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Abstract Several polytopes arise from finite graphs. For edge and symmetric edge
polytopes, in particular, exhaustive computation of the Ehrhart polynomials not
merely supports the conjecture of Beck et al. that all roots α of Ehrhart polynomi-
als of polytopes of dimension D satisfy −D ≤ Re(α) ≤ D − 1, but also reveals some
interesting phenomena for each type of polytope. Here we present two new conjec-
tures: (1) the roots of the Ehrhart polynomial of an edge polytope for a complete
multipartite graph of order d lie in the circle |z + d

4 | ≤ d
4 or are negative integers,

and (2) a Gorenstein Fano polytope of dimension D has the roots of its Ehrhart poly-
nomial in the narrower strip −D

2 ≤ Re(α) ≤ D
2 − 1. Some rigorous results to sup-
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port them are obtained as well as for the original conjecture. The root distribution of
Ehrhart polynomials of each type of polytope is plotted in figures.

Keywords Ehrhart polynomial · Edge polytope · Fano polytope · Smooth polytope

1 Introduction

The root distribution of Ehrhart polynomials is one of the current topics in com-
putational commutative algebra. It is well-known that the coefficients of an Ehrhart
polynomial reflect combinatorial and geometric properties such as the volume of the
polytope in the leading coefficient, gathered information about its faces in the second
coefficient, etc. The roots of an Ehrhart polynomial should also reflect properties of
a polytope that are hard to elicit just from the coefficients. Among the many papers
on the topic, including [4–6, 13, 24], Beck et al. [3] conjecture that

Conjecture 1.1 All roots α of Ehrhart polynomials of lattice D-polytopes satisfy
−D ≤ Re(α) ≤ D − 1.

Compared with the norm bound, which is O(D2) in general [5], the strip in the
conjecture puts a tight restriction on the distribution of roots for any Ehrhart polyno-
mial.

This paper investigates the roots of Ehrhart polynomials of polytopes arising from
graphs, namely, edge polytopes and symmetric edge polytopes. The results obtained
not merely support Conjecture 1.1, but also reveal some interesting phenomena. Re-
garding the scope of the paper, note that both kinds of polytopes are “small” in a
sense: That is, each edge polytope from a graph without loops is contained in a unit
hypercube, and one from a graph with loops, in twice a unit hypercube; whereas each
symmetric edge polytope is contained in twice a unit hypercube.

In Sect. 2, the distribution of roots of Ehrhart polynomials of edge polytopes is
computed, and as a special case, that of complete multipartite graphs is studied. We
observed from exhaustive computation that all roots have a negative real part and
they are in the range of Conjecture 1.1. Moreover, for complete multipartite graphs
of order d , the roots lie in the circle |z + d

4 | ≤ d
4 or are negative integers greater than

−(d − 1). And we conjecture its validity beyond the computed range of d (Conjec-
ture 2.4).

Simple edge polytopes constructed from graphs with possible loops are studied in
Sect. 3. Roots of the Ehrhart polynomials are determined in some cases. Let G be a
graph of order d with loops and G′ its subgraph of order p induced by vertices with-
out a loop attached. Then, Theorem 3.5 proves that the real roots are in the interval
[−(d − 2),0), especially all integers in {−(d − p), . . . ,−1} are roots of the polyno-
mial; Theorem 3.6 determines that if d − 2p + 2 ≥ 0, there are p − 1 real non-integer
roots each of which is unique in one of ranges (−k,−k + 1) for k = 1, . . . , p − 1;
and Theorem 3.7 proves that if d > p ≥ 2, all the integers −� d−1

2 �, . . . ,−1 are roots
of the polynomial. We observed that all roots have a negative real part and are in the
range of Conjecture 1.1.
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The symmetric edge polytopes in Sect. 4 are Gorenstein Fano polytopes. A uni-
modular equivalence condition for two symmetric edge polytopes is also described in
the language of graphs (Theorem 4.5). The polytopes have Ehrhart polynomials with
an interesting root distribution: the roots are distributed symmetrically with respect
to the vertical line Re(z) = − 1

2 . We not only observe that all roots are in the range
of Conjecture 1.1, but also conjecture that all roots are in −D

2 ≤ Re(α) ≤ D
2 − 1 for

Gorenstein Fano polytopes of dimension D (Conjecture 4.10).
Before starting the discussion, let us summarize the definitions of edge polytopes,

symmetric edge polytopes, etc.
Throughout this paper, graphs are always finite, and so we usually omit the

adjective “finite.” Let G be a graph having no multiple edges on the vertex set
V (G) = {1, . . . , d} and the edge set E(G) = {e1, . . . , en} ⊂ V (G)2. Graphs may
have loops in their edge sets unless explicitly excluded; in which case the graphs
are called simple graphs. A walk of G of length q is a sequence (ei1, ei2, . . . , eiq )

of the edges of G, where eik = {uk,uk+1} for k = 1, . . . , q . If, moreover, uq+1 = u1

holds, then the walk is a closed walk. Such a closed walk is called a cycle of length
q if uk �= uk′ for all 1 ≤ k < k′ ≤ q . In particular, a loop is a cycle of length
1. Another notation, (u1, u2, . . . , uq), will be also used for the same cycle with
({u1, u2}, {u2, u3}, . . . , {uq,u1}). Two vertices u and v of G are connected if u = v

or there exists a walk (ei1, ei2, . . . , eiq ) of G such that ei1 = {u,v1} and eiq = {uq, v}.
The connectedness is an equivalence relation and the equivalence classes are called
the components of G. If G itself is the only component, then G is a connected graph.
For further information on graph theory, we refer the reader to e.g. [11, 33].

If e = {i, j} is an edge of G between i ∈ V (G) and j ∈ V (G), then we define
ρ(e) = ei + ej . Here, ei is the ith unit coordinate vector of R

d . In particular, for a
loop e = {i, i} at i ∈ V (G), one has ρ(e) = 2ei . The edge polytope of G is the convex
polytope PG (⊂ R

d), which is the convex hull of the finite set {ρ(e1), . . . , ρ(en)}.
The dimension of PG equals d − 2 if the graph G is a connected bipartite graph, or
d − 1, for other connected graphs [21]. The edge polytopes of complete multipartite
graphs are studied in [22]. Note that if the graph G is a complete graph, the edge
polytope PG is also called the second hypersimplex in [31, Sect. 9].

Similarly, we define σ(e) = ei − ej for an edge e = {i, j} of a simple graph G.
Then, the symmetric edge polytope of G is the convex polytope P ±

G (⊂ R
d), which is

the convex hull of the finite set {±σ(e1), . . . ,±σ(en)}. Note that if G is the complete
graph Kd , the symmetric edge polytope P ±

Kd
coincides with the root polytope of the

lattice Ad defined in [1].
If P ⊂ R

N is an integral convex polytope, then we define i(P ,m) by

i(P ,m) = ∣
∣mP ∩ Z

N
∣
∣.

We call i(P ,m) the Ehrhart polynomial of P after Ehrhart, who succeeded in proving
that i(P ,m) is a polynomial in m of degree dim P with i(P ,0) = 1. If vol(P ) is the
normalized volume of P , then the leading coefficient of i(P ,m) is vol(P )

(dim P )! .



724 J Algebr Comb (2011) 34:721–749

An Ehrhart polynomial i(P ,m) of P is related to a sequence of integers called the
δ-vector, δ(P ) = (δ0, δ1, . . . , δD), of P by

∞
∑

m=0

i(P ,m)tm =
∑D

j=0 δj t
j

(1 − t)D+1
,

where D is the degree of i(P ,m). We call the polynomial in the numerator on the
right-hand side of the equation above δP (t), the δ-polynomial of P . Note that the
δ-vectors and δ-polynomials are referred to by other names in the literature:
e.g., in [29, 30], h∗-vector or i-Eulerian numbers are synonyms of δ-vector, and
h∗-polynomial or i-Eulerian polynomial, of δ-polynomial. It follows from the defi-
nition that δ0 = 1, δ1 = |P ∩ Z

N | − (D + 1), etc. It is known that each δi is nonneg-
ative [28]. If δD �= 0, then δ1 ≤ δi for every 1 ≤ i < D [16]. Though the roots of the
polynomial are the focus of this paper, the δ-vector is also a very important research
subject. For the detailed discussion on Ehrhart polynomials of convex polytopes, we
refer the reader to [14].

2 Edge polytopes of simple graphs

The aim in this section is to provide evidence for Conjecture 1.1 for the Ehrhart
polynomials of edge polytopes constructed from connected simple graphs, mainly by
computational means.

2.1 Exhaustive computation for small graphs

Let C[X] denote the polynomial ring in one variable over the field of complex num-
bers. Given a polynomial f = f (X) ∈ C[X], we write V(f ) for the set of roots of f ,
i.e.,

V(f ) = {

a ∈ C |f (a) = 0
}

.

We computed the Ehrhart polynomial i(PG,m) of each edge polytope PG for con-
nected simple graphs G of orders up to nine; there are 1,2, . . . ,261080 connected
simple graphs of orders 2,3, . . . ,9.1 Then, we solved each equation i(PG,X) = 0 in
the field of complex numbers. For the readers interested in our method of computa-
tion, see the small note in Appendix.

Let Vcs
d denote

⋃
V(i(PG,m)), where the union runs over all connected simple

graphs G of order d . Figure 1 plots points of Vcs
9 , as a representative of all results.

For all connected simple graphs of order 2–9, Conjecture 1.1 holds.
Since an edge polytope is a kind of 0/1-polytope, the points in Fig. 1 for Vcs

9
are similar to those in Fig. 6 of [3]. However, the former has many more points,
which form three clusters: one on the real axis, and other two being complex conju-
gates of each other and located nearer to the imaginary axis than the first cluster. The

1These numbers of such graphs are known; see, e.g., [12, Chap. 4] or A001349 of the On-Line Encyclo-
pedia of Integer Sequences.
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Fig. 1 Vcs
9

interesting thing is that no roots appear in the right half plane of the figure. The clos-
est points to the imaginary axis are approximately −0.583002 ± 0.645775i ∈ Vcs

7 ,
−0.213574 ± 2.469065i ∈ Vcs

8 , and −0.001610 ± 2.324505i ∈ Vcs
9 . A polynomial

with roots only in the left half plane is called a stable polynomial. This observation
raises an open question:

Question 2.1 For any d and any connected simple graph G of order d , is i(PG,m)

always a stable polynomial?

For a few infinite families of graphs, rigorous proofs are known: see Proposi-
tion 2.2 just below and Examples in the next subsection.

Proposition 2.2 A root α of the Ehrhart polynomial i(PKd
,m) of the complete graph

Kd satisfies

(1) α ∈ {−1,−2} if d = 3 or
(2) − d

2 < Re(α) < 0 if d ≥ 4.

Proof The Ehrhart polynomial i(PKd
,m) of the complete graph Kd is given in [31,

Corollary 9.6]:

i(PKd
,m) =

(
d + 2m − 1

d − 1

)

− d

(
m + d − 2

d − 1

)

.
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In cases where d = 2 or 3, the Ehrhart polynomials are binomial coefficients, since
the edge polytopes are simplices. Actually, they are

i(PK2 ,m) = 1 and i(PK3 ,m) =
(

m + 2

2

)

.

Thus, there are no roots for d = 2, whereas {−1,−2} are the roots for d = 3.
Hereafter, we assume d ≥ 4. It is easy to see that {−1,−2, . . . ,−� d−1

2 �} are in-
cluded in V(i(PKd

,m)).

We shall first prove that Re(α) < 0. Let q
(1)
d (m) = (2m + d − 1) · · · (2m + 1)

and q
(2)
d (m) = d(m + d − 2) · · ·m. Then for a complex number z, i(PKd

, z) = 0 if

and only if q
(1)
d (z) = q

(2)
d (z), since q

(1)
d (z) − q

(2)
d (z) is (d − 1)! i(PKd

, z). Let us

prove |q(1)
d (z)| > |q(2)

d (z)| for any complex number z with a nonnegative real part by
mathematical induction on d ≥ 4.

If d = 4,

∣
∣q

(1)
4 (z)

∣
∣ = ∣

∣(2z + 3)(2z + 2)(2z + 1)
∣
∣ = |2z + 3||z + 1||4z + 2|
> |z + 2||z + 1||4z| = ∣

∣q
(2)
4 (z)

∣
∣

holds for any complex number z with Re(z) ≥ 0.
Assume for d that |q(1)

d (z)| > |q(2)
d (z)| is true for any complex number z with

Re(z) ≥ 0.
Then, by

∣
∣q

(1)
d+1(z)

∣
∣ = |2z + d|∣∣q(1)

d (z)
∣
∣,

∣
∣q

(2)
d+1(z)

∣
∣ = d + 1

d
|z + d − 1|∣∣q(2)

d (z)
∣
∣

and

∣
∣2dz + d2

∣
∣ >

∣
∣(d + 1)z + d2 − 1

∣
∣

from 2d > d + 1 and d2 > d2 − 1, one can deduce

d
∣
∣q

(1)
d+1(z)

∣
∣ = ∣

∣2dz + d2
∣
∣
∣
∣q

(1)
d (z)

∣
∣ >

∣
∣(d + 1)z + d2 − 1

∣
∣
∣
∣q

(2)
d (z)

∣
∣

= (d + 1)|z + d − 1|∣∣q(2)
d (z)

∣
∣

= d
d + 1

d
|z + d − 1|∣∣q(2)

d (z)
∣
∣ = d

∣
∣q

(2)
d+1(z)

∣
∣.

Thus, |q(1)
d+1(z)| > |q(2)

d+1(z)| holds for any complex number z with Re(z) ≥ 0.

Therefore, for any d ≥ 4, the inequality |q(1)
d (z)| > |q(2)

d (z)| holds for any complex
number z with a nonnegative real part. This implies that the real part of any complex
root of i(PKd

,m) is negative.
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We shall also prove the other half, that − d
2 < Re(α). To this end, it suffices to

show that all roots of jd(l) = i(PKd
,−l − d

2 ) have negative real parts. Let r
(1)
d (l) and

r
(2)
d (l) be

r
(1)
d (l) = (−1)d−1q

(1)
d

(

−l − d

2

)

= (2l + 1) · · · (2l + d − 1),

r
(2)
d (l) = (−1)d−1q

(2)
d

(

−l − d

2

)

= d

(

l − d − 4

2

)

· · ·
(

l + d

2

)

.

Then for a complex number z, it holds that

jd(z) = 0 ⇐⇒ r
(1)
d (z) = r

(2)
d (z).

Let us prove |r(1)
d (z)| > |r(2)

d (z)| for any complex number z with a nonnegative real
part by mathematical induction on d ≥ 4.

For d = 4, it immediately follows from the inequality between q
(1)
4 and q

(2)
4 :

∣
∣r

(1)
4 (z)

∣
∣ = ∣

∣q
(1)
4 (z)

∣
∣ >

∣
∣q

(2)
4 (z)

∣
∣ = ∣

∣r
(2)
4 (z)

∣
∣.

And so we need d = 5 also as a base case:
∣
∣r

(1)
5 (z)

∣
∣ = |2z + 1||2z + 2||2z + 3||2z + 4|

>
5

4
|z + 1||2z + 1||2z + 3||2z + 4|

>
5

4

∣
∣
∣
∣
z − 1

2

∣
∣
∣
∣
|2z + 1||2z + 3|

∣
∣
∣
∣
z + 5

2

∣
∣
∣
∣

= 5

∣
∣
∣
∣
z − 1

2

∣
∣
∣
∣

∣
∣
∣
∣
z + 1

2

∣
∣
∣
∣

∣
∣
∣
∣
z + 3

2

∣
∣
∣
∣

∣
∣
∣
∣
z + 5

2

∣
∣
∣
∣
= ∣

∣r
(2)
5 (z)

∣
∣.

Assume for d the validity of |r(1)
d (z)| > |r(2)

d (z)| for any complex number z with
Re(z) ≥ 0.

Then, from the fact that
∣
∣r

(1)
d+2(z)

∣
∣ = |2z + d||2z + d + 1|∣∣r(1)

d (z)
∣
∣

∣
∣r

(2)
d+2(z)

∣
∣ = d + 2

d

∣
∣
∣
∣
z − d

2
+ 1

∣
∣
∣
∣

∣
∣
∣
∣
z + d

2
+ 1

∣
∣
∣
∣

∣
∣r

(2)
d (z)

∣
∣,

it follows that

d
∣
∣r

(1)
d+2(z)

∣
∣ = d|2z + d||2z + d + 1|∣∣r(1)

d (z)
∣
∣

> d|2z + d|
∣
∣
∣
∣
z + d

2
+ 1

∣
∣
∣
∣

∣
∣r

(2)
d (z)

∣
∣

= ∣
∣2dz + d2

∣
∣

∣
∣
∣
∣
z + d

2
+ 1

∣
∣
∣
∣

∣
∣r

(2)
d (z)

∣
∣
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>
∣
∣(d + 2)z + d2 − 4

∣
∣

∣
∣
∣
∣
z + d

2
+ 1

∣
∣
∣
∣

∣
∣r

(2)
d (z)

∣
∣

> (d + 2)

∣
∣
∣
∣
z − d − 2

2

∣
∣
∣
∣

∣
∣
∣
∣
z + d

2
+ 1

∣
∣
∣
∣

∣
∣r

(2)
d (z)

∣
∣ = d

∣
∣r

(2)
d+2(z)

∣
∣.

Thus, |r(1)
d+2(z)| > |r(2)

d+2(z)| holds for any complex number z with Re(z) ≥ 0.

Therefore, for any d ≥ 4, the inequality |r(1)
d (z)| > |r(2)

d (z)| holds for any complex
number z with a nonnegative real part. This implies that any complex root of jd(l)

has a negative real part. �

2.2 Complete multipartite graphs

We computed the roots of the Ehrhart polynomials i(PG,m) of complete multi-
partite graphs G as well. Since complete multipartite graphs are a special subclass
of connected simple graphs, our interest is mainly in the cases where the general
method could not complete the computation, i.e., complete multipartite graphs of
orders d ≥ 10.

A complete multipartite graph of type (q1, . . . , qt ), denoted by Kq1,...,qt , is con-
structed as follows. Let V (Kq1,...,qt ) = ⋃t

i=1 Vi be a disjoint union of vertices with
|Vi | = qi for each i and the edge set E(Kq1,...,qt ) be {{u,v} | u ∈ Vi, v ∈ Vj (i �= j)}.
The graph Kq1,...,qt is unique up to isomorphism.

The Ehrhart polynomials for complete multipartite graphs are explicitly given
in [22]:

i(PG,m) =
(

d + 2m − 1

d − 1

)

−
t

∑

k=1

∑

1≤i≤j≤qk

(
j − i + m − 1

j − i

)(
d − j + m − 1

d − j

)

,

(1)
where d = ∑t

k=1 qk is a partition of d and G = Kq1,...,qt .
Another simpler formula is newly obtained.

Proposition 2.3 The Ehrhart polynomial i(PG,m) of the edge polytope of a com-
plete multipartite graph G = Kq1,...,qt is

i(PG,m) = f (m;d, d) −
t

∑

k=1

f (m;d, qk),

where d = ∑t
k=1 qk and

f (m;d, j) =
j

∑

k=1

p(m;d, k)

with

p(m;d, j) =
(

j + m − 1

j − 1

)(
d − j + m − 1

d − j

)

.
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Proof Let G denote a complete multipartite graph Kq1,...,qt . We start from the for-
mula (1).

First, it holds that
(

d + 2m − 1

d − 1

)

= f (m;d, d).

On one hand,
(
d+2m−1

d−1

)

is the number of combinations with repetitions choosing 2m

elements from a set of cardinality d . On the other hand,

f (m;d, d) =
d

∑

j=1

(
j + m − 1

j − 1

)(
d − j + m − 1

d − j

)

counts the same number of combinations as the sum of the number of combinations
in which the (m + 1)th smallest number is j .

Second, it holds that

t
∑

k=1

∑

1≤i≤j≤qk

(
j − i + m − 1

j − i

)(
d − j + m − 1

d − j

)

=
t

∑

k=1

f (m;d, qk).

Since the outermost summations are the same on both sides, it suffices to show that

∑

1≤i≤j≤qk

(
j − i + m − 1

j − i

)(
d − j + m − 1

d − j

)

= f (m;d, qk).

The summation of the left-hand side can be transformed as follows:

∑

1≤i≤j≤qk

(
j − i + m − 1

j − i

)(
d − j + m − 1

d − j

)

=
qk∑

j=1

j
∑

i=1

(
j − i + m − 1

j − i

)(
d − j + m − 1

d − j

)

=
qk∑

j=1

(
d − j + m − 1

d − j

) j
∑

i=1

(
j − i + m − 1

j − i

)

=
qk∑

j=1

(
d − j + m − 1

d − j

)(
m + j − 1

j − 1

)

=
qk∑

j=1

p(m;d, j) = f (m;d, qk).

Finally, substituting these transformed terms into the original formula (1) gives
the desired result. �
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Fig. 2 Vmp
22

By the new formula above, we computed the roots of Ehrhart polynomials. Let
Vmp

d denote
⋃

V(i(PG,m)), where the union runs over all complete multipartite
graphs G of order d . Figure 2 plots the points of Vmp

22 . For all complete multipar-
tite graphs of order 10–22, Conjecture 1.1 holds.

Figure 2, for Vmp
22 , shows that the non-integer roots lie in the circle |z + 11

2 | ≤ 11
2 .

This fact is not exclusive to 22 alone, but similar conditions hold for all d ≤ 22. We
conjecture:

Conjecture 2.4 For any d ≥ 3,

Vmp
d ⊂

{

z ∈ C

∣
∣
∣
∣

∣
∣
∣
∣
z + d

4

∣
∣
∣
∣
≤ d

4

}

∪ {−(d − 1), . . . ,−2,−1
}

.

Remark 2.5 (1) The leftmost point −(d −1) can only be attained by K3; this is shown
in Proposition 2.9. Therefore, if we choose d ≥ 4, the set of negative integers in the
statement can be replaced with the set {−(d − 2), . . . ,−2,−1}. However, −(d − 2)

can be attained by the tree Kd−1,1 for any d ; see Example 2.6 below.
(2) Since 0 can never be a root of an Ehrhart polynomial, Conjecture 2.4 answers

Question 2.1 in the affirmative for complete multipartite graphs. Moreover, if Con-
jecture 2.4 holds, then Conjecture 1.1 holds for those graphs.

(3) The method of Pfeifle [24] might be useful if the δ-vector can be determined
for edge polytopes of complete multipartite graphs.
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Example 2.6 The Ehrhart polynomial for complete bipartite graph Kp,q is given in,
e.g., [22, Corollary 2.7(b)]:

i(PKp,q ,m) =
(

m + p − 1

p − 1

)(
m + q − 1

q − 1

)

,

and thus the roots are

V
(

i(PKp,q ,m)
) = {−1, . . . ,−max(p − 1, q − 1)

}

and all of them are negative integers satisfying the condition in Conjecture 2.4.

Example 2.7 The edge polytope of a complete 3-partite graph PKn,1,1 for n ≥ 2 can
be obtained as a pyramid from PKn,2 by adjoining a vertex. Therefore, its Ehrhart
polynomial is the following:

i(PKn,1,1 ,m) =
m

∑

j=0

i(PKn,2 , j).

Each term on the right-hand side is given in Example 2.6 above. By some elementary
algebraic manipulations of binomial coefficients, it becomes

i(PKn,1,1 ,m) =
(

m + n

n

)
nm + n + 1

n + 1
.

The non-integer root −(n+1)
n

is a real number in the circle of Conjecture 2.4.

Now we prepare the following lemma for proving Proposition 2.9.

Lemma 2.8 For any integer 1 ≤ j ≤ d
2 , the polynomial p(m;d, j) in Proposition 2.3

satisfies:

p(m;d, d − j) =
(

d

j
− 1

)

p(m;d, j).

Proof It is an easy transformation:

p(m;d, d − j) =
(

(d − j) + m − 1

(d − j) − 1

)(
d − (d − j) + m − 1

d − (d − j)

)

=
(

d − j + m − 1

d − j − 1

)(
j + m − 1

j

)

= d − j

j

(
d − j + m − 1

d − j

)(
j + m − 1

j − 1

)

=
(

d

j
− 1

)

p(m;d, j). �

Proposition 2.9 Let (q1, . . . , qt ) be a partition of d ≥ 3, satisfying q1 ≥ q2 ≥
· · · ≥ qt . The Ehrhart polynomial i(PG,m) of the edge polytope of the complete mul-
tipartite graph G = Kq1,...,qt does not have a root at −(d − 1) except when the graph
is K3.
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Proof From Proposition 2.3, the Ehrhart polynomial of the edge polytope of G =
Kq1,...,qt is

i(PG,m) = f (m;d, d) −
t

∑

k=1

f (m;d, qk)

= p(m;d, d) +
d−1
∑

j=1

p(m;d, j) −
t

∑

k=1

qk∑

j=1

p(m;d, j).

Since p(m;d, d) has −(d − 1) as one of its roots, it suffices to show that the rest of
the expression does not have −(d − 1) as one of its roots.

We evaluate p(m;d, j) at −(d − 1) for j from 1 to d − 1:

p
(−(d − 1);d, j

) =
(

j − d

j − 1

)( −j

d − j

)

by the definition of p(m;d, j). If j > 1, its sign is (−1)j−1+d−j = (−1)d−1 since
j − d < 0 and −j < 0. In case where j = 1, since j − 1 is zero,

p
(−(d − 1);d,1

) =
( −1

d − 1

)

= (−1)d−1

gives the same sign with other values of j .
By the conjugate partition (q ′

1, . . . , q
′
t ′) of (q1, . . . , qt ), which is given by q ′

j =
|{i ≤ t | qi ≥ j}|, we obtain

d−1
∑

j=1

p(m;d, j) −
t

∑

k=1

qk∑

j=1

p(m;d, j) =
d−1
∑

j=1

(

1 − q ′
j

)

p(m;d, j), (2)

where we set, for simplicity, q ′
j = 0 for j > t ′.

We show that all the coefficients of p(m;d, j) are nonnegative for any j from 1
to d − 1 and there is at least one positive coefficient among them.

(I) q1 ≥ d
2 :

The coefficients of p(m;d, j) are zero for q1 ≥ j ≥ d − q1, unless d = q1 + q2,
i.e., when the graph is a complete bipartite graph; the exceptional case will
be discussed later. We assume, therefore, q2 < d − q1 for a while. Though (2)
gives the coefficient of p(m;d, j) as 1 for d > j > q1, by using Lemma 2.8,
we are able to let them be zero and the coefficient of p(m;d, j) be d

j
− q ′

j for
d − q1 > j > 0. Then all the coefficients of p(m;d, j)’s are positive, since the
occurrence of integers greater than or equal to j in a partition of d − q1 cannot
be greater than d−q1

j
.

(II) q1 < d
2 :

Each coefficient of p(m;d, j) in (2) is 1 for d > j > d
2 . By Lemma 2.8, we

transfer them to lower j terms so as to make the coefficients for d
2 > j > 0
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be d
j

− q ′
j . Then all the coefficients of p(m;d, j)’s are nonnegative, since the

occurrence of integers greater than or equal to j in a partition of d cannot be
greater than d

j
. Moreover, the coefficient is zero for at most one j , less than d

2 . If
d = 3 and q1 = q2 = q3 = 1, i.e., in case of K3, there does not remain a positive
coefficient. This exceptional case will be discussed later.

For both (I) and (II), ignoring the exceptional cases, the terms on the right-hand
side of equation (2) are all nonnegative when d ≡ 1 (mod 2), or nonpositive other-
wise, and there is at least one nonzero term. That is, −(d − 1) is not a root of

d−1
∑

j=1

p(m;d, j) −
t

∑

k=1

qk∑

j=1

p(m;d, j).

The Ehrhart polynomial i(PG,m) is a sum of a polynomial whose roots include
−(d − 1) and another polynomial whose roots do not include −(d − 1). Therefore,
−(d − 1) is not a root of i(PG,m).

Finally, we discuss the exceptional cases. The complete bipartite graphs are treated
in Example 2.6. In these cases, −(d − 1) is not a root of the Ehrhart polynomials.
However, −(d − 1) = −2 is actually a root of the Ehrhart polynomial of the edge
polytope constructed from the complete graph K3, as shown in Proposition 2.2(1). �

3 Edge polytopes of graphs with loops

A convex polytope P of dimension D is simple if each vertex of P belongs to exactly
D edges of P . A simple polytope P is smooth if at each vertex of P , the primitive
edge directions form a lattice basis.

Now, if e = {i, j} is an edge of G, then ρ(e) cannot be a vertex of PG if and only
if i �= j and G has a loop at each of the vertices i and j . Suppose that G has a loop at
i ∈ V (G) and j ∈ V (G) and that {i, j} is not an edge of G. Then PG = PG′ for the
graph G′ defined by E(G′) = E(G) ∪ {{i, j}}. Considering this fact, throughout this
section, we assume that G satisfies the following condition:

(∗) If i, j ∈ V (G) and if G has a loop at each of i and j , then the edge {i, j} belongs
to G.

The graphs G (allowing loops) whose edge polytope PG is simple are completely
classified by the following:

Theorem 3.1 [23, Theorem 1.8] Let W denote the set of vertices i ∈ V (G) such that
G has no loop at i and let G′ denote the induced subgraph of G on W . Then the
following conditions are equivalent:

(i) PG is simple, but not a simplex;
(ii) PG is smooth, but not a simplex;

(iii) W �= ∅ and G is one of the following graphs:
(α) G is a complete bipartite graph with at least one cycle of length 4;
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(β) G has exactly one loop, G′ is a complete bipartite graph and if G has a
loop at i, then {i, j} ∈ E(G) for all j ∈ W ;

(γ ) G has at least two loops, G′ has no edge and if G has a loop at i, then
{i, j} ∈ E(G) for all j ∈ W .

From the theory of Gröbner bases, we obtain the Ehrhart polynomial i(PG,m) of
the edge polytope PG above. In fact,

Theorem 3.2 [23, Theorem 3.1] Let G be a graph as in Theorem 3.1(iii). Let W

denote the set of vertices i ∈ V (G) such that G has no loop at i and let G′ denote
the induced subgraph of G on W . Then the Ehrhart polynomial i(PG,m) of the edge
polytope PG are as follows:

(α) If G is the complete bipartite graph on the vertex set V1 ∪ V2 with |V1| = p and
|V2| = q , then we have

i(PG,m) =
(

p + m − 1

p − 1

)(
q + m − 1

q − 1

)

;

(β) If G′ is the complete bipartite graph on the vertex set V1 ∪ V2 with |V1| = p and
|V2| = q , then we have

i(PG,m) =
(

p + m

p

)(
q + m

q

)

;

(γ ) If G possesses p loops and |V (G)| = d , then we have

i(PG,m) =
p

∑

j=1

(
j + m − 2

j − 1

)(
d − j + m

d − j

)

.

The goal of this section is to discuss the roots of Ehrhart polynomials of simple
edge polytopes in Theorem 3.1 (Theorems 3.5, 3.6, and 3.7).

3.1 Roots of Ehrhart polynomials

The consequences of the theorems above support Conjecture 1.1. Recall that V(f )

denotes the set of roots of given polynomial f .

Example 3.3 The Ehrhart polynomial for a graph G, the induced subgraph G′ of
which is a complete bipartite graph Kp,q , is given in Theorem 3.2(β):

i(PG,n) =
(

p + m

p

)(
q + m

q

)

,

and thus the roots are

V
((

p + m

p

)(
q + m

q

))

= {−1,−2, . . . ,−max(p, q)
}

.
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Example 3.4 Explicit computation of the roots of the Ehrhart polynomials obtained
in Theorem 3.2(γ ) seems, in general, to be rather difficult.

Let p = 2. Then
(

m − 1

0

)(
d − 1 + m

d − 1

)

+
(

m

1

)(
d − 2 + m

d − 2

)

=
(

d − 1 + m

d − 1

)

+ m

(
d − 2 + m

d − 2

)

=
(

d − 1 + m

d − 1
+ m

)(
d − 2 + m

d − 2

)

= dm + d − 1

d − 1

(
d − 2 + m

d − 2

)

.

Thus,

V
(

i(PG,m)
) =

{

−1,−2, . . . ,−(d − 2),−d − 1

d

}

.

Let p = 3. Then
(

m − 1

0

)(
d − 1 + m

d − 1

)

+
(

m

1

)(
d − 2 + m

d − 2

)

+
(

m + 1

2

)(
d − 3 + m

d − 3

)

=
(

d − 1 + m

d − 1

)

+ m

(
d − 2 + m

d − 2

)

+ m(m + 1)

2

(
d − 3 + m

d − 3

)

=
(

(d − 1 + m)(d − 2 + m)

(d − 1)(d − 2)
+ m

d − 2 + m

d − 2
+ m(m + 1)

2

)(
d − 3 + m

d − 3

)

and

(d − 1 + m)(d − 2 + m)

(d − 1)(d − 2)
+ m

d − 2 + m

d − 2
+ m(m + 1)

2

= 2(d − 1 + m)(d − 2 + m) + 2(d − 1)m(d − 2 + m) + (d − 1)(d − 2)m(m + 1)

2(d − 1)(d − 2)

= (d2 − d + 2)m2 + (3d2 − 5d)m + (2d2 − 6d + 4)

2(d − 1)(d − 2)
.

Let

f (m) = (

d2 − d + 2
)

m2 + (

3d2 − 5d
)

m + (

2d2 − 6d + 4
)

.

Since d > p = 3, one has

f (0) = 2d2 − 6d + 4 = 2(d − 1)(d − 2) > 0;
f (−1) = (

d2 − d + 2
) − (

3d2 − 5d
) + (

2d2 − 6d + 4
) = −2d + 6 < 0;

f (−2) = 4
(

d2 − d + 2
) − 2

(

3d2 − 5d
) + (

2d2 − 6d + 4
) = 12 > 0.

Hence,

V
(

i(PG,m)
) = {−1,−2, . . . ,−(d − 3), α,β

}

where −2 < α < −1 < β < 0.
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We try to find information about the roots of the Ehrhart polynomials obtained in
Theorem 3.2(γ ) with d > p ≥ 2.

Theorem 3.5 Let d and p be integers with d > p ≥ 2 and let

fd,p(m) =
p

∑

j=1

(
j + m − 2

j − 1

)(
d − j + m

d − j

)

be a polynomial of degree d − 1 in the variable m. Then
{−1,−2, . . . ,−(d − p)

} ⊂ V(fd,p) ∩ R ⊂ [ − (d − 2),0
)

.

Proof It is easy to see that fd,p(0) = 1 and fd,p(m) > 0 for all m > 0.
From Example 3.4, we may assume that 4 ≤ p < d . Then

fd,p(m)

=
(

d − 1 + m

d − 1

)

+ m

(
d − 2 + m

d − 2

)

+
p

∑

j=3

(
j + m − 2

j − 1

)(
d − j + m

d − j

)

=
(

d − 1 + m

d − 1
+ m

)(
d − 2 + m

d − 2

)

+
p

∑

j=3

(
j + m − 2

j − 1

)(
d − j + m

d − j

)

= md + d − 1

d − 1

(
d − 2 + m

d − 2

)

+
p

∑

j=3

(
j + m − 2

j − 1

)(
d − j + m

d − j

)

.

If m < −(d − 2), then m + d − 2 < 0, md + d − 1 < −(d − 2)d + d − 1 = −(d −
3)d − 1 < 0,

m + d − j ≤ m + d − 3 < 0,

m + j − 2 ≤ m + p − 2 ≤ m + d − 3 < 0

for each j = 3,4, . . . , p. Hence, we have (−1)d−1fd,p(m) > 0 for all m < −(d − 2).
Thus, we have V(fd,p) ∩ R ⊂ [−(d − 2),0).

Since

fd,p(m) =
(

d − p + m

d − p

) p
∑

j=1

(
j + m − 2

j − 1

)
(d − j + m) · · · (d − p + 1 + m)

(d − j) · · · (d − p + 1)
,

it follows that

V
((

d − p + m

d − p

))

= {−1,−2, . . . ,−(d − p)
} ⊂ V(fd,p). �

Theorem 3.6 Let d and p be integers with d > p ≥ 2 and let fd,p(m) be the poly-
nomial defined above. If d − 2p + 2 ≥ 0, then

V(fd,p) = {−1,−2, . . . ,−(d − p),α1, α2, . . . , αp−1
}
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where

−(p − 1) < αp−1 < −(p − 2) < αp−2 < −(p − 3) < · · · < −1 < α1 < 0.

Proof Let

gd,p(m) = fd,p(m)
(
d−p+m

d−p

) =
p

∑

j=1

(
j + m − 2

j − 1

)
(d − j + m) · · · (d − p + 1 + m)

(d − j) · · · (d − p + 1)
.

It is enough to show that

(−1)kgd,p(k) > 0

for k = 0,−1,−2, . . . ,−(p − 1).
(First Step) We claim that (−1)−(p−1)gd,p(−(p − 1)) > 0. A routine computation

on binomial coefficients yields the equalities

gd,p

(−(p − 1)
)

=
∑p

j=1(−1)j−1
(
p−1
j−1

)∏j−1
i=1 (d − i)

∏p−1
k=j (d − k − (p − 1))

(d − 1) · · · (d − p + 1)

and

p
∑

j=1

(−1)j−1
(

p − 1

j − 1

) j−1
∏

i=1

(d − i)

p−1
∏

k=j

(

d − k − (p − 1)
)

= (−1)p−1(p − 1)p · · · (2p − 3).

Hence,

(−1)p−1gd,p

(−(p − 1)
) = (p − 1)p · · · (2p − 3)

(d − 1) · · · (d − p + 1)
> 0.

(Second Step) Working by induction on p, we now show that

(−1)kgd,p(k) > 0

for k = 0,−1,−2, . . . ,−(p − 2). Again, a routine computation on binomial coeffi-
cients yields

gd,p(m) =
(

p + m − 2

p − 1

)

+ d − p + 1 + m

d − p + 1
gd,p−1(m).

Hence,

(−1)kgd,p(k) = d − p + 1 + k

d − p + 1
(−1)kgd,p−1(k).

Since d − 2p + 2 ≥ 0, one has

d − p + 1 + k ≥ d − p + 1 − (p − 2) = d − 2p + 3 > 0.



738 J Algebr Comb (2011) 34:721–749

By virtue of (−1)−(p−1)gd,p(−(p − 1)) > 0, together with the induction hypothesis,
it follows that

(−1)kgd,p−1(k) > 0.

Thus,

(−1)kgd,p(k) > 0,

as desired. �

If d − 2p + 2 ≥ 0, then it follows that

⌊
d − 1

2

⌋

≤ d − p.

In this case, around half of the elements of V(fd,p) are negative integers. This fact
remains true even if d − 2p + 2 < 0.

Theorem 3.7 Let d and p be integers with d > p ≥ 2 and let fd,p(m) be the poly-
nomial defined above. Then

{

−1,−2, . . . ,−
⌊

d − 1

2

⌋}

⊂ V(fd,p).

Proof If d − 2p + 2 ≥ 0, then it follows from Theorem 3.5. (Note that if p = 2, then
d − 2p + 2 = d − 2 > 0.)

Work with induction on p. Let d − 2p + 2 < 0. By Theorem 3.5, it is enough
to show that gd,p(k) = 0 for all k = −(d − p + 1), . . . ,−� d−1

2 �. As in the proof of
Theorem 3.6, we have

gd,p(m) =
(

p + m − 2

p − 1

)

+ d − p + 1 + m

d − p + 1
gd,p−1(m).

Since d − 2p + 2 < 0, it follows that � d−1
2 � ≤ p − 2. Thus,

gd,p(k) = d − p + 1 + k

d − p + 1
gd,p−1(k).

By virtue of

gd,p

(−(d − p + 1)
) = 0

d − p + 1
gd,p−1

(−(d − p + 1)
) = 0

together with the induction hypothesis, it follows that gd,p(k) = 0 for all k = −(d −
p + 1), . . . ,−� d−1

2 �. �

Example 3.8 Let d = 12. Then d − 2p + 2 ≥ 0 if and only if p ≤ 7. For p =
2,3, . . . ,7, the roots of the Ehrhart polynomials are −1,−2, . . . ,−(d −p) = p −12,
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together with the real numbers listed as follows:

p = 2 −0.92
p = 3 −1.92 −0.85
p = 4 −2.90 −1.83 −0.80
p = 5 −3.83 −2.77 −1.74 −0.76
p = 6 −4.67 −3.65 −2.65 −1.66 −0.72
p = 7 −5.31 −4.42 −3.47 −2.53 −1.58 −0.69

For p = 8,9,10,11, the roots of the Ehrhart polynomials are −1,−2,−3,−4,−5 =
−� d−1

2 �, together with the following complex numbers:

p = 8 −5.56 −4.19 −3.31 −2.41 −1.51 −0.65
p = 9 −5.47 −4.79 −3.16 −2.29 −1.43 −0.62
p = 10 −5.51 −4.16 + 0.18i −4.16 − 0.18i −2.16 −1.34 −0.59
p = 11 −5.50 −4.53 −3.08 + 0.06i −3.08 − 0.06i −1.24 −0.55

(Computed by Maxima [19].) Thus, in particular, the real parts of all roots are nega-
tive.

4 Symmetric edge polytopes

Among the many topics explored in recent papers on the roots of Ehrhart polynomials
of convex polytopes, one of the most fascinating is the Gorenstein Fano polytope.

Let P ⊂ R
d be an integral convex polytope of dimension d .

• We say that P is a Fano polytope if the origin of R
d is the unique integer point

belonging to the interior of P .
• A Fano polytope is said to be Gorenstein if its dual polytope is integral. (Recall

that the dual polytope P ∨ of a Fano polytope P is a convex polytope that consists
of those x ∈ R

d such that 〈x, y〉 ≤ 1 for all y ∈ P , where 〈x, y〉 is the usual inner
product on R

d .)

In this section, we will prove that symmetric edge polytopes arising from con-
nected simple graphs are Gorenstein Fano polytopes (Proposition 4.2). Moreover, we
will consider the condition of unimodular equivalence (Theorem 4.5). In addition, we
will compute the Ehrhart polynomials of symmetric edge polytopes and discuss their
roots.

4.1 Fano polytopes arising from graphs

Throughout this section, let G denote a simple graph on the vertex set V (G) =
{1, . . . , d} with E(G) = {e1, . . . , en} being the edge set. Moreover, let P ±

G ⊂ R
d de-

note a symmetric edge polytope constructed from G.
Let H ⊂ R

d denote the hyperplane defined by the equation x1 +x2 +· · ·+xd = 0.
Now, since the integral points ±σ(e1), . . . ,±σ(en) lie on the hyperplane H, we have
dim(P ±

G) ≤ d − 1.
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Proposition 4.1 One has dim(P ±
G) = d − 1 if and only if G is connected.

Proof Suppose that G is not connected. Let G1, . . . ,Gm with m > 1 denote the
connected components of G. Let, say, {1, . . . , d1} be the vertex set of G1 and
{d1 + 1, . . . , d2} the vertex set of G2. Then P ±

G lies on two hyperplanes defined by
the equations x1 + · · · + xd1 = 0 and xd1+1 + · · · + xd2 = 0. Thus, dim(P ±

G) < d − 1.

Next, we assume that G is connected. Suppose that P ±
G lies on the hyperplane

defined by the equation a1x1 + · · · + adxd = b with a1, . . . , ad, b ∈ Z. Let e = {i, j}
be an edge of G. Then because σ(e) lies on this hyperplane together with −σ(e), we
obtain

ai − aj = −(ai − aj ) = b.

Thus ai = aj and b = 0. For all edges of G, since G is connected, we have a1 =
a2 = · · · = ad and b = 0. Therefore, P ±

G lies only on the hyperplane x1 + x2 + · · · +
xd = 0. �

For the rest of this section, we assume that G is connected.

Proposition 4.2 Let P ±
G be a symmetric edge polytope of a graph G. Then P ±

G ⊂ H
is a Gorenstein Fano polytope of dimension d − 1.

Proof Let ϕ : R
d−1 → H be the bijective homomorphism with

ϕ(y1, . . . , yd−1) = (

y1, . . . , yd−1,−(y1 + · · · + yd−1)
)

.

Thus, we can identify H with R
d−1. Therefore, ϕ−1(P ±

G) is isomorphic to P ±
G .

Since one has

1

2n

n
∑

j=1

σ(ej ) + 1

2n

n
∑

j=1

(−σ(ej )
) = (0, . . . ,0) ∈ R

d ,

the origin of R
d is contained in the relative interior of P ±

G ⊂ H. Moreover, since

P ±
G ⊂ {

(x1, . . . , xd) ∈ R
d | − 1 ≤ xi ≤ 1, i = 1, . . . , d

}

,

it is not possible for an integral point to exist anywhere in the interior of P ±
G except

at the origin. Thus, P ±
G ⊂ H is a Fano polytope of dimension d − 1.

Next, we prove that P ±
G is Gorenstein. Let M be an integer matrix whose row

vectors are σ(e) or −σ(e) with e ∈ E(G). Then M is a totally unimodular matrix.
From the theory of totally unimodular matrices ([27, Chap. 9]), it follows that a sys-
tem of equations yA = (1, . . . ,1) has integral solutions, where A is a submatrix of
M . This implies that the equation of each supporting hyperplane of P ±

G is of the form
a1x1 + · · · + adxd = 1 with each ai ∈ Z. In other words, the dual polytope of P ±

G is
integral. Hence, P ±

G is Gorenstein, as required. �
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4.2 When is P ±
G unimodular equivalent?

In this subsection, we consider the conditions under which P ±
G is unimodular equiv-

alent with P ±
G′ for graphs G and G′.

Recall that for a connected graph G, we call G a 2-connected graph if the induced
subgraph with the vertex set V (G)\{i} is still connected for any vertex i of G.

Let us say a Fano polytope P ⊂ R
d splits into P1 and P2 if P is the convex hull

of the two Fano polytopes P1 ⊂ R
d1 and P2 ⊂ R

d2 with d = d1 + d2. That is, by
arranging the numbering of coordinates, we have

P = conv
({

(α1,0) ∈ R
d | α1 ∈ P1

} ∪ {

(0, α2) ∈ R
d | α2 ∈ P2

})

.

Lemma 4.3 P ±
G cannot split if and only if G is 2-connected.

Proof (“Only if ”) Suppose that G is not 2-connected, i.e., there is a vertex i of G such
that the induced subgraph G′ of G with the vertex set V (G)\{i} is not connected. For
a matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(e1)

−σ(e1)
...

σ (en)

−σ(en)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3)

whose row vectors are the vertices of P ±
G , we add all the columns of (3) except the

ith column to the ith column. Then the ith column vector becomes equal to the zero
vector. Let, say, {1, . . . , i−1} and {i+1, . . . , d} denote the vertex set of the connected
components of G′. Then, by arranging the row vectors of (3) if necessary, the matrix
(3) can be transformed into

(

M1 0
0 M2

)

.

This means that P ±
G splits into P1 and P2, where the vertex set of P1 (respectively

P2) constitutes the row vectors of M1 (respectively M2).
(“If ”) We assume that G is 2-connected. Suppose that P ±

G splits into P1, . . . , Pm

and each Pi cannot split, where m > 1. Then by arranging the row vectors if neces-
sary, the matrix (3) can be transformed into

⎛

⎜
⎝

M1 0
. . .

0 Mm

⎞

⎟
⎠ .

Now, for a row vector v of each matrix Mi , −v is also a row vector of Mi . Let

vi1, . . . , viki
,−vi1, . . . ,−viki
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denote the row vectors of Mi , where ei1, . . . , eiki
are the edges of G with vij = σ(eij )

or vij = −σ(eij ), and Gi denote the subgraph of G with the edge set {ei1, . . . , eiki
}.

Then for the subgraphs G1, . . . ,Gm of G, one has

∣
∣V (G1)

∣
∣ + · · · + ∣

∣V (Gm)
∣
∣ ≥ d + 2(m − 1), (4)

where V (Gi) is the vertex set of Gi .
(In fact, the inequality (4) follows by induction on m. When m = 2, since G is 2-

connected, G1 and G2 share at least two vertices. Thus, one has |V (G1)|+|V (G2)| ≥
d + 2. When m = k + 1, since G is 2-connected, one has

∣
∣
∣
∣
∣

(
k

⋃

i=1

V (Gi)

)

∩ V (Gk+1)

∣
∣
∣
∣
∣
≥ 2.

Let d ′ be the sum of the numbers of the columns of M1, . . . ,Mk−1 and Mk and d ′′ be
the number of the columns of Mk+1, where d ′ + d ′′ = d . Then one has

∣
∣V (G1)

∣
∣ + · · · + ∣

∣V (Gk)
∣
∣ + ∣

∣V (Gk+1)
∣
∣ ≥ d ′ + 2(k − 1) + ∣

∣V (Gk+1)
∣
∣

≥ d ′ + d ′′ + 2(k − 1) + 2 = d + 2k

by the hypothesis of induction.)
In addition, each P ±

Gi
cannot split. Thus one has dim(P ±

Gi
) = |V (Gi)| − 1 since

each Gi is connected by the proof of the “only if ” part. It then follows from this
equality and the inequality (4) that

d − 1 = dim
(

P ±
G1

) + · · · + dim
(

P ±
Gm

) = ∣
∣V (G1)

∣
∣ + · · · + ∣

∣V (Gm)
∣
∣ − m

≥ d + 2m − 2 − m = d + m − 2 ≥ d (m ≥ 2),

a contradiction. Therefore, P ±
G cannot split. �

Lemma 4.4 Let G be a 2-connected graph. Then, for a graph G′, P ±
G is unimodular

equivalent with P ±
G′ as an integral convex polytope if and only if G is isomorphic to

G′ as a graph.

Proof If |V (G)| = 2, the statement is obvious. Thus, we assume that |V (G)| > 2.
(“Only if ”) Suppose that P ±

G is unimodular equivalent with P ±
G′ . Let MG (respec-

tively MG′ ) denote the matrix whose row vectors are the vertices of P ±
G (respectively

P ±
G′ ). Then there is a unimodular transformation U such that one has

MGU = MG′ . (5)

Thus, each row vector of MG, i.e., each edge of G, one-to-one corresponds to each
edge of G′. Hence, G and G′ have the same number of edges. Moreover, since G is
2-connected, P ±

G cannot split by Lemma 4.3. Thus, P ±
G′ also cannot split; that is to

say, G′ is also 2-connected. In addition, if we suppose that G and G′ do not have the
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same number of vertices, then dim(P ±
G) �= dim(P ±

G′) since G and G′ are connected,
a contradiction. Thus, the number of the vertices of G is equal to that of G′.

Now an arbitrary 2-connected graph with |V (G)| > 2 can be obtained by the fol-
lowing method: start from a cycle and repeatedly append an H -path to a graph H that
has been already constructed. (Consult, e.g., [33].) In other words, there is one cycle
C1 and (m − 1) paths Γ2, . . . ,Γm such that

G = C1 ∪ Γ2 ∪ · · · ∪ Γm. (6)

Under the assumption that G is 2-connected and one has the equality (5), we show
that G is isomorphic to G′ by induction on m.

If m = 1, i.e., G is a cycle, then G has d edges. Let ai, i = 1, . . . , d denote the
degree of each vertex i of G′. Then one has

a1 + a2 + · · · + ad = 2d.

If there is i with ai = 1, then G′ is not 2-connected. Thus, ai ≥ 2 for i = 1, . . . , d .
Hence, a1 = · · · = ad = 2. It then follows that G′ is also a cycle of the same length
as G, which implies that G is isomorphic to G′.

When m = k + 1, we assume (6). Let G̃ denote the subgraph of G with

G̃ = C1 ∪ Γ2 ∪ · · · ∪ Γk.

Then G̃ is a 2-connected graph. Since each edge of G has one-to-one correspon-
dence with each edge of G′, there is a subgraph G̃′ of G′ each of whose edges
corresponds to those of G̃. Then one has M

G̃
U = M

G̃′ , where M
G̃

(respectively
M

G̃′ ) is a submatrix of MG (respectively MG′ ) whose row vectors are the vertices

of P ±
G̃

(respectively P ±
G̃′ ). Thus, G̃ is isomorphic to G̃′ by the induction hypothesis.

Let Γk+1 = (i0, i1, . . . , ip) with i0 < i1 < · · · < ip and eil = {il−1, il}, l = 1, . . . , p

denote the edges of Γk+1. In addition, let e′
i1
, . . . , e′

ip
denote the edges of G′ corre-

sponding to the edges ei1, . . . , eip of G. Here, the edges e′
i1
, . . . , e′

ip
of G′ are not the

edges of G̃′. Since i0 and ip are distinct vertices of G̃ and G̃ is connected, there is
a path Γ = (i0, j1, j2, . . . , jq−1, ip) with i0 = j0 < j1 < j2 < · · · < jq−1 < jq = ip

in G̃. Let ejl
= {jl−1, jl}, l = 1, . . . , q denote the edges of Γ . Then by renumber-

ing the vertices of G̃′ if necessary, there is a path Γ ′ = (i′0, j ′
1, j

′
2, . . . , j

′
q−1, i

′
p) with

i′0 = j ′
0 < j ′

1 < j ′
2 < · · · < j ′

q−1 < j ′
q = i′p in G̃′ since G̃ is isomorphic to G̃′. Let

e′
jl

= {j ′
l−1, j

′
l }, l = 1, . . . , q denote the edges of Γ ′. However, by (5), each edge ejl

of G̃ has one-to-one correspondence with each edge e′′
jl

of G̃′. Thus, each edge e′
jl

of

G̃′ has one-to-one correspondence with each edge e′′
jl

of G̃′. In other words, one has

{e′
jl

| l = 1, . . . , q} = {e′′
jl

| l = 1, . . . , q}.
Since there are Γk+1 and Γ that are paths from i0 to ip , one has

p
∑

l=1

σ(eil ) =
q

∑

l=1

σ(ejl
). (7)
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On the one hand, if we multiply the left-hand side of (7) with U , then we have

p
∑

l=1

σ(eil )U =
p

∑

l=1

σ(e′
il
).

On the other hand, if we multiply the right-hand side of (7) with U , then we have

q
∑

l=1

σ(ejl
)U =

q
∑

l=1

σ(e′′
jl
) =

q
∑

l=1

σ(e′
jl
) = ei′0 − ei′p .

Hence, we have
∑p

l=1 σ(e′
il
) = ei′0 − ei′p . This means that the edges e′

i1
, . . . , e′

ip
of G′

construct a path from the vertex i′0 to i′p , which is isomorphic to Γk+1. Therefore, G

is isomorphic to G′.
(“If ”) Suppose that G is isomorphic to G′. Then by renumbering the vertices if

necessary, it can be easily verified that P ±
G is unimodular equivalent with P ±

G′ . �

Theorem 4.5 For a connected simple graph G (respectively G′), let G1, . . . ,Gm

(respectively G′
1, . . . ,G

′
m′ ) denote the 2-connected components of G (respectively

G′). Then P ±
G is unimodular equivalent with P ±

G′ if and only if m = m′ and Gi is
isomorphic to G′

i by renumbering if necessary.

Proof It is clear from Lemmas 4.3 and 4.4. If Gi is isomorphic to G′
i for i = 1, . . . ,m,

by virtue of Lemmas 4.3 and 4.4, then P ±
G is unimodular equivalent with P ±

G′ . On the
contrary, suppose that P ±

G is unimodular equivalent with P ±
G′ . If m �= m′, one has

a contradiction by Lemma 4.3. Thus, m = m′. Moreover, by our assumption, Gi is
isomorphic to G′

i by Lemma 4.4. �

4.3 Roots of the Ehrhart polynomials of P ±
G

In this subsection, we study the Ehrhart polynomials of P ±
G and their roots.

Let P ⊂ R
D be a Fano polytope with δ(P ) = (δ0, δ1, . . . , δD) being its δ-vector.

It follows from [2] and [15] that the following conditions are equivalent:

• P is Gorenstein;
• δ(P ) is symmetric, i.e., δi = δD−i for every 0 ≤ i ≤ D;
• i(P ,m) = (−1)Di(P ,−m − 1).

Since i(P ,m) = (−1)Di(P ,−m − 1), the roots of i(P ,m) locate symmetrically in
the complex plane with respect to the line Re(z) = − 1

2 .

Proposition 4.6 If G is a tree, then P ±
G is unimodular equivalent with

conv
({±e1, . . . ,±ed−1}

)

. (8)

Proof If G is a tree, then any 2-connected component of G consists of one edge and
G possesses (d − 1) 2-connected components. Thus, by Theorem 4.5, for any tree
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G, P ±
G is unimodular equivalent. Hence we should prove only the case where G is a

path, i.e., the edge set of G is {{i, i + 1} | i = 1, . . . , d − 1}.
Let

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(e1)

−σ(e1)
...

σ (ed−1)

−σ(ed−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

denote the matrix whose row vectors are the vertices of P ±
G , where ei = {i, i +1}, i =

1, . . . , d − 1 are the edges of G. If we add the d th column to the (d − 1)th column,
the (d − 1)th column to the (d − 2)th column, . . . , and the second column to the first
column, then the above matrix is transformed into

⎛

⎜
⎝

0 M 0
...

. . .

0 0 M

⎞

⎟
⎠ ,

where M is the 2 × 1 matrix
(−1

1

)

. This implies that P ±
G is unimodular equivalent

with (8). �

Let (δ0, δ1, . . . , δd−1) ∈ Z
d be the δ-vector of (8). Then it can be calculated that

δi =
(

d − 1

i

)

, i = 0,1, . . . , d − 1.

It then follows from the well-known theorem [26] that if G is tree, the real parts of all
the roots of i(P ±

G,m) are equal to − 1
2 . That is to say, all the roots z of i(P ±

G,m) lie
on the vertical line Re(z) = − 1

2 , which is the bisector of the vertical strip −(d − 1) ≤
Re(z) ≤ d − 2.

We consider the other two classes of graphs. Let G be a complete bipartite graph
of type (2, d − 2), i.e., the edges of G are either {1, j} or {2, j} with 3 ≤ j ≤ d. Then
the δ-polynomial of P ±

G coincides with

(1 + t)d−3(1 + 2(d − 2)t + t2).

Using computational evidence, we propose the following:

Conjecture 4.7 Let G be a complete bipartite graph of type (2, d − 2). Then the real
parts of all the roots of i(P ±

G,m) are equal to − 1
2 .

Let G be a complete graph with d vertices and δ(P ±
G) = (δ0, δ1, . . . , δd−1) be its

δ-vector. In [1, Theorem 13], the δ(P ±
G) is calculated; that is,

δi =
(

d − 1

i

)2

, i = 0,1, . . . , d − 1.
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Using computational evidence, we also propose the following:

Conjecture 4.8 Let G be a complete graph. Then the real parts of all the roots of
i(P ±

G,m) are equal to − 1
2 .

In addition, by computational results, we can say the following:

Proposition 4.9 If d ≤ 6, then the real parts of all the roots of i(P ±
G,m) are equal to

− 1
2 for any graph with d vertices.

However, it is not true for d = 7 or d = 8. In fact, there are some counterexam-
ples. The following Figs. 3 and 4 illustrate how the roots are distanced from the line
Re(z) = − 1

2 . (They are computed by CoCoA [7] and Maple [32].)
Let G be a cycle of length d . When d ≤ 6, although the real parts of all the roots

of i(P ±
G,m) are equal to − 1

2 , there are also some counterexamples when d ≥ 7. The
following Fig. 5 illustrates the behavior of the roots for 7 ≤ d ≤ 30.

However, in the range of graphs which we computed, all the roots z of i(P ±
G,m)

whose real parts are not equal to − 1
2 satisfy −(d − 1) ≤ Re(z) ≤ d − 2. In more

detail, they satisfy − d−1
2 ≤ Re(z) ≤ d−1

2 − 1, though we do not know the general
case. Then we propose the following:

Conjecture 4.10 All roots α of the Ehrhart polynomials of Gorenstein Fano poly-
topes of dimension D satisfy −D

2 ≤ Re(α) ≤ D
2 − 1.

In the table drawn below, in the second row, the number of connected simple
graphs with d(≤ 8) vertices, up to isomorphism, is written. In the third row, among

Fig. 3 d = 7
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Fig. 4 d = 8

Fig. 5 All cycles 7 ≤ d ≤ 30

these, the number of graphs, up to unimodular equivalence, i.e., satisfying the condi-
tion in Theorem 4.5, is written. In the fourth row, among these, in turn, the number
of graphs that are counterexamples, i.e., there is a root of i(P ±

G,m) whose real part is
not equal to − 1

2 , is written.
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d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

Connected graphs 1 2 6 21 112 853 11117
Non equivalent 1 2 5 16 75 560 7772
Counterexamples 0 0 0 0 0 12 1092

Appendix: Method of computation

This appendix presents an outline of the procedure used to compute the roots of the
Ehrhart polynomials of edge or symmetric edge polytopes in Sects. 2 and 4. Both
polytopes are constructed from connected simple graphs. For each number of ver-
tices d , steps below are taken.

(1) Construct the set of connected simple graphs of order d .
(2) Obtain a facet representation of a polytope for each graph.
(3) Compute the Hilbert series for a facet representation.
(4) Build the Ehrhart polynomial from the series and solve it.

The program for step 1 was written by the authors in the Python programming
language with an aid of NZMATH [18, 20]. The source code is available at:

https://bitbucket.org/mft/csg/.

Step 2 is performed with Polymake [10, 25]. Then, LattE [9] (or LattE mac-
chiato [17]) computes the series for step 3. The final step uses Maxima [19] or
Maple [32].

A small remark has to be made on the interface between steps 3 and 4. If one
uses LattE’s rational function as the input to Maxima, memory consumption be-
comes very high. LattE can send it to Maple by itself if you specify “simplify,”
but this still presents the same problem for the user. Instead, it is preferable to use the
coefficient of the first several terms of the Taylor expansion for interpolation.

Finally, it should be mentioned that there is a package of Macaulay2 for the
computations for graphs, which is called Nauty [8]. This might be helpful to readers
who are interested in running experiments of their own. This package is available at:

http://www.ms.uky.edu/~dcook/files/.
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