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Abstract We construct and analyze an explicit basis for the homology of the boolean
complex of a finite simple graph. This provides a combinatorial description of the
spheres in the wedge sum representing the homotopy type of the complex. We assign
a set of derangements to any finite simple graph. For each derangement, we construct
a corresponding element in the homology of the complex, and the collection of these
elements forms a basis for the homology of the boolean complex. In this manner,
the spheres in the wedge sum describing the homotopy type of the complex can be
represented by a set of derangements.

We give an explicit, closed-form description of the derangements that can be ob-
tained from any finite simple graph, and compute this set for several families of
graphs. In the cases of complete graphs and Ferrers graphs, these calculations give
bijective proofs of previously obtained enumerative results.

Keywords Coxeter system · Boolean complex · Homology · Derangement ·
Complete graph · Ferrers graph · Staircase shape

1 Introduction

In [8], we developed the boolean complex of a finitely generated Coxeter system,
based on work by the second author in [11], and analyzed its homotopy type. The
boolean complex of a Coxeter system can be constructed from the unlabeled Coxeter
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graph of the system. We take this as a starting point and talk about the boolean com-
plex �(G) of a finite simple graph G, keeping in mind that any such graph can be the
unlabeled Coxeter graph of a Coxeter system. Our main result in [8] was to show that
the boolean complex of any finite simple graph has the homotopy type of a wedge of
spheres. More precisely, there is a homotopy equivalence

∣
∣�(G)

∣
∣ �

β(G)
∨

i=1

S|G|−1, (1)

where the boolean number β(G) is a graph invariant which can be calculated recur-
sively using edge operations. That this complex is homotopy equivalent to a wedge
of spheres was also shown by Jonsson and Welker [7], who work in a more general
context and do not address the question of the number of spheres in this particular
setting. In the special case where G is a complete graph, �(G) is a complex of in-
jective words, and Farmer [5] and Björner–Wachs [2] each showed that this complex
has the homotopy type of a wedge of spheres. The number of spheres in this case was
enumerated by Reiner–Webb in [9].

The boolean number is an interesting graph invariant, several examples of which
were calculated in [8] and [3]. For some families of graphs the boolean number has
intriguing enumerative properties. One notable example are the complete graphs, for
which we showed that β(Kn) is the number of derangements of an n-element set
in [8], recovering the enumerative result of Reiner–Webb from [9] mentioned above.
Another example are the Ferrers graphs of staircase shapes, whose boolean numbers
were shown in [3] to be the Genocchi numbers of the second kind, which also enu-
merate derangements with alternating excedances.

In this paper, we give bijective proofs of these enumerative results and present
a combinatorial description of the spheres appearing in the wedge sum in (1). This
meaning is not apparent from the proofs in the papers cited above. Each of these
proofs uses either discrete Morse theory [8] or shellability [2, 5, 7] to collapse most
of the respective complexes down to a point, leaving only cells of maximal dimension
connected to a single point, which results in a homotopy type of a wedge of spheres.
However, which maximal cells remain at the end of the collapsing process depends
on a series of choices, and the cells themselves do not form spheres within �(G).
Therefore, this process does not shed much light on what role the spheres in (1)
really play.

Our approach in this paper is via the homology of the boolean complex. Of course,
since �(G) has the homotopy type of a group of (|G| − 1)-dimensional spheres, we
know that the reduced homology of �(G) is a graded group of dimension β(G)

concentrated in degree |G| − 1. Rather than calculating the homology groups, our
goal is to find, and analyze, an explicit basis for the homology of �(G). Each element
in this basis is a formal sum of cells in �(G), and taking the union of the closure of
these cells in �(G) gives a subcomplex that has the homotopy type of a sphere. (We
actually take homology with F2 coefficients but the basic principle is the same.) The
homological generators of the boolean complex are therefore good representatives
for the spheres in (1).

The route from graphs to homological generators takes a detour through derange-
ments. Given a graph G, we recursively construct a set of derangements of the vertex
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set of G using the same edge operations used for calculating the boolean number of
a graph. To each of these derangements we associate an element in the homology of
�(G), and the central result of the paper is Theorem 5.2 which says that the out-
come of these two steps is a basis for the homology of �(G). Thus we can regard
the derangements associated to a graph G as combinatorial representatives for the
spheres in the wedge sum describing the homotopy type of �(G). Another important
result is Theorem 3.11 where we give an explicit, closed-form description of the set
of derangements associated to G. When G is a complete graph, this is the set of all
derangements, and when G is the Ferrers graph associated to a staircase shape, this
is the set of permutations of alternating excedances. Thus we obtain bijective proofs
of the enumerative results mentioned earlier.

2 Background

2.1 Boolean complexes

Boolean complexes were introduced in [8] as cell complexes associated to Coxeter
systems. In fact, as noted in [8], the boolean complex of a Coxeter system only de-
pends on its unlabeled Coxeter graph, and therefore one can equally well think of
boolean complexes associated to finite simple graphs. We shall focus on the graph
perspective here, referring the reader to [8] for the relationship to Coxeter systems.

Given a graph G with vertex set V (G), let W(G) be set of words on letters in
V (G) without repetition, ordered by subword inclusion. Form an equivalence relation
∼ on W(G) by saying that two letters commute if and only if they are not adjacent
in G. More precisely, if a1, . . . , ak, s, t, b1, . . . , b� are distinct vertices in G, and s

and t are not adjacent, then

a1 · · ·akstb1 · · ·b� ∼ a1 · · ·aktsb1 · · ·b�

in W(G), and ∼ is the equivalence relation generated by this condition. Let B(G) be
the set of equivalence classes in W(G) with respect to ∼, with partial order induced
by the order relation on W(G). We call B(G) the boolean poset of G (this was called
the boolean ideal in [8]), and say that an element in W(G) is a word representative
for its equivalence class in B(G).

The boolean poset is ranked by word length, where we adopt the convention that a
word of length k + 1 has rank k (so the empty word has rank −1). For each integer k,
let Bk(G) ⊆ B(G) be the subset of elements of rank k. It is not hard to see that B(G)

is a simplicial poset, meaning that the principal (lower) order ideal of every element
is isomorphic to a boolean algebra. Consequently [1], there is an associated regular
cell complex �(G) that has B(G) as face poset, where the dimension of each cell
in �(G) equals the rank of the corresponding element in B(G). The empty word
corresponds to the empty cell and will henceforth be ignored. We refer to �(G) as
the boolean complex of G.

Note that, although the closure of each cell in �(G) is a simplex, �(G) is not a
simplicial complex. This is because a cell in �(G) is not determined by the 0-cells in
its closure. An example of this, described in full detail in [8], is the graph consisting
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of two vertices and an edge between them. Instead �(G) is a �-complex, as defined
in [6].

2.2 Homotopy type of boolean complexes

One obtains a geometric realization |�(G)| in the standard way: take a geometric
simplex of dimension k for each k-cell in �(G), and glue simplices together accord-
ing to the face poset. By the homotopy type of the boolean complex we mean the
homotopy type of |�(G)|. The goal of this section is to recall the main result in [8],
stated below as Theorem 2.2, which shows that the boolean complex of a graph G

with n vertices has the homotopy type of a wedge of (n − 1)-spheres. In [8], we gave
a recursive formula for computing the number of spheres occurring in the wedge sum.
This number is a graph invariant, which we denote β(G) and call the boolean number
of G. The recursion was given in terms of graph operations, defined as follows.

Definition 2.1 Let G be a finite simple graph and e an edge in G.

• Deletion: G − e is the graph obtained by deleting the edge e.
• Simple contraction: G/e is the graph obtained by contracting the edge e and then

removing all loops and redundant edges.
• Extraction: G − [e] is the graph obtained by removing the edge e and its incident

vertices.

In the statement of the theorem, and throughout the paper, we let |G| denote the
number of vertices in a finite graph G, and we let δn denote the graph with n vertices
and no edges. Furthermore, we use the symbol � to denote homotopy equivalence,
and write b · Sr for a wedge sum of b spheres of dimension r . (In particular, 0 · Sr is
a point.)

Theorem 2.2 [8] For every nonempty, finite simple graph G, there is an integer β(G)

such that
∣
∣�(G)

∣
∣ � β(G) · S|G|−1.

Moreover, the values β(G) can be computed using the recursive formula

β(G) = β(G − e) + β(G/e) + β
(

G − [e]),
if e is an edge in G such that G − [e] is nonempty, with initial conditions

β(K2) = 1 and β(δn) = 0,

where K2 is the complete graph on two vertices.

The following results are also useful.

Corollary 2.3 [8] A finite simple graph G has an isolated vertex if and only if
β(G) = 0. That is, the center of a Coxeter group contains a generator of the group if
and only if the group’s boolean complex is contractible.
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Proposition 2.4 [8] If G = H1 � H2 for graphs H1 and H2, then

�(G) = �(H1) ∗ �(H2),

where ∗ denotes simplicial join, and consequently

∣
∣�(G)

∣
∣ � β(H1)β(H2) · S|H1|+|H2|−1.

In particular, β(G) = β(H1)β(H2).

2.3 Homology of boolean complexes

In this subsection, we establish the notation and conventions for discussing and com-
puting homology in this paper. We assume the reader is familiar with the procedure
for computing the homology of a �-complex, which is well known and described,
for example, in [6]. Since we know a priori that the boolean complex of a finite sim-
ple graph has the homotopy type of a wedge of spheres, this process can be greatly
simplified for boolean complexes. To further simplify matters, we always take ho-
mology with F2-coefficients—thus avoiding issues of orientation—and write H∗(·)
for H∗(·,F2) from now on.

Let G be a finite simple graph with vertex set V . By Theorem 2.2, H̃ ∗(�(G))

is a graded F2-vector space of dimension β(G), concentrated in degree |G| − 1.
Since �(G) has no cells of dimension above |G| − 1, this means we can compute
the homology of �(G) simply as the kernel of the differential ∂G : C|G|−1(�(G)) →
C|G|−2(�(G)), where Ck(�(G)) denotes the free F2-vector space with basis Bk(G).
In our setting, this differential can be described as a sum

∂G :=
∑

v∈V

∂G
v : C|G|−1

(

�(G)
) → C|G|−2

(

�(G)
)

,

where, for v ∈ V , the homomorphism

∂G
v : C|G|−1

(

�(G)
) → C|G|−2

(

�(G)
)

,

sends a basis element σ ∈ B|G|−1(G) to the string obtained by deleting v. When the
graph G is clear from the context, we will drop the superscript G and just write ∂

and ∂v for ∂G and ∂G
v , respectively. We refer to an element in the kernel of d as a

homological cycle.
Loosely speaking, the differential ∂ sends a cell in β(G)|G|−1 to its boundary,

and a homological cycle is then a formal sum of cells whose boundaries cancel. For
a nonzero homological cycle, the closure of the corresponding union of (|G| − 1)-
simplices in |�(G)| forms a (|G| − 1)-sphere embedded in |�(G)|. Thus finding a
canonical set of generators for the homology of a boolean complex amounts to giving
a combinatorial meaning to the spheres appearing in the wedge-sum representation
of its homotopy type.

We will repeatedly use the following lemma to identify homological cycles. The
proof is obvious.
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Lemma 2.5 Let G be a finite simple graph with vertex set V (G). For x ∈ C|G|−1(G)

the following are equivalent:

1. ∂(x) = 0, and
2. ∂v(x) = 0 for each v ∈ V (G).

2.4 String concatenation product

For a finite graph G, the chain complex C∗(�(G)) has a product structure given by
word concatenation. This is defined on basis elements as follows. Let σ and τ be word
representatives for generators σ̄ ∈ Ck(�(G)) and τ̄ ∈ C�(�(G)). Thus σ is a word
on k + 1 vertices of G, and σ̄ is the corresponding element in Bk(G) ⊂ Ck(�(G)),
and similarly with τ . We define the concatenation product by

σ̄ τ̄ :=
{

στ ∈ Ck+l+1(�(G)), if σ and τ have no common letters,

0, if σ and τ have common letters.

It is not hard to check that this is a well-defined, associative operation. Extending
linearly, we obtain the string concatenation product sending general elements x ∈
Ck(�(G)) and y ∈ C�(�(G)) to xy ∈ Ck+l+1(�(G)).

2.5 Collapsing maps

Here we discuss the collapsing map of boolean complexes induced by an inclusion
of graphs with the same vertex set, and the effect of this map in homology.

Definition 2.6 For a finite set V , let KV be the complete graph with vertex set V .
When the finite set is {1, . . . , n}, write Kn for short.

Notice that for a complete graph KV , the boolean poset is the same as the poset of
injective words: B(KV ) = W(KV ). If G is another graph with vertex set V , then by
definition we have a projection of posets W(G) → B(G). Since W(G) = W(KV ),
we can interpret this as a map of boolean posets

πG : B(KV ) � B(G),

which we call a collapsing map. This collapsing map induces a map on boolean
complexes πG : �(KV ) → �(G) and consequently a map of chain complexes

πG∗ : C∗
(

�(KV )
) → C∗

(

�(G)
)

.

Being a map of chain complexes means that πG∗ is a map of graded groups that
respects the differential (that is, ∂G∗ ◦ πG∗ = πG∗ ◦ ∂

KV∗ ), and this implies that we
have an induced map in homology

πG∗ : H∗
(

�(KV )
) → H∗

(

�(G)
)

,

which we also refer to as the collapsing map.
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More generally, when G is a subgraph of a graph G′, and both graphs have the
same vertex set V , there is a collapsing map of boolean posets πG′

G : B(G′) � B(G)

which satisfies πG′
G ◦ πG′ = πG. This map also induces a map of boolean complexes

and a map in homology πG′
G ∗ : H∗(�(G′)) → H∗(�(G)).

When the graphs involved are clear from the context and there is no danger of
confusion, we will write π instead of πG or πG′

G .

3 From graphs to derangements

In this section, we describe an algorithm that constructs a set of derangements of
the vertex set of a finite simple graph G. The algorithm is recursive, using the same
edge operations involved in the recursive computation of the boolean number of the
graph, and as a consequence the number of derangements produced is equal to the
boolean number of the graph. We also give an explicit, closed-form description of the
resulting set of derangements in Theorem 3.11.

In Sect. 4, we will show how derangements of the vertex set of a graph give rise
to homology cycles for the boolean complex of the graph, and in Sect. 5 we prove
that the homology cycles coming from the derangements constructed in this section
form a basis for the homology of the boolean complex. Therefore, the derangements
constructed here are key to understanding the combinatorial meaning of the spheres
representing the homotopy type of the boolean complex.

Definition 3.1 A derangement of a finite set V is a permutation of V that has no
fixed points. The set of derangements of V is denoted by DV . When V is the finite set
{1, . . . , n}, we may write Dn for DV . The derangement number dn is the cardinality
of Dn.

It is useful here to write permutations in cycle notation. For example,
(134)(26)(587) is the map 1 �→ 3, 2 �→ 6, 3 �→ 4, 4 �→ 1, 5 �→ 8, 6 �→ 2, 7 �→ 5,
and 8 �→ 7. Thus a derangement is a permutation which can be written as a product
of disjoint cycles, all of which have length at least two. For small values of n, the
derangements of {1, . . . , n} and the derangement numbers dn are given in Table 1.

Definition 3.2 Let V be a linearly ordered finite set. A derangement of V is written in
standard cycle form if it is written as a product of disjoint cycles so that the minimum
element of a cycle appears as the leftmost letter in that cycle, and the cycles are
arranged from left to right in increasing values of minimum letters.

Example 3.3 The permutation (134)(26)(587) is written in standard cycle form,
while the alternative representations (134)(587)(26) and (341)(26)(587) are not.

The derangement-producing algorithm described below assumes a linear ordering
of the vertex set, and its output depends on the order. Formally, we are therefore
recursively defining subsets D(G,≤) ⊆ DV (G) and a map

(G,≤) �−→ D(G,≤),
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Table 1 Derangements and derangement numbers for small cases

n Dn = Derangements of {1, . . . , n} dn

1 none 0

2 (12) 1

3 (123), (132) 2

4 (1234), (1243), (1324), (1342), (1423), (1432), (12)(34), (13)(24), (14)(23) 9

where V (G) is the vertex set of G, and ≤ is a linear order on V (G). Such a pair
(G,≤) is usually referred to as an ordered graph. In the remainder of the paper,
we will abuse notation by referring to an ordered graph G instead of (G,≤), and
D(G) instead of D(G,≤), taking the linear ordering to be understood. This will not
cause any confusion since we only consider one linear ordering for a given graph.
In our examples, vertices will be labeled by integers and the ordering is clear. Note,
however, that the derangements in the set D(G) depend on the ordering of G. That
is, a different initial labeling of the graph will yield different derangements. Thus, a
cleverly chosen labeling can be the key to proving certain characteristics of the set of
derangements D(G).

There are three components to the recursive definition of D(G), including the
initial conditions, and these are highlighted as three separate bullet points in the fol-
lowing discussion.

Given a nonempty finite simple ordered graph G with maximal vertex t , the initial
conditions are as follows:

• If V (G) = {s, t} and there is an edge between these vertices, then D(G) := {(st)}.
• If t is an isolated vertex, then set D(G) := ∅.

Definition 3.4 Let G be a finite simple ordered graph. If t is the maximal non-
isolated vertex of G and s is maximal among vertices adjacent to t , then the maximal
edge of G is the edge {s, t}.

In the recursive step, we perform edge operations on the maximal edge of G. First,
we must explain how, for a finite simple ordered graph G and an edge e = {s, t} in G,
applying the three edge operations (deletion, simple contraction, and extraction) to G

behaves on ordered graphs, and how permutations of the vertex sets of the resulting
graphs, G − e, G/e and G − [e] give rise to permutations of the vertex set of G.

Deletion: G − e has the same vertex set as G and is given the same ordering of
vertices. A permutation of V (G − e) is a permutation of V (G).

Simple contraction: Let x be the vertex in G/e obtained by contracting the edge e.
We obtain a linear ordering on V (G/e) by letting x take the place of s in the ordering
on V (G). Given a permutation w of V (G/e), let wst be the permutation of V (G)

obtained by writing w in cycle notation, and replacing x by st in the appropriate
cycle.

Extraction: V (G−[e]) is a subset of V (G) and the linear ordering of V (G) restricts
to a linear ordering of V (G − [e]). Given a permutation w of V (G − [e]), a permu-
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tation w � (st) on V (G) is given by applying w to any element of V (G − [e]) =
V (G) \ {s, t} and the transposition (st) to the elements s and t .

We are now able to state the recursive condition for computing D(G). As before,
t is the maximal vertex of G in this discussion.

• If t is not an isolated vertex in G and e = {s, t} is the maximal edge in G, and G

has at least three vertices, then set

D(G) := D(G − e) ∪ {

wst : w ∈ D(G/e)
} ∪ {

w � (st) : w ∈ D
(

G − [e])}. (2)

We record the following properties of D(G) which are preserved throughout the
recursive construction.

Lemma 3.5 Let G be a finite simple ordered graph and let t be the maximal vertex
of G. If w ∈ D(G) then w is a derangement and t is adjacent to w−1(t) in G.

Also observe that if G has any isolated vertex (maximal or otherwise), then
D(G) = ∅ because the isolated vertex will be maximal at some step in the iteration,
and the second initial condition will apply. This is a special case of the following
result.

Proposition 3.6 For a nonempty finite simple ordered graph G,

∣
∣D(G)

∣
∣ = β(G).

Proof The two numbers |D(G)| and β(G) agree at the initial conditions in the re-
cursive definition for D(G). The result follows if we can show that they also satisfy
the same recurrence relation. We prove this by showing that the three sets on the
right-hand side of (2) are disjoint.

A derangement vst in the second set satisfies vst (s) = t and vst (t) �= s, while a
derangement u � (st) in the third set satisfies (u � (st))(s) = t and (u � (st))(t) = s.
Therefore, the second and third sets are disjoint. Since t is the maximal vertex in
G − e and s is not adjacent to t in G − e, Lemma 3.5 implies that w(s) �= t for
w ∈ D(G − e). Consequently, the first set is disjoint from the other two. �

We now present an example of an ordered graph G and show how to compute
D(G). In practice, contracting two vertices s and t acts in the linear ordering as the
absorption of the larger vertex into the smaller vertex. It is convenient to name the
new vertex by the concatenation “st” of the names of the previous two. The position
of such a vertex in the linear order of the new graph is dictated by the first letter in
the concatenation. This convention is used throughout the following example.
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Example 3.7 Let G be the graph given below, with vertices ordered by their labels.

Throughout this example, the maximal edge used in the recursion will be drawn more
thickly than other edges. Let e be the maximal edge in the initial graph. The graphs
G − e, G/e, and G − [e] are given below, along with their accompanying labelings.

In the third of these graphs, G − [e], the only operation not leading to the empty set
is extraction, which gives the cycle (13). Thus, combining this with the original ex-
traction operation, this contributes the derangement (13)(24) to D(G). In the second
graph, G/e, extraction of the marked edge e′ yields a contribution of ∅. Thus we need
only consider deletion and simple contraction of this edge, as follows.

Iterations of this process show that these two graphs and labelings contribute the
derangements (1324) and (1243), respectively. Finally, the graph G − e yields the
derangements (14)(23) and (1423).

Therefore, in this example, D(G) = {(14)(23), (1423), (1324), (1243), (13)(24)}.

There is an explicit criterion, given in Theorem 3.11 below, for deciding whether
a given derangement w belongs to D(G) based on connectivity properties of the
ordered graph G. To describe this criterion we must introduce the following notions.

Definition 3.8 Let G be an ordered graph and let w be a permutation of its vertex
set. For a vertex t in G, set

ρw(t) = {

t,w(t), . . . ,wk−1(t)
}

,
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Table 2
t λw(t) ρw(t)

1 1 {1,2,3,4,7}
2 1 {2}
3 1 {3,4,7}
4 3 {4,7}
5 5 {5,6}
6 5 {6}
7 4 {7}

where k is the smallest positive integer such that wk(t) ≤ t , and set

λw(t) = w−�(t),

where � is the smallest positive integer such that w−�(t) ≤ t .

When w is written in standard cycle form and t is not the smallest element in its
cycle, λw(t) is the first element appearing to the left of t that is smaller than t , and
ρw(t) is the set of elements obtained by starting at t and moving to the right until
reaching an element less than t . When t is the smallest element in its cycle, ρw(t)

is the entire set of elements in the cycle of t , and λw(t) = t . This characterizes the
smallest element, as noted in the following lemma.

Lemma 3.9 Given a derangement w of an ordered set V , written in standard cycle
form, and an element t ∈ V , λw(t) ∈ ρw(t) if and only if t is the smallest element in
its cycle.

Example 3.10 Let w = (13472)(56). Then λw and ρw are given in Table 2.
We now state and prove the criterion for membership in the set D(G). Exam-

ple 3.12 depicts an instance of when this criterion is met and when it is not.

Theorem 3.11 Let G be a finite simple ordered graph and let w be a permutation of
its vertex set. Then w ∈ D(G) if and only if for every vertex t of G the vertex λw(t) is
adjacent to some vertex in ρw(t).

Proof For a finite simple ordered graph G and a permutation w of its vertex set, we
will say that w is G-valid at a vertex r of G if λw(r) is adjacent to some vertex in
ρw(r). We say that w is G-valid if it is G-valid at r for every vertex r of G. Let D′(G)

denote the set of G-valid permutations V (G). We will show that D′(·) satisfies the
same recursion and the same initial conditions as D(·), and hence D′(G) = D(G).

First, let us observe that the conclusion of Lemma 3.5 holds for D′(G): If w is a
permutation of V (G) with w(r) = r for some vertex r then λw(r) = r and ρw(r) =
{r} so w is not G-valid at r (since G is assumed to be simple). Thus any element of
D′(G) is a derangement. Furthermore, if t is the maximal vertex of G and w ∈ D′(G)

then λw(t) = w−1(t) and ρw(t) = {t}, so G-validity at t implies that t is adjacent to
w−1(t) in G.
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Now we establish the initial conditions. If G is an ordered graph with vertices s < t

and an edge between them, then one easily checks that D′(G) = {(st)} = D(G). If
the maximal vertex t of G is isolated then no derangement w of V (G) can be G-valid
at t since always ρw(t) = {t}. Hence D′(G) = ∅ = D(G).

For the recursive step, let G be an ordered graph with at least two edges such that
the maximal vertex t is not isolated and let e = {s, t} be the maximal edge in G. We
can write D′(G) as a disjoint union

D′(G) = A(G) � B(G) � C(G),

where

A(G) = {

w ∈ D′(G) : w(s) �= t
}

,

B(G) = {

w ∈ D′(G) : w(s) = t,w(t) �= s
}

, and

C(G) = {

w ∈ D′(G) : w(s) = t,w(t) = s
}

.

The proof is complete once we establish the following equalities:

(i) A(G) = D′(G − e),

(ii) B(G) = {

ust : u ∈ D′(G/e)
}

, and

(iii) C(G) = {

v � (st) : v ∈ D′(G − [e])}.
We start by proving (i). Any (G − e)-valid derangement of V (G − e) = V (G) is

also G-valid, so D′(G − e) ⊆ D′(G). Furthermore, for w ∈ D′(G − e) we know that
t is adjacent to w−1(t) in G − e, so s �= w−1(t). Combining these facts, we have
D′(G − e) ⊆ A(G).

Now suppose w ∈ A(G). If w /∈ D′(G − e) then there is some vertex r at which
w is not (G − e)-valid. By assumption w is G-valid at r , so we must have λw(r) = s

and t ∈ ρw(r). In particular, s is in the same w-cycle as t and appears left of t when w

is written in standard cycle form. However, we know that t is adjacent to w−1(t), and
maximality of e = {s, t} and the assumption w(s) �= t then imply w−1(t) < s ≤ r .
Since w−1(t) appears between s and t when w is written in standard cycle form, this
makes the conditions λw(r) = s and t ∈ ρw(r) incompatible, leading to a contradic-
tion. We conclude that w ∈ D′(G), and since this holds for all w ∈ A(G) we have
A(G) ⊆ D′(G − e), completing the proof of (i).

To prove (iii), we first observe that any derangement w of V (G) such that w(s) = t

and w(t) = s can be written as w = v � (st) where v is a derangement of V (G−[e]).
Clearly, w ∈ C(G) if and only if v ∈ D′(G − [e]).

It remains to prove (ii). Any derangement w of V (G) such that w(s) = t and
w(t) �= s can be written as w = ust where u is a derangement of V (G/e). We show
that w is G-valid if and only if u is G/e-valid. First observe that w is always G-
valid at t since λw(t) = s and ρw(t) = {t}. Now let x denote the vertex in G/e ob-
tained upon identifying s with t . Since the ordering of G/e is obtained by letting x

take the place of s in the ordering of G we have an injective, order-preserving map
i : V (G/e) → V (G) that sends x to s and any other vertex to itself. For each r in
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V (G/e), we will show that G/e-validity of u at r implies G-validity of w at i(r)

and that G-validity of w (at every vertex) implies G/e-validity of u at r . Since i has
image V (G) \ {t}, and we already know that w is G-valid at t , it follows that w is
G-valid if and only if u is G/e-valid, completing the proof. To prove the claim, one
checks that for r ∈ V (G/e) one has

λw

(

i(r)
) = i

(

λu(r)
)

and

ρw

(

i(r)
) =

{

ρu(r), if x /∈ ρu(r);
(ρu(r) \ {x}) ∪ {s, t}, if x ∈ ρu(r).

We consider four cases:
If λu(r) �= x and x /∈ ρu(r) then λw(i(r)) = λu(r) and ρw(i(r)) = ρu(r), so the

result is obvious.
If λu(r) �= x and x ∈ ρu(r) then λw(i(r)) = λu(r) and ρw(i(r)) = (ρu(r) \ {x}) ∪

{s, t}. The result now follows from the fact that λu(r) is adjacent to x in G/e if and
only if it is adjacent to either s or t in G.

If λu(r) = x and x /∈ ρu(r) then λw(i(r)) = s and ρw(i(r)) = ρu(r). Furthermore,
since λu(r) /∈ ρu(r) we know that r is not minimal in its u-cycle by Lemma 3.9. It
follows that i(r) is not minimal in its w-cycle; in particular i(r) > λw(i(r)) = s. For
any q ∈ ρw(i(r)), we have q ≥ i(r) > s so maximality of e = {s, t} implies that q is
not adjacent to t . Thus we can deduce that q is adjacent to x in G/e if and only if q

is adjacent to s in G. It follows that u is G/e-valid at r if and only if w is G-valid at
i(r).

If λu(r) = x and x ∈ ρu(r) then r = x and x is minimal in its u-cycle by
Lemma 3.9. It follows that i(r) = s is minimal in its w-cycle. In this case, w is
automatically G-valid at i(r) because s = λw(i(r)) is adjacent to t ∈ ρw(i(r)). On
the other hand, if we assume that w is G-valid then G-validity at w(t) implies that
s = λw(w(t)) is adjacent to a vertex of ρw(w(t)) in G, and hence r = x is adjacent
to the same vertex (which also belongs to ρu(r) since this set is the entire u-cycle of
r), proving G/e-validity of u at x. �

Example 3.12 Let G be the 7-vertex graph depicted below.

It is easy to check that (1234)(567) is an element of D(G). On the other hand,
the derangement (1234567) is excluded from D(G) because λ(1234567)(5) = 4 and
ρ(1234567)(5) = {5,6,7}, but 4 is not adjacent to 5, 6, or 7 in the graph. As another
example, the derangement (13472)(56) of Example 3.10 is excluded from D(G) be-
cause λ(13472)(56)(3) = 1 and ρ(13472)(56)(3) = {3,4,7}, and 1 is not adjacent to 3, 4,
or 7.
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Theorem 3.11 allows us to describe the derangements induced by the disjoint sum
of two ordered graphs in terms of the derangements induced by the parts. In the
statement, we use the notation w1 �w2 to denote the permutation of V1 �V2 obtained
from a permutation w1 of a set V1 and a permutation w2 of a set V2.

Corollary 3.13 If G1 and G2 are disjoint finite ordered simple graphs then

D(G1 � G2) = {

w1 � w2 : w1 ∈ D(G1),w2 ∈ D(G2)
}

.

The set D(G) invites a variety of combinatorial questions. For example, we can
look at those elements in D(G) whose standard cycle form consists of exactly one
cycle. Let us call this set D1(G) ⊆ D(G). Note that when extraction is used in the re-
cursive construction of elements of D(G), additional cycles are created. Thus D1(G)

satisfies the recursion

D1(G) = D1(G − e) ∪ {

wst : w ∈ D1(G/e)
}

. (3)

Some enumerative results about D1(G) are stated in the following proposition.

Proposition 3.14 Let G be a finite simple ordered graph.

(a) |D1(G)| = 0 if and only if G is not connected.
(b) |D1(G)| = 1 if and only if G is a tree.
(c) If G has exactly one cycle, and that cycle contains m vertices, then |D1(G)| =

m − 1.

Proof Statements (a) and (b) follow easily from (3). Statement (c) can be proved
by induction on the total number of edges in G, using the recursion of (3) and the
previous statements. �

It is interesting to note that the results of Proposition 3.14 are independent of the
ordering of the vertex set of G. More generally, one can let Dk(G) ⊆ D(G) be the
subset of derangements with exactly k disjoint cycles. Examples suggest that the
sizes of the sets Dk(G) are independent of the ordering of the vertex set of G. In later
sections, we will show that the elements in D(G) can be treated as combinatorial rep-
resentatives for the spheres appearing in the wedge sum description of the homotopy
type of �(G) offered by Theorem 2.2. This raises the question of the significance of
the number of cycles in w ∈ D(G) with respect to the boolean complex �(G).

4 From derangements to homology

We now describe a map from the set of derangements of the vertex set of a finite
ordered graph G to the top-dimensional homology of the boolean complex of G. Just
as in Sect. 3, we fix an ordering ≤ on V (G), and the output of the map defined here
depends on that ordering. As before, we suppress the “≤” in our notation. Formally,
we are therefore defining a map

φG : DV (G) −→ H|G|−1
(

�(G)
)

.
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When no confusion will arise, this map may be denoted simply as φ.
We initially do this for complete graphs, defining a map φKV

: DV →
C|V |−1(�(KV )), where KV is the complete graph with vertex set V . We then show
in Lemma 4.3 that φKV

actually takes values in H|V |−1(�(KV )) ⊆ C|V |−1(�(KV )).
Finally, the map φG is obtained by composing φKV (G)

with the collapsing map πG∗,
as described in Sect. 2.5.

Definition 4.1 Let G be a finite simple graph. For a ∈ Ck(�(G)) and b ∈ C�(�(G)),
set

(a � b) := ab + ba ∈ Ck+�+1
(

�(G)
)

,

where ab and ba are the string concatenation products (see Sect. 2.4).

Consider a linearly ordered set V . The following algorithm describes a map
φ = φKV

: DV → C|V |−1(�(KV )). The input is a derangement w ∈ DV , written in
standard cycle form, and the final output of this procedure is φ(w).

Step 1. Between each consecutive pair of letters in each cycle of w, insert the sym-
bol 
.

Step 2. If there are no 
 symbols in the string, then HALT and OUTPUT the string.
Otherwise, determine which symbol 
 has the largest right-hand neighbor.

Step 3. Suppose that the symbol 
 located in Step 2 is between quantities Q and R;
that is, it appears as Q 
 R. Then replace Q 
 R by (Q � R).

Step 4 GOTO Step 2.

Example 4.2 Let w = (134)(26)(587). Applying the above procedure to w gives the
following sequence of steps:

(1 
 3 
 4)(2 
 6)(5 
 8 
 7),

(1 
 3 
 4)(2 
 6)
(

(5 � 8) 
 7
)

,

(1 
 3 
 4)(2 
 6)
(

(5 � 8) � 7
)

,

(1 
 3 
 4)(2 � 6)
(

(5 � 8) � 7
)

,
(

1 
 (3 � 4)
)

(2 � 6)
(

(5 � 8) � 7
)

,
(

1 
 (3 � 4)
)

(2 � 6)
(

(5 � 8) � 7
)

.

Thus

φ
(

(134)(26)(587)
) = (

1 � (3 � 4)
)

(2 � 6)
(

(5 � 8) � 7
)

= (

1 � (34 + 43)
)

(26 + 62)
(

(58 + 85) � 7
)

= (

1(34 + 43) + (34 + 43)1
)

(26 + 62)

× (

(58 + 85)7 + 7(58 + 85)
)

= (134 + 143 + 341 + 431)(26 + 62)(587 + 857 + 758 + 785)
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= 13426587 + 13426857 + 13426758 + 13426785

+ 13462587 + 13462857 + 13462758 + 13462785

+ 14326587 + 14326857 + 14326758 + 14326785

+ 14362587 + 14362857 + 14362758 + 14362785

+ 34126587 + 34126857 + 34126758 + 34126785

+ 34162587 + 34162857 + 34162758 + 34162785

+ 43126587 + 43126857 + 43126758 + 43126785

+ 43162587 + 43162857 + 43162758 + 43162785.

The following result allows us to regard φ as a map D(KV ) → H|V |−1(�(K)),
and we do so henceforth without further mention.

Lemma 4.3 Let V be a finite ordered set. If w is a derangement of V , then φ(KV )(w)

is a homological cycle.

Proof We must show that ∂(φ(w)) equals 0. By Lemma 2.5, this is equivalent to
showing that for each v ∈ V we have ∂v(φ(w)) = 0. Because w has no fixed points,
the letter v is in the same cycle as at least one other letter in the standard cycle form
of w. Thus φ(w) contains a product (v � x) = (x � v) for some x not containing the
letter v. Observe that

∂v

(

(v � x)
) = ∂v(vx + xv) = x + x = 2x = 0.

This, combined with the fact that if ∂v(x) = 0 for some x then ∂v((x � y)) = 0 for
all y, implies that ∂v(φ(w)) = 0 for all v ∈ V . Consequently, ∂(φ(w)) = 0, so φ(w)

is a homological cycle. �

Definition 4.4 For a finite simple ordered graph G, let φG be the composite

φG : D(G) ↪→ D
(

V (G)
) φ(KV (G))−−−−−→ H|G|−1

(

�(KV (G))
) πG∗−−→ H|G|−1

(

�(G)
)

.

5 The derangement basis

Having set up the maps from graphs to derangements and from derangements to
homology in the previous sections, we are now prepared to prove the main result of
this paper. This states that given a finite simple ordered graph G, the homological
cycles {φ(w) : w ∈ D(G)} form a basis for the homology of �(G). Looking ahead to
this result, we make the following definition.

Definition 5.1 Given a finite simple ordered graph G, the set {φ(w) : w ∈ D(G)} is
the derangement basis associated to G.
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The definition is justified by the following result.

Theorem 5.2 Given a finite simple ordered graph G, the derangement basis associ-
ated to G is a basis for H|G|−1(�(G)).

Proof Lemma 4.3 shows that the derangement basis consists of homological cy-
cles, and Proposition 3.6 shows that |D(G)| = β(G), which is the F2-rank of
H|G|−1(�(G)). Thus it remains to show that the elements of the derangement ba-
sis are linearly independent. We prove this by induction, assuming that the result
holds for graphs with fewer edges. The base case is trivial to show.

Equation (2) and the fact that φ is injective allow us to rewrite the derangement
basis associated to G as a disjoint union
{

φ(w) : w ∈ D(G−e)
}∪{

φ(wst ) : w ∈ D(G/e)
}∪{

φ
(

w� (st)
) : w ∈ D

(

G−[e])}.
(4)

The graphs G − e, G/e, and G − [e] all have fewer edges than G, so by induction
their associated derangement bases are linearly independent sets. Using this fact, it
follows that each of the three sets in the union (4) is a linearly independent set.

Suppose that
∑

u∈D(Ge)

εuφ(u) +
∑

v∈D(G/e)

εvφ(vst ) +
∑

w∈D(G−[e])
εwφ

(

w � (st)
) = 0. (5)

If we apply the collapsing map π : H∗(�(G)) → H∗(�(G − e)) of Sect. 2.5
to (5), then elements arising from D(G/e) and D(G − [e]) are mapped to 0, since
they can be written as a sum of terms of products involving st + ts. This leaves
∑

u∈D(Ge)
εuφ(u) = 0. Elements of {φ(w) : w ∈ D(G− e)} are linearly independent,

so this implies that εu = 0 for all u ∈ D(Ge).
We must now consider a linear combination

∑

v∈D(G/e)

εvφ(vst ) +
∑

w∈D(G−[e])
εwφ

(

w � (st)
) = 0.

If x is the vertex in G/e obtained by contracting the edge e, then φ(vst ) is obtained
from φ(v) by replacing x by st + ts. Write φ(vst ) = φ(v)[st] + φ(v)[ts], where the
former is obtained by replacing x in φ(v) by st and the latter is obtained by replacing
x in φ(v) by ts. Thus the above equation can be rewritten as

∑

v∈D(G/e)

εv

(

φ(v)[st] + φ(v)[ts]
) +

∑

w∈D(G−[e])
εwφ(w)(st + ts) = 0.

If we look at those terms involving st , and analogously at those involving ts, we see
that

∑

v∈D(G/e)

εvφ(v)[st] +
∑

w∈D(G−[e])
εwφ(w)st = 0. (6)

Notice that we can identify the sub-chain complex C∗(�(G))s̃,t̃ of C∗(�(G)) gener-
ated by strings that do not involve s or t with the sub-chain complex C∗(�(G/e))x̃
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of C∗(�(G/e)) generated by strings that do not involve x. Applying the differential
maps ∂s and ∂t to (6), we get an equation in C∗(�(G))s̃,t̃ which is equivalent to the
equation

∂x

(
∑

v∈D(G/e)

εvφ(v)

)

+
∑

w∈D(G−[e])
εwφ(w) = 0, (7)

in C∗(�(G/e))x̃ , since deleting both s and t from a term in φ(vst ), or in φ(v)[st]), is
equivalent to deleting x from that term in φ(v).

Recall that ∂xφ(v) = 0 for all v ∈ D(G/e). Therefore, (7) reduces to
∑

w∈D(G−[e])
εwφ(w) = 0.

Elements of {φ(x) : w ∈ D(G − [e])} are linearly independent, so εw = 0 for all
w ∈ D(G − [e]). Finally, (5) now simplifies to

∑

v∈D(G/e)

εvφ(vst ) = 0,

from which it follows that εv = 0 for all v ∈ D(G/e).
Thus all coefficients in (5) must be 0, and the derangement basis associated to G

is linearly independent. �

6 Examples

We now consider several families G of graphs, and show that with certain well-chosen
orderings of the vertices, the sets D(G) for G ∈ G have particularly nice proper-
ties. The families considered here are complete graphs, Ferrers graphs for staircase
shapes, and unlabeled graphs for the classical and affine Coxeter groups. The results
regarding the sets D(G) support previously obtained results in [8] and [3] for boolean
numbers.

6.1 Complete graphs

Let Kn denote the complete graph on n vertices. It was shown in [8], as well as in [9]
in terms of injective words, that the boolean number of the complete graph is equal
to the derangement number. That is,

β(Kn) = dn. (8)

This equality was proved independently in both [9] and [8] by demonstrating that
the sequences {β(Kn)} and {dn} satisfy the same recurrence relation and have the
same initial values. However, a combinatorial understanding of the identity was lack-
ing. We now justify (8) combinatorially, thus giving a satisfying understanding of
the relationship between the spheres in �(Kn) and derangements, by explaining the
connection between derangements of {1, . . . , n} and generators of the homology of
�(Kn).
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Table 3

n D(Kn) Derangement basis of Kn

1 ∅ ∅
2 (12) (1 � 2) = 12 + 21

3 (123) (1 � (2 � 3)) = 123 + 132 + 231 + 321

(132) ((1 � 3) � 2) = 132 + 312 + 213 + 231

4 (1234) (1 � (2 � (3 � 4)))

= 1234 + 1243 + 1342 + 1432 + 2341 + 2431 + 3421 + 4321

(1243) (1 � ((2 � 4) � 3))

= 1243 + 1423 + 1324 + 1342 + 2431 + 4231 + 3241 + 3421

(1324) ((1 � 3) � (2 � 4))

= 1324 + 3124 + 1342 + 3142 + 2413 + 2431 + 4213 + 4231

(1342) ((1 � (3 � 4)) � 2)

= 1342 + 1432 + 3412 + 4312 + 2134 + 2143 + 2341 + 2431

(1423) ((1 � 4) � (2 � 3))

= 1423 + 4123 + 1432 + 4132 + 2314 + 2341 + 3214 + 3241

(1432) (((1 � 4) � 3) � 2)

= 1432 + 4132 + 3142 + 3412 + 2143 + 2413 + 2314 + 2341

(12)(34) (1 � 2)(3 � 4) = 1234 + 2134 + 1243 + 2143

(13)(24) (1 � 3)(2 � 4) = 1324 + 3124 + 1342 + 3142

(14)(23) (1 � 4)(2 � 3) = 1423 + 4123 + 1432 + 4132

Corollary 6.1 For any ordering of the vertices of Kn, we have D(Kn) = DV (Kn).

Proof The criterion provided in Theorem 3.11, together with the fact that all possible
edges exist in the complete graph, indicate that every possible derangement can be
obtained. Thus we see bijectively that D(Kn) = DV (Kn). �

Note that this could also be shown by a simple counting argument, as fol-
lows. Proposition 3.6 shows that D(Kn) contains β(Kn) distinct derangements, and
β(Kn) = dn by [9] and [8]. Since D(G) ⊆ DV (G) for all graphs G, and |DV (G)| =
d|V (G)|, we see that, in fact, D(Kn) = DV (Kn).

Example 6.2 Applying Theorem 5.2 to the complete graph with vertices {1,2, . . . , n}
gives the homology generators described in Table 3, along with the corresponding
derangements.

6.2 Ferrers graphs for staircase shapes

We now use the main result of this paper to give an explanation of an enumerative
result obtained in [3] for certain Ferrers graphs.
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Definition 6.3 For r ≥ 1, the staircase shape of height r is the Ferrers shape σr =
(r, r − 1, . . . ,2,1). The Ferrers graph Fr of the staircase shape σr is the bipartite
graph on 2r vertices where r vertices describe the rows of σr , r vertices describe the
columns of σr , and two vertices are adjacent if there is a square in the corresponding
row and column of the shape σr .

It was shown in [3] that

β(Fr) = gr

for all r ≥ 1, where {gr} are the median Genocchi numbers, also called the Genocchi
numbers of the second kind. This is sequence A005439 of [10].

Definition 6.4 A permutation w ∈ S2r has alternating excedances if w(i) > i when-
ever i is odd and w(i) < i whenever i is even. Such a permutation is always a
derangement because w(i) �= i for all i. When written in standard cycle form, this
means that each odd number is followed by a larger number, and each even number
is followed by a smaller number. The set of permutations in S2r with alternating
excedances will be denoted AE2r .

The median Genocchi number gr is equal to the number of permutations w ∈ S2r

such that w has alternating excedances (see [4]); that is,

gr = |AE2r |.

Example 6.5 The second median Genocchi number is g2 = 2, and the permutations
in S4 with alternating excedances are (12)(34) and (1342).

We now explain why β(Fr) = gr by demonstrating an ordering of the vertices of
Fr for which D(Fr) is equal to the set AE2r . The vertices of Fr arise from the rows
and columns of the staircase shape σr , so we can define an ordering on the vertices
of Fr in terms of the staircase shape.

Definition 6.6 Given a staircase shape σr , label the rows 1,3,5, . . . ,2r − 1 so that
the labels increase as the lengths of the rows decrease. In contrast, label the columns
2,4,6, . . . ,2r so that the labels decrease as the lengths of the columns decrease. This
gives a corresponding ordering on the vertices of Fr .

The labeling on the shape σr is depicted in Fig. 1. Therefore, the bipartite graph
Fr consists of one set of vertices {1,3,5, . . . ,2r − 1} and a second set of vertices
{2,4,6, . . . ,2r}. The edges in this graph are exactly those of the form {2i + 1,2j}
where i < j . That is, each odd vertex is connected to every even vertex having a
larger label. Equivalently, each even vertex is connected to every odd vertex having a
smaller label. The correspondingly labeled Ferrers graph for the case r = 4 is given
in Fig. 2.

Corollary 6.7 For all r ≥ 1, D(Fr) = AE2r .
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Fig. 1 Linear ordering of the
rows and columns in the
staircase shape σr

Fig. 2 Labeling of the Ferrers
graph F4

Proof As noted earlier, elements of AE2r are derangements whose cycle notations are
such that every odd number is followed by something larger and every even number
is followed by something smaller. It is this description which motivates the linear
ordering of the vertices of Fr , since, as can be seen in the example of Fig. 2, each
odd vertex is adjacent to all larger even vertices, and each even vertex is adjacent to
all smaller odd vertices.

Suppose that w ∈ AE2r . For any letter t which is not minimal in its cycle in w,
there are two key facts to note, both of which follow from the above characterization
of AE2r :

1. λw(t) is odd and necessarily smaller than t , and
2. ρw(t) contains an even number, which is necessarily at least as large as t .

In Fr , every odd vertex is adjacent to all larger even vertices. Therefore, λw(t) is ad-
jacent to at least one element of ρw(t) in the graph Fr . Hence, Theorem 3.11 implies
that such a w is an element of D(Fr), and thus AE2r ⊆ D(Fr).

Now consider w ∈ D(Fr)\AE2r . There are two possibilities for the standard cycle
form of w: either an odd number is followed by something smaller, or an even number
is followed by something larger. Suppose that the first case occurs, and that the odd
number is t . By definition, we have λw(t) ≤ t . Moreover, since t is followed by
a smaller number, we know that t is not the minimal letter in its cycle, so in fact
λw(t) < t . Theorem 3.11 says that λw(t) must be adjacent to an element of ρw(t) =
{t} in Fr . However, odd vertices are not adjacent to smaller vertices in Fr , so this
is a contradiction. Now suppose that there is an even number t followed by a larger
number s in the cycle notation of w. Every element of ρw(s) is greater than or equal
to s, and so strictly greater than t . Theorem 3.11 indicates that λw(s) = t must be
adjacent to some element of ρw(s), but even vertices are not adjacent to larger vertices
in Fr , so this is a contradiction as well. Therefore, w �∈ D(Fr), and so D(Fr) ⊆
AE2r . �
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6.3 Coxeter graphs

In [8], the boolean numbers were given for the unlabeled Coxeter graphs of the classi-
cal finite and affine Coxeter groups. We now describe linear orderings of the vertices
in each graph and the corresponding derangements arising from these orderings. The
most interesting cases are the non-exceptional ones, since there we see patterns in the
derangements that explain the previous calculations of β .

Definition 6.8 Given a string S = s1s2 · · · sn of distinct letters, a valid parsing of S

is a way to partition the letters of S into parts of length at least 2. We will view the
parts as cycles and the product of these cycles as a derangement.

Example 6.9 There is one valid parsing of s1s2: (s1s2). Similarly, there is only one
valid parsing of s1s2s3: (s1s2s3). There are two valid parsings of s1s2s3s4: (s1s2s3s4)

and (s1s2)(s3s4).

If no other conditions are imposed, then it is straightforward to show that the
number of valid parsings of s1s2 · · · sn is fn, the (n − 1)st Fibonacci number.

Definition 6.10 Given a string S, let VP(S) denote the set of all valid parsings of S.

Many of the derangements described in this section will be described in terms of
valid parsings. The proofs are fairly straightforward, and details are left to the reader.
We will let the standard Coxeter group names indicate the corresponding unlabeled
Coxeter graphs. For example, the graph An consists of an n-vertex path.

Definition 6.11 For a path of n vertices, the path ordering is the labeling in which
the vertex labels increase from one end to the other.

Corollary 6.12

1. Given the path ordering, D(An) = VP(12 · · ·n).

2. For the graph Dn, give the path ordering to one path of length n − 1, so that the
degree-three vertex is labeled 2; label the remaining leaf n. Then

D(Dn) = {

p ∈ VP
(

12n3 · · · (n − 2)(n − 1)
) : 2 and n are in the same cycle of p

}

.

3. For the graph En, give the path ordering to the path of length n − 1 so that the
degree-three vertex is labeled 3; label the remaining leaf n. Then

D(En) = {

p ∈ VP
(

123n45 · · · (n − 1)
) : 3 and n are in the same cycle of p

}

.

The remaining finite Coxeter groups’ graphs are all special cases of An, and their
corresponding derangements can be analogously defined using the path ordering.

Results for the affine Coxeter groups are similar, with the only substantially dif-
ferent case being the group Ãn, which is a cycle on n + 1 vertices.
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Corollary 6.13 Consider the ordering of V (Ãn) where the label i is between the
labels i ± 1, modulo n. Then

D
(

Ãn

) = VP(12 · · ·n)

∪
n

⋃

k=3

{

p ∈ VP
(

1k(k + 1) · · ·n2 · · · (k − 1)
) : {1, k, . . . , n}

is in the same cycle of p
}

.

Note that the statements in Corollaries 6.12 and 6.13 are such that the valid pars-
ings satisfying the given conditions are always written in standard cycle form.

Example 6.14 With the ordering given above,

D
(

Ã5
) ={

(12345), (123)(45), (12)(345), (13452),

(145)(23), (14523), (15)(234), (152)(34), (15234)
}

.
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