By Theorem 3.4, {θμ, θν} is S-linearly independent. Hence
Lemma 4.20 completes the proof. �

5 Application

In this section, we consider the case when a group acts on V . Let W be a group acting
on V from the left. Canonically, this action induces actions on S and DerK(S), i.e.,
W acts on S and DerK(S) by (σf )(v) = f (σ−1v) and (σδ)(f ) = σ(δ(σ−1f )) for
σ ∈ W , f ∈ S, δ ∈ DerK(S) and v ∈ V . For each σ ∈ W , we assume A = σ A. In this
case, W also acts on A as a subgroup of the symmetric group of A. Hence W also
acts on Λ by (σμ)H = μσ−1H .

Lemma 5.1 For μ ∈ Λ and σ ∈ W , Δ(μ) = Δ(σμ).
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Proof If {θ, θ ′} is a homogeneous basis for D(A,μ), then {σθ,σθ ′} is a homoge-
neous basis for D(A, σμ). �

Next we assume that AW = ∅, i.e., for each H ∈ A, there exists σH ∈ W such that
σH H �= H .

Lemma 5.2 Let μ ∈ Λ′ satisfy σμ = μ for all σ ∈ W . If there exist ν and κ satisfying
the following, then μ ∈ P(Λ′): μ′ ⊂ ν for all μ ⊂̇ μ′; Δ(μ) − Δ(ν) > d(μ, ν) − 4;
κ ⊂ μ′ for all μ′ ⊂̇ μ; and Δ(μ) − Δ(κ) > d(κ,μ) − 4.

Proof It suffices to show that Δ(μ′) < Δ(μ) if μ ⊂̇ μ′ or μ′ ⊂̇ μ. First let us assume
μ ⊂̇ μ′, Δ(μ′) > Δ(μ) and μ′

H �= μH . Since AW = ∅, H �= σH for some σ ∈ W .
For such σ , it holds that (σμ′)H = μ′

σ−1H
= μσ−1H = μH �= μ′

H = μH + 1, where

the second equality holds because σ−1H �= H and because of the definition of μ′, the
third because of the W -invariance of μ. Hence σμ′ �= μ′. By the same computation,
we can show that

(σμ′)σH = μ′
σH + 1 and

(σμ′)H ′ = μ′
H ′

(
H ′ ∈ A \ {H,σH }).

Hence d(σμ′,μ′) = 2 and μ = μ′ ∧ σμ′. By the assumption Δ(μ′) = Δ(σμ′) >

Δ(μ) > 0. Hence, by Lemma 4.10,

Δ(μ′ ∨ σμ′) = Δ(μ′) + 1 = Δ(μ) + 2.

By Lemma 4.2, Δ(μ′ ∨ σμ′) = Δ(μ) + 2 ≤ d(ν,μ′ ∨ σμ′) + Δ(ν). Since d(ν,μ′ ∨
σμ′) + Δ(ν) = d(ν,μ) − 2 + Δ(ν), we have Δ(μ) − Δ(ν) ≤ d(ν,μ) − 4, which is
a contradiction.

The same argument is valid for the case where μ′ ⊂̇ μ, Δ(μ′) > Δ(μ) and
μ′

H �= μH . Hence we have the lemma. �

As an application of the results above, we consider the exponents of Coxeter ar-
rangements, which is a set of all reflecting hyperplanes of a finite irreducible Coxeter
group. Since A2-type is investigated in [10], let us consider Coxeter arrangements of
type I2(n) (n ≥ 4).

It is shown by Terao in [9] that the constant multiplicity on the Coxeter arrange-
ment is free and the exponents are also determined. We give the meaning of Terao’s
result from our point of view, i.e., the role of constant multiplicity in the multiplicity
lattice.

Proposition 5.3 Let A be a Coxeter arrangement of type I2(n) (n ≥ 4). Then μ =
(2k + 1, . . . ,2k + 1) ∈ P(Λ′).

Proof Let A be the Coxeter arrangement of type I2(n). Then we can take the Coxeter
group of type I2(n) as W . Let ν = (2k + 2, . . . ,2k + 2) and κ = (2k, . . . ,2k). Then
d(μ, ν) = d(μ,κ) = n. Since Δ(μ) = n − 2 and Δ(ν) = Δ(κ) = 0 by [9], it follows
from Lemma 5.2 that μ ∈ P(Λ′). �
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Now we can determine the basis and exponents of multiplicities on Coxeter ar-
rangements when they are near the constant one, which is based on the primitive
derivation methods in [9] and [13].

Corollary 5.4 Let A be a Coxeter arrangement of type I2(n) (n ≥ 4), μ = (2k +
1, . . . ,2k + 1) ∈ Λ and i ∈ Z

|A| such that |I | := ∑
H |iH | < |A| = n. If ν ∈ Λ is

defined by νH = μH + iH and I := ∑
H iH , then

exp(A, ν) =
(

kn + 1 + I + |I |
2

, (k + 1)n − 1 + I − |I |
2

)
.

The proof of above corollary is completed by applying Corollary 3.3 and Proposi-
tion 5.3.

Remark 5.5 Recently in [4], by using the results in this article, the first author proved
that Δ(μ) ≤ |A| − 2 for μ ∈ P(Λ′) in the case when a two-dimensional arrangement
A is defined over a field of characteristic zero.

Remark 5.6 In [11] it is proved that for the Coxeter multiarrangement (A,μ) of type
B2 defined by

x2k+1y2k+1(x − y)2j+1(x + y)2j+1 = 0,

it holds that Δ(μ) = 2. However, to determine explicitly which multiplicity makes
Δ = 2 is difficult even for B2-type.

Acknowledgements The authors are grateful to the referee for pointing out several mistakes in the first
draft and making a lot of useful comments.
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