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Abstract We give a new bijective interpretation of the Cauchy identity for Schur
operators which is a commutation relation between two formal power series with
operator coefficients. We introduce a plactic algebra associated with the Kashiwara’s
extremal weight crystals over the Kac–Moody algebra of type A+∞, and construct
a Knuth type correspondence preserving the plactic relations. This bijection yields
the Cauchy identity for Schur operators as a homomorphic image of its associated
identity for plactic characters of extremal weight crystals, and also recovers Sagan
and Stanley’s correspondence for skew tableaux as its restriction.
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1 Introduction

Let Λ = Λx be the algebra of symmetric functions in a set of formal commuting
variables x = {x1, x2, . . .} over Q. We denote by P the set of partitions and let sλ(x)

be the Schur function in x corresponding to λ ∈ P . Let

P (x) =
∑

λ∈P

sλsλ(x), Q(x) =
∑

λ∈P

s⊥
λ sλ(x) ∈ EndQ(Λ)[[x]],

where sλ and s⊥
λ are linear operators on Λ induced from the left multiplication by

sλ(x) and its adjoint with respect to the Hall inner product on Λ, respectively. One
may regard sλ and s⊥

λ as operators on QP = ⊕
λ∈P Qλ, where λ is identified with
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sλ(x). Moreover sλ and s⊥
λ can be given as Schur functions in certain locally non-

commutative operators on QP called Schur operators by Fomin, while P (x) and
Q(x) can be written as Cauchy products in Schur operators and x [3, 4].

Let y = {y1, y2, . . .} be another set of formal commuting variables. It is well
known that the following commutation relation holds:

Q(y)P (x) = 1∏
i,j (1 − xiyj )

P (x)Q(y) (1.1)

called generalized Cauchy identity or Cauchy identity for Schur operators. Consider-
ing both sides as operators with coefficients in Λx ⊗Λy and then equating each entry
of their matrix forms, we obtain a Cauchy identity for skew Schur functions [16],

∑

λ

sλ/α(x)sλ/β(y) = 1∏
i,j (1 − xiyj )

∑

η

sβ/η(x)sα/η(y),

where α,β are given partitions. A bijective interpretation of the Cauchy identity for
skew Schur functions was given by Sagan and Stanley [17], and it was extended to a
bijection in a more general framework by Fomin [3] including various analogues of
Knuth correspondence.

Recently, a new representation theoretic interpretation of the Cauchy identity for
Schur operators was given by the author [11] using the notion of Kashiwara’s ex-
tremal weight crystals [8] over the quantized enveloping algebra associated with the
Kac–Moody algebra of type A+∞, say gl>0. It is proved that a Schur operator can
be realized as a functor of tensoring by an extremal weight crystal element and (1.1)
can be understood as a non-commutative character identity corresponding to the de-
composition of the crystal graph of the Fock space with infinite positive level, which
is an infinite analogue of the level n fermionic Fock space decomposition due to
Frenkel [5].

Motivated by a categorification of Schur operators in [11], we give a new com-
binatorial way to explain both the Cauchy identities for Schur operators and skew
Schur functions in terms of a single bijection. More precisely, the main result in this
paper is to construct a Knuth type correspondence, which gives a bijective interpreta-
tion of the identity (1.1) or its dual form, as the usual Knuth correspondence does for
the Cauchy product, and also recovers the Sagan and Stanley’s correspondence as its
restriction.

Our approach is to define a t-analogue of the plactic algebra U(t) for gl>0 gener-
ated by ui and ui∨ for i ∈ N with t an indeterminate, where the subalgebra generated
by ui (resp. ui∨ ) (i ∈ N) is isomorphic to the usual plactic algebra introduced by
Lascoux and Schützenberger [14]. We show that U(1) is isomorphic to the plactic
algebra defined by using the notion of crystal equivalence (cf. [15]). Note that each
monomial in U(1) corresponds in general to an element of an extremal weight crys-
tal, which may not be either highest weight or lowest weight crystal.

Now, let MA,B be the set of A × B matrices A = (aij ) with entries in Z≥0 such
that

∑
i∈A

∑
j∈B aij < ∞ and aij ≤ 1 for |i| 	= |j |, where A and B are arbitrary Z2-

graded sets and | · | denotes the degree of an element in A or B. We assume that all
the elements in N and N∨ = {i∨|i ∈ N} are of degree 0. By using the usual Knuth
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map and non-commutative Littlewood–Richardson rule of extremal weight crystals
for gl>0 [11, 12], we construct an explicit bijection (Theorem 5.1);

MA,N × MB,N∨ −→ MA,B × MB,N∨ × MA,N,

which preserves the weights with respect to A and B, and the plactic relations of U(t)

for the column words with entries in N ∪ N∨ on both sides. As a corollary, we ob-
tain a character identity in locally non-commuting variables u = {ui, ui∨|i ∈ N} and
commuting variables xA = {xa|a ∈ A}, xB = {xb|b ∈ B} (Corollary 5.2). In particu-
lar, when A = B = N, this identity recovers (1.1) under a homomorphism sending ui

and ui∨ to Schur operators on QP and specializing t = 1. Moreover, the Knuth cor-
respondence for skew tableaux by Sagan and Stanley can be recovered by restricting
the above bijection to the pairs of matrices on the left-hand side whose column words
are Littlewood–Richardson words of shape (α,β) with α,β ∈ P (see Sect. 5.3 for a
definition).

The paper is organized as follows. In Sect. 2, we briefly recall necessary back-
ground for semistandard tableaux and the Knuth correspondence. In Sect. 3, we recall
the notion of rational semistandard tableaux for gl>0 and their insertion algorithm.
In Sect. 4, we introduce a plactic algebra for gl>0 associated with rational semistan-
dard tableaux. Finally, in Sect. 5, we construct a Knuth type correspondence and its
associated non-commutative character identity.

2 Preliminaries

2.1 Semistandard tableaux

Throughout this paper, we assume that A (or B) is a linearly ordered Z2-graded set,
that is, A = A0 � A1, which is at most countable. We usually denote by < a linear
ordering on a given linearly ordered Z2-graded set. For a ∈ Aε (ε ∈ Z2), we put
|a| = ε. By convention, we let N = {1 < 2 < · · · }, and [n] = {1 < · · · < n} for n ≥ 1,
where all the elements are of degree 0.

Let P denote the set of partitions. We identify a partition λ = (λi)i≥1 with a
Young diagram or a subset {(i, j)|1 ≤ j ≤ λi} of N × N following [16]. Let �(λ) =
|{i|λi 	= 0}|. We denote by λ′ = (λ′

i )i≥1 the conjugate partition of λ whose Young
diagram is {(i, j)|(j, i) ∈ λ}. For μ ∈ P with λ ⊃ μ, λ/μ denotes the skew Young
diagram.

For a skew Young diagram λ/μ, a tableau T obtained by filling λ/μ with entries
in A is called A-semistandard if (1) the entries in each row (resp. column) are weakly
increasing from left to right (resp. from top to bottom), (2) the entries in A0 (resp.
A1) are strictly increasing in each column (resp. row). We say that λ/μ is the shape
of T , and write sh(T ) = λ/μ. We denote by T (i, j) the entry of T at (i, j) ∈ λ/μ.

We denote by SSTA(λ/μ) the set of all A-semistandard tableaux of shape λ/μ.
We set PA = {λ ∈ P |SSTA(λ) 	= ∅}. For example, PA = P when A is an infinite set,
and P[n] = {λ|�(λ) ≤ n}.

Let WA be the set of finite words with letters in A. For T ∈ SSTA(λ/μ), we denote
by w(T ) = wcol(T ) ∈ WA the word obtained by reading the entries of T column by
column from right to left, and from top to bottom in each column.
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Let PA = ⊕
a∈A Zεa be the free abelian group with a basis {εa|a ∈ A} and let

xA = {xa|a ∈ A} be a set of formal commuting variables. For λ = ∑
a∈A λaεa ∈ PA,

let xλ
A

= ∏
a∈A x

λa
a . For w = w1 . . .wr ∈ WA, we define wtA(w) = ∑

1≤i≤r εwi
∈

PA. For T ∈ SSTA(λ/μ), we define wtA(T ) = ∑
(i,j)∈λ/μ εT (i,j). Let sλ/μ(xA) =

∑
T ∈SSTA(λ/μ) xwtA(T )

A
, which is the character of SSTA(λ/μ). Note that sλ/μ(xA) is a

usual (skew) Schur function when A = N.
We will also use the following operations on tableaux.

(1) dual: Let A∨ = {a∨|a ∈ A} be the linearly ordered Z2-graded set with |a∨| = |a|
and a∨

1 < a∨
2 for a1 > a2. For T ∈ SSTA(λ/μ), we define T ∨ to be the tableau

obtained by applying 180◦-rotation to T and replacing each entry a in T with
a∨. Then T ∨ ∈ SSTA∨((λ/μ)∨), where (λ/μ)∨ denotes the shape of T ∨. We use
the convention that (a∨)∨ = a for a ∈ A and hence (T ∨)∨ = T .

(2) gluing: Let A ∗ B be the Z2-graded set A � B with the extended linear ordering
given by a < b for a ∈ A and b ∈ B. For S ∈ SSTA(μ) and T ∈ SSTB(λ/μ), we
define S ∗ T ∈ SSTA∗B(λ) by S ∗ T (i, j) = S(i, j) for (i, j) ∈ μ and T (i, j) for
(i, j) ∈ λ/μ.

2.2 Littlewood–Richardson rule

For a ∈ A and T ∈ SSTA(λ) with λ ∈ PA, a → T (resp. T ← a) denotes the
tableau obtained by the Schensted column (resp. row) insertion (see for example,
[6, Appendix A.2] and [2] for its super-analogue). For w = w1 . . .wr ∈ WA, we let
(w → T ) = (wr → (· · · (w1 → T ) · · · )). For S ∈ SSTA(μ) and T ∈ SSTA(ν) with
μ,ν ∈ PA, we define (T → S) = (w(T ) → S).

For λ,μ, ν ∈ P with |λ| = |μ| + |ν|, let LRλ
μν be the set of tableaux U in

SSTN(λ/μ) such that

(1) wtN(U) = ∑
i≥1 νiεi ,

(2) for 1 ≤ k ≤ |ν|, the number of occurrences of each i ≥ 1 in w1 . . .wk is no less
than that of i + 1 in w1 . . .wk , where w(U) = w1 . . .w|ν|.

We call LRλ
μν the set of Littlewood–Richardson tableaux of shape λ/μ with content ν

and put cλ
μν = |LRλ

μν | [16]. Let us introduce a variation of LRλ
μν , which is necessary

for our later arguments. We define LR
λ

μν to be the set of tableaux U in SST−N(λ/μ)

such that

(1) wt−N(U) = ∑
i≥1 νiε−i ,

(2) for 1 ≤ k ≤ |ν|, the number of occurrences of each −i ≤ −1 in wk . . .w|ν| is no
less than that of −(i + 1) in wk . . .w|ν|, where w(U) = w1 . . .w|ν|.

Note that for U ∈ SSTN(λ/μ), U ∈ LRλ
μν if and only if U is Knuth equivalent

to Hν ∈ SSTN(ν), where Hν(i, j) = i for (i, j) ∈ ν (cf. [6]). Similarly, we have for

U ∈ SST−N(λ/μ), U ∈ LR
λ

μν if and only if U is Knuth equivalent to Lν ∈ SST−N(ν),
where Lν(i, j) = −ν′

j + i − 1 for (i, j) ∈ ν.
There is also a one-to-one correspondence from the set of V ∈ SSTN(ν) such that

(V → Hμ) = Hλ to LRλ
μν . Indeed, V corresponds to ı(V ) ∈ LRλ

μν where the number
of k’s in the ith row of V is equal to the number of i’s in the kth row of ı(V ) for
i, k ≥ 1.
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Example 2.1

SSTN

(
(3,3,2)

) �
1 1 2
2 2 3
3 4

ı−→
• • • 1 1
• 1 2 2
2 3
3

∈ LR(5,4,2,1)
(3,1) (3,3,2)

For S ∈ SSTA(μ) and T ∈ SSTA(ν) with μ,ν ∈ PA, suppose that λ = sh(T → S)

and w(T ) = w1 . . .wr . Define (T → S)R to be the tableau of shape λ/μ such that
sh(w1 . . .wk → S)/sh(w1 . . .wk−1 → S) is filled with i when wk appears in the ith
row of T for 1 ≤ k ≤ r . Then the map (S,T ) �→ ((T → S), (T → S)R) gives a
bijection [20]

SSTA(μ) × SSTA(ν) −→
⊔

λ∈PA

SSTA(λ) × LRλ
μν, (2.1)

which also implies sμ(xA)sν(xA) = ∑
λ cλ

μνsλ(xA).

2.3 Skew Littlewood–Richardson rule

Let λ/μ be a skew Young diagram. Let U be a tableau of shape λ/μ with entries in
A � B, satisfying the following conditions;

(S1) U(i, j) ≤ U(i′, j ′) whenever U(i, j),U(i′, j ′) ∈ X for (i, j), (i′, j ′) ∈ λ/μ

with i ≤ i′ and j ≤ j ′,
(S2) in each column of U , entries in X0 increase strictly from top to bottom,
(S3) in each row of U , entries in X1 increase strictly from left to right,

where X = A or B. Suppose that a ∈ A and b ∈ B are two adjacent entries in U such
that b is placed above or to the left of a. Interchanging a and b is called a switching
if the resulting tableau still satisfies the conditions (S1), (S2) and (S3).

For T ∈ SSTA(λ/μ), let U be a tableau obtained from Hμ ∗T by applying switch-
ing procedures as far as possible (in this case, B = N). Then U = j (T ) ∗ j (T )R for
some j (T ) ∈ SSTA(ν) and j (T )R ∈ SSTN(λ/ν) with ν ∈ PA. Then by [1, Theo-
rem 3.1], the map sending T to (j (T ), j (T )R) gives a bijection

SSTA(λ/μ) −→
⊔

ν∈PA

SSTA(ν) × LRλ
νμ. (2.2)

In particular, the map Q �→ j (Q)R restricts to a bijection from LRλ
μν to LRλ

νμ, and

from LR
λ

μν to LRλ
νμ when A = ±N, respectively.

2.4 Knuth correspondence

Let MA,B be the set of A × B matrices A = (aij ) with entries in Z≥0 such that∑
i∈A

∑
j∈B aij < ∞ and aij ≤ 1 for |i| 	= |j |. Let ΩA,B be the set of biwords (i, j) ∈

WA × WB such that
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(1) i = i1 · · · ir and j = j1 · · · jr for some r ≥ 0,
(2) (i1, j1) ≤ · · · ≤ (ir , jr ),
(3) (is, js) < (is+1, js+1) if |is | 	= |js | for 1 ≤ s < r ,

where for (i, j) and (k, l) ∈ A × B,

(i, j) < (k, l) ⇐⇒

⎧
⎪⎨

⎪⎩

(i < k) or,

(i = k, |i| = 0, and j > l) or,

(i = k, |i| = 1, and j < l).

There is a bijection from ΩA,B to MA,B, where (i, j) is mapped to A(i, j) = (aij ) with
aij = |{k|(ik, jk) = (i, j)}|. Note that the pair of empty words (∅,∅) corresponds to
zero matrix.

For A = A(i, j) ∈ MA,B, we let P(A) = (j → ∅), where ∅ is the empty tableau,
and let Q(A) be the tableau of the same shape as P(A) such that sh(j1 . . . jk →
∅)/sh(j1 . . . jk−1 → ∅) is filled with ik for k ≥ 1. Then the map sending A to
(P (A),Q(A)) gives a bijection

MA,B −→
⊔

λ∈PA∩PB

SSTB(λ) × SSTA(λ), (2.3)

which is the (super-analogue of) Knuth (or RSK) correspondence [10]. If we define
wtB(A) = wtB(j) and wtA(A) = wtA(i), then the bijection preserves wtA and wtB. In
terms of characters, we obtain the following Cauchy identity:

∏
|a|	=|b|(1 + xaxb)∏
|a|=|b|(1 − xaxb)

=
∑

λ∈PA∩PB

sλ(xB)sλ(xA),

where a ∈ A and b ∈ B.
Similarly, for A = (aij ) ∈ MA,B, let A′ = (a′

ij∨) be the unique matrix in MA,B∨

such that aij = a′
ij∨ for (i, j) ∈ A × B. Then the map sending A to (P (A′)∨,Q(A′))

gives a bijection

MA,B −→
⊔

λ∈PA∩PB

SSTB(λ∨) × SSTA(λ). (2.4)

Finally, for μ ∈ PA, we have

SSTA(μ) × MA,B

1−1←→
⊔

ν∈PA∩PB

SSTA(μ) × SSTB(ν) × SSTA(ν) by (2.3)

1−1←→
⊔

λ∈PA
μ⊂λ

SSTA(λ) ×
( ⊔

ν∈PB

SSTB(ν) × LRλ
νμ

)
by (2.1)

1−1←→
⊔

λ∈PA
μ⊂λ

SSTA(λ) × SSTB(λ/μ) by (2.2).
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Hence we obtain a bijection

SSTA(μ) × MA,B −→
⊔

λ∈PA
μ⊂λ

SSTA(λ) × SSTB(λ/μ). (2.5)

Also by using (2.4), we have a bijection

SSTA(μ) × MA,B −→
⊔

λ∈PA
μ⊂λ

SSTA(λ) × SSTB

(
(λ/μ)∨

)
. (2.6)

3 Rational semistandard tableaux

3.1 Rational semistandard tableaux for gl>0

For convenience, we let for a skew Young diagram λ/μ,

Bλ/μ = SSTN(λ/μ), B∨
λ/μ = SSTN∨

(
(λ/μ)∨

)
.

Definition 3.1 For μ,ν ∈ P , we define Bμ,ν to be the set of bitableaux (S,T ) such
that

(1) (S,T ) ∈ Bμ × B∨
ν ,

(2) |{i|S(i,1) ≤ k}| + |{i|T ∨(i,1) ≤ k}| ≤ k for k ≥ 1.

For convenience, we identify Bμ,∅ and B∅,ν with Bμ and B∨
ν , respectively.

Example 3.2
⎛

⎝
1 1 3
2 3
4

,

7∨
5∨ 5∨
4∨ 3∨

⎞

⎠ ∈ B(3,2,1),(2,2,1).

Remark 3.3 Let gl>0 be the general linear Lie algebra spanned by N × N complex
matrices of finite support. Then Bμ,ν parameterizes a basis of an extremal weight
module over the quantized universal enveloping algebra Uq(gl>0) [11]. Recall that
Bμ,ν ∩ (SST [n](μ) × SST [n]∨(ν∨)) (n ≥ 2) is a set of rational tableaux for gln intro-
duced by Stembridge, which parameterizes a basis of a finite dimensional complex
irreducible representation of gln [18].

Let us review an insertion algorithm for Bμ,ν [11], which is an infinite analogue of
those for rational semistandard tableaux for gln [18, 19]. For a ∈ N and (S,T ) ∈ Bμ,ν ,
we define a → (S,T ) in the following way.

Suppose first that S is the empty tableau and T is a single column tableau. Let
(T ′, a′) be the pair obtained as follows.
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(1) If T contains a∨, (a + 1)∨, . . . , (b − 1)∨ as its entries but not b∨, then T ′ is
the tableau obtained from T by replacing a∨, (a + 1)∨, . . . , (b − 1)∨ with (a +
1)∨, (a + 2)∨, . . . , b∨, and put a′ = b.

(2) If T does not contain a∨, then leave T unchanged and put a′ = a.

Now, we suppose that S and T are arbitrary.

(1) Apply the above process to the leftmost column of T with a.
(2) Repeat (1) with a′ and the next column to the right.
(3) Continue this process to the rightmost column of T to get a tableau T ′ and a′′.
(4) Define

(
a → (S,T )

) = (
(a′′ → S),T ′).

Then a → (S,T ) ∈ Bσ,ν for some σ ∈ P with |σ/μ| = 1. For w = w1 . . .wr ∈ WN,
we let (w → (S,T )) = (wr → (· · · (w1 → (S,T )) · · · )).

Next, we define (S,T ) ← a∨ to be the pair (S′, T ′) obtained in the following
way:

(1) If the pair (S, (T ∨ ← a)∨) satisfies the condition (2) in Definition 3.1, then put
S′ = S and T ′ = (T ∨ ← a)∨.

(2) Otherwise, choose the smallest k such that ak is bumped out of the kth row in
the row insertion of a into T ∨ and the insertion of ak into the (k + 1)-st row
violates the condition (2) in Definition 3.1.

(2-a) Stop the row insertion of a into T ∨ when ak is bumped out, and let T ′ be the
resulting tableau after taking ∨.

(2-b) Remove ak in the leftmost column of S, which necessarily exists, and then play
the jeu de taquin (see for example [6, Sect. 1.2]) to obtain a tableau S′.

In this case, (S,T ) ← a∨ ∈ Bσ,τ , where either (1) |μ/σ | = 1 and τ = ν, or (2) σ = μ

and |τ/ν| = 1. For w = w1 . . .wr ∈ WN∨ , we let ((S,T ) ← w) = ((· · · ((S,T ) ←
w1) · · · ) ← wr).

3.2 Non-commutative Littlewood–Richardson rule

Let us recall the Littlewood–Richardson rule for Bμ,ν (see [11, Proposition 4.9] for
more details).

Let μ,ν ∈ P be given. For (S,T ) ∈ B∨
ν × Bμ, consider (w(T ) → (∅, S)). Suppose

that w(T ) = w1 . . .wr and (w1 . . .wk → (∅, S)) ∈ Bμ(k),ν for 1 ≤ k ≤ r . Let (ik, jk)

∈ μ correspond to wk in T (1 ≤ k ≤ r). Then μ(k) = μ(k−1) ∪ {(ik,μ(k−1)
ik

+ 1)}
(adding a box or dot in the ik th row of the Young diagram μ(k−1)), where μ(0) = ∅.
In particular, μ(r) = μ. Hence, the map sending (S,T ) to (w(T ) → (∅, S)) gives a
bijection [11, Corollary 4.11]

B∨
ν × Bμ −→ Bμ,ν. (3.1)

Next, for (S,T ) ∈ Bμ × B∨
ν , consider ((S,∅) ← w(T )). Suppose that w(T ) =

w1 . . .wr and ((S,∅) ← w1 . . .wk) ∈ Bμ(k),ν(k) for 1 ≤ k ≤ r . Let (ik, jk) ∈ ν corre-
spond to wk in T (1 ≤ k ≤ r). Define U to be the tableau of shape ν such that for
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1 ≤ k ≤ r

U(ik, jk) =
{

i, if μ(k) = μ(k−1) \ {(i,μ(k−1)
i )},

−i, if ν(k) = ν(k−1) ∪ {(i, ν(k−1)
i + 1)},

where μ(0) = μ and ν(0) = ∅. Then U = U+ ∗ U−, where U+ ∈ SSTN(λ) and U− ∈
SST−N(ν/λ) for some λ ⊂ ν. Let σ = μ(r) and τ = ν(r). We have ı(U+) ∈ LRμ

σλ and
U− ∈ LR

ν

λτ , hence j (U−)R ∈ LRν
τλ (see Sects. 2.2 and 2.3). Therefore, we have a

bijection [12, Proposition 4.3]

Bμ × B∨
ν −→

⊔

λ,σ,τ

Bσ,τ × LRμ
σλ × LRν

τλ, (3.2)

where (S,T ) is mapped to (((S,∅) ← w(T )), ı(U+), j (U−)R). Now, we have
⊔

λ,σ,τ

Bσ,τ × LRμ
σλ × LRν

τλ

1−1←→
⊔

λ,σ,τ

B∨
τ × Bσ × LRμ

σλ × LRν
τλ by (3.1)

1−1←→
⊔

λ,σ,τ

B∨
τ × LRν

τλ × Bσ × LRμ
σλ

1−1←→
⊔

λ⊂μ,ν

B∨
ν/λ × Bμ/λ by (2.2).

Hence, we obtain the following bijection [12, Proposition 5.1]:

Bμ × B∨
ν −→

⊔

λ⊂μ,ν

B∨
ν/λ × Bμ/λ. (3.3)

4 Plactic algebra

4.1 A plactic algebra for gl>0

Let t be an indeterminate. Define U(t) to be an associative Q[t, t−1]-algebra with
unity generated by ui and ui∨ (i ∈ N) subject to the following relations:

uiujuk = uiukuj , uk∨uj∨ui∨ = uj∨uk∨ui∨ (j ≤ i < k),

uiujuk = ujuiuk, uk∨uj∨ui∨ = uk∨ui∨uj∨ (j < k ≤ i),

ui+1u(i+1)∨ = ui∨ui (i ≥ 1), u1u1∨ = t,

uiuj∨ = uj∨ui (i 	= j).

(4.1)

Let U(t)+ (resp. U(t)−) be the subalgebra of U(t) generated by ui (resp. ui∨ ) for
i ∈ N. Then U(t)± is isomorphic to the usual plactic algebra for gl>0 over Q[t, t−1]
[14], where the first two relations in (4.1) are Knuth relations.
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Let W be the set of finite words with letters in N ∪ N∨. For w = w1 · · ·wr ∈ W ,
put uw = uw1 · · ·uwr ∈ U(t), where we assume that u∅ = 1 for the empty word ∅. It
is well known that if w ∈ WN (resp. WN∨ ), then there exists a unique T ∈ Bμ (resp.
B∨

μ ) such that uw = uw(T ).
For a skew Young diagram λ/μ and T ∈ Bλ/μ or B∨

λ/μ, we let uT = uw(T ), and
for μ,ν ∈ P and (S,T ) ∈ Bμ,ν , we let u(S,T ) = uSuT .

Lemma 4.1 For p,q ≥ 1, let S ∈ B(1p) and T ∈ B∨
(1q ) be given and let (S′, T ′) =

(w(S) → (∅, T )) ∈ B(1p),(1q ). Then uT uS = u(S′,T ′).

Proof It is straightforward to check it from (3.1) and (4.1). �

Lemma 4.2 For p,q ≥ 1, let S ∈ B(1p) and T ∈ B∨
(1q ) be given with w(S) =

w+
1 . . .w+

p and w(T ) = w−
q . . .w−

1 . Suppose that there exists k ≥ 1 such that

|{i|w+
i ≤ k}| + |{j |w−

j ≥ k∨}| > k. If w+
i = k and w−

j = k∨ for some i and j , and
(S,T ′) ∈ B(1p),(1q−1), where T ′ is obtained from T by removing k∨, then

uSuT = tu
w+

1 ...ŵ+
i ...w+

p
u

w−
q ...ŵ−

j ...w−
1
.

Proof We use induction on p+q . If p+q = 2, then k = 1 and uw+
1
uw−

1
= u1u1∨ = t .

Suppose that p + q > 2. First we assume that i < p or j < q . Then

w+
i+1 . . .w+

p = (k + a1) . . . (k + ap−i ),

w−
q . . .w−

j+1 = (k + bq−j )
∨ . . . (k + b1)

∨,

for some 1 ≤ a1 < · · · < ap−i and 1 ≤ b1 < · · · < bq−j . Also it follows from our
hypothesis that i + j = k + 1, and hence we can choose (S,T ) ∈ B(1p−i ),(1q−j )

such that w(S) = a1 . . . ap−i and w(T ) = b∨
q−j . . . b∨

1 . By Lemma 4.1, there exists

(T
′
, S

′
) ∈ B∨

(1q−j )
× B(1p−i ) with w(S

′
) = a′

1 . . . a′
p−i and w(T

′
) = (b′

q−j )
∨ . . . (b′

1)
∨

such that u
T

′u
S

′ = u(S,T ) = uSuT . This implies that

uw+
i+1...w

+
p
uw−

q ...w−
j+1

= u(k+b′
q−j )∨ . . . u(k+b′

1)
∨u(k+a′

1)
. . . u(k+a′

p−i )
.

Since w+
i = k < k + b′

1 and w−
j = k∨ > (k + a′

1)
∨, we have

uSuT = u(k+b′
q−j )∨...(k+b′

1)
∨(uw+

1
. . . uw+

i
uw−

j
. . . uw−

1
)u(k+a′

1)...(k+a′
p−i )

,

and by induction hypothesis,

uSuT = tu(k+b′
q−j )∨...(k+b′

1)
∨
(
uw+

1
. . . ûw+

i
ûw−

j
. . . uw−

1

)
u(k+a′

1)...(k+a′
p−i )

= tuw+
1

. . . ûw+
i

. . . uw+
p
uw−

q
. . . ûw−

j
. . . uw−

1
.
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Next, we assume that i = p and j = q , that is, w+
p = k and w−

q = k∨. Note that
p + q = k + 1. If w+

p−1 	= k − 1 and w−
q−1 	= (k − 1)∨, then

∣∣{i|w+
i ≤ k − 2

}∣∣ + ∣∣{j |w−
j ≥ (k − 2)∨

}∣∣ = p + q − 2 = k − 1 > k − 2,

which contradicts the fact that (S,T ′) ∈ B(1p),(1q−1). So we also assume that either
w+

p−1 = k − 1 or w−
q−1 = (k − 1)∨.

Case 1. Suppose that w+
p−1 	= k − 1 and w−

q−1 = (k − 1)∨. We have

uSuT = uw+
1

. . . uw+
p−1

ukuk∨uw−
q−1

. . . uw−
1

= uw+
1

. . . uw+
p−1

u(k−1)∨uk−1uw−
q−1

. . . uw−
1

= u(k−1)∨uw+
1

. . . uw+
p−1

uk−1u(k−1)∨uw−
q−2

. . . uw−
1

= tu(k−1)∨uw+
1

. . . uw+
p−1

uw−
q−2

. . . uw−
1

= tuw+
1

. . . uw+
p−1

u(k−1)∨uw−
q−2

. . . uw−
1

= tuw+
1

. . . uw+
p−1

uw−
q−1

. . . uw−
1
,

where we use induction hypothesis in the third line.
Case 2. Suppose that w+

p−1 = k − 1 and w−
q−1 	= (k − 1)∨. By almost the same

argument as in Case 1, we have

uSuT = tuw+
1

. . . uw+
p−1

uw−
q−1

. . . uw−
1
.

Case 3. Suppose that w+
p−1 = k − 1 and w−

q−1 = (k − 1)∨. We have

uSuT = uw+
1

. . . uw+
p−1

ukuk∨uw−
q−1

. . . uw−
1

= uw+
1

. . . uw+
p−1

u(k−1)∨uk−1uw−
q−1

. . . uw−
1

= u(k−a)∨uv1 . . . uvp−2uk−2uk−1uw−
q−1

. . . uw−
1
,

for some 1 ≤ a < k and 1 ≤ v1 < · · · < vp−2 < k − 2. So by induction hypothesis,

uSuT = u(k−a)∨uv1 . . . uvp−2uk−2uk−1u(k−1)∨uw−
q−2

. . . uw−
1

= tu(k−a)∨uv1 . . . uvp−2uk−2uw−
q−2

. . . uw−
1

= tuw+
1

. . . uw+
p−2

uk−1u(k−1)∨uw−
q−2

. . . uw−
1

= tuw+
1

. . . uw+
p−1

uw−
q−1

. . . uw−
1
.

This completes the induction. �
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Lemma 4.3 Let μ,ν ∈ P be given. For a ∈ N and (S,T ) ∈ Bμ,ν ,

(1) u(S,T )ua = u(a→(S,T )),
(2) u(S,T )ua∨ = tεu((S,T )←a∨), where ε = 0,1.

Proof We keep the notations in Sect. 3.1. Consider (a → (S,T )) = (S′, T ′). Let
(T ′, a′) be the pair obtained by the first step in the definition of a → (S,T ). It is
straightforward to check that uT ua = ua′uT ′ . Since S′ = (a′ → S), which is a usual
column insertion, we have uS′ = uSua′ . Hence

u(S,T )ua = uSuT ua = uSua′uT ′ = uS′uT ′ = u(a→(S,T )).

Next, consider ((S,T ) ← a∨) = (S′, T ′). If the pair (S, (T ∨ ← a)∨) satisfies the
condition (2) in Definition 3.1, then (S′, T ′) = (S, (T ∨ ← a)∨), which implies that
uS = uS′ and uT ua∨ = uT ′ . Hence, u(S,T )ua∨ = u((S,T )←a∨).

Suppose that there exists j such that aj = k is bumped out of the (j − 1)-st row
in the row insertion of a into T ∨ and the insertion of aj into the j th row violates the
condition (2) in Definition 3.1.

Let T ′′ = (T ∨ ← a)∨. Suppose that w(S) = w̃+w+ and w(T ′′) = w−w̃−, where
w+ = w+

1 . . .w+
p is the subword corresponding to the leftmost column of S and w− =

w−
q . . .w−

1 is the subword corresponding to the rightmost column of T ′′ reading from
top to bottom. Note that w−

j = k∨. Suppose that w+
i = k. By Lemma 4.2, we have

uw+uw− = tu
w+

1 ...ŵ+
i ...w+

p
u

w−
q ...ŵ−

j ...w−
1
.

Note that w(T ′) = w−
q . . . ŵ−

j . . .w−
1 w̃−. Recalling that S′ is obtained by playing

the jeu de taquin after removing k in the first column of S, it follows that uS′ =
uw̃+u

w+
1 ...ŵ+

i ...w+
p

. Therefore,

u(S,T )ua∨ = uSuT ua∨ = uSuT ′′

= uw̃+uw+uw−uw̃−

= tuw̃+u
w+

1 ...ŵ+
i ...w+

p
u

w−
q ...ŵ−

j ...w−
1
uw̃−

= tuS′uT ′ = tu((S,T )←a∨). �

Now, we obtain the following immediately.

Proposition 4.4 For w = w1 . . .wr ∈ W , there exists (S,T ) ∈ Bμ,ν such that uw =
tεu(S,T ) where ε = r − |μ| − |ν|.

Corollary 4.5 The set {u(S,T )

∣∣(S,T ) ∈ Bμ,ν, μ, ν ∈ P } spans U(t) over Q[t, t−1].

The uniqueness of (S,T ) in Proposition 4.4 and the linear independence of the
spanning set in Corollary 4.5 will be proved in Sect. 4.2.
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4.2 Crystal equivalence

Let P = PN = ⊕
i∈N Zεi be the weight lattice of gl>0 with a symmetric bilinear

form (·, ·) given by (εi, εj ) = δij . Let {αi = εi − εi+1|i ∈ N} be the set of simple
roots of gl>0. A (normal) gl>0-crystal is a set B together with the maps wt : B → P ,
εi, ϕi : B → Z≥0 and ẽi , f̃i : B → B ∪ {0} (i ∈ N) such that for b, b′ ∈ B

(1) ϕi(b) = (wt(b),αi) + εi(b),

(2) εi(b) = max{k|̃ek
i b 	= 0} and ϕi(b) = max{k|f̃ k

i b 	= 0},
(3) wt(̃eib) = wt(b) + αi if ẽib 	= 0, and wt(f̃ib) = wt(b) − αi if f̃ib 	= 0,
(4) f̃ib = b′ if and only if b = ẽib

′,

where 0 is a formal symbol (cf. [7]). Note that B is equipped with a colored oriented

graph structure, where b
i→ b′ if and only if b′ = f̃ib for b, b′ ∈ B and i ∈ N. The

dual crystal B∨ of B is defined to be the set {b∨|b ∈ B} with wt(b∨) = −wt(b),
ẽi (b

∨) = (f̃ib)∨ and f̃i (b
∨) = (̃eib)∨ for b ∈ B and i ∈ N. We assume that 0∨ = 0.

Note that N is naturally equipped with a gl>0-crystal structure;

1
1−→ 2

2−→ 3
3−→ · · ·

with wt(i) = εi (i ∈ N), while N∨ is its dual.
For gl>0-crystals B1 and B2, a tensor product B1 ⊗B2 is defined to be B1 ×B2 as

a set with elements denoted by b1 ⊗ b2, where

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

ẽi (b1 ⊗ b2) =
{

ẽib1 ⊗ b2, if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2, if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =
{

f̃ib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2, if ϕi(b1) ≤ εi(b2),

for i ∈ N and b1 ⊗ b2 ∈ B1 ⊗ B2. Here we assume that 0 ⊗ b2 = b1 ⊗ 0 = 0. For
example, W is a gl>0-crystal, where each word w1 . . .wr is identified with w1 ⊗
· · · ⊗ wr in a mixed r-tensor product of N and N∨.

For bi ∈ Bi (i = 1,2), we say that b1 is equivalent to b2, and write b1 ≡ b2 if
wt(b1) = wt(b2) and they generate the same N-colored graph with respect to ẽi , f̃i

(i ∈ N). We usually call ≡ the crystal equivalence.
For a skew Young diagram λ/μ, Bλ/μ has a well-defined gl>0-crystal structure

such that x̃i (S) = S′ if x̃iw(S) 	= 0 (i ∈ N, x = e, f ), where S′ is the unique tableau
in Bλ/μ with w(S′) = x̃iw(S), and x̃i (S) = 0 otherwise [9]. We regard B∨

λ/μ as the
dual of Bλ/μ. Moreover, for μ,ν ∈ P , Bμ,ν ∪ {0} ⊂ (Bμ ⊗ B∨

ν ) ∪ {0} is invariant
under ẽi , f̃i (i ∈ N), and hence a gl>0-crystal, which is connected as a graph [11,
Proposition 3.4]. It is shown in [11, Theorem 3.5] that Bμ,ν is an extremal weight
crystal which was introduced by Kashiwara [8].
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Let W be an associative Q-algebra with unity generated by the symbol [w] (w ∈
W ) subject to the relations;

[w][w′] = [ww′],
[w] = [w′], if w ≡ w′,

for w,w′ ∈ W . Note that [∅] = 1 is the unity in W , where ∅ is the empty word.

Lemma 4.6 The set

B = {[
w(S)w(T )

]∣∣(S,T ) ∈ Bμ,ν, μ, ν ∈ P
}

is a Q-basis of W .

Proof For a ∈ N and (S,T ) ∈ Bμ,ν , it is shown in [11, Lemma 4.4] that
(
a → (S,T )

) ≡ (S,T ) ⊗ a,
(
(S,T ) ← a∨) ≡ (S,T ) ⊗ a∨. (4.2)

This implies that for w ∈ W , [w] = [w(S)w(T )] for some (S,T ) ∈ Bμ,ν , and hence
W is spanned by B.

Now, suppose that
n∑

i=1

ci

[
w

(
S(i)

)
w

(
T (i)

)] = 0 (4.3)

for some ci ∈ Q and (S(i), T (i)) ∈ Bμ(i),ν(i) (1 ≤ i ≤ n). Since (S,T ) ≡ (S′, T ′) im-
plies (S,T ) = (S′, T ′) for (S,T ) ∈ Bμ,ν and (S′, T ′) ∈ Bσ,τ [11, Lemma 5.1], we
assume that (S(i), T (i))’s are mutually different.

We use induction on n to show that ci = 0 for 1 ≤ i ≤ n. It is clear when n = 1.
Suppose that n ≥ 2.

We claim that there exist j1, . . . , jr such that x̃j1 · · · x̃jr (S
(1), T (1)) = 0 but

x̃j1 · · · x̃jr (S
(i), T (i)) 	= 0 for some 2 ≤ i ≤ n, where x denotes e or f for each jk .

Consider (S(i), T (i)) (i = 1,2) and suppose that x̃j1 · · · x̃jr (S
(1), T (1)) 	= 0 if and

only if x̃j1 · · · x̃jr (S
(2), T (2)) 	= 0 for all j1, . . . , jr . Then by applying suitable ẽk’s,

we may assume that S(i) = Hμ(i) and (T (i))∨(k, l) ≥ p for (k, l) ∈ ν(i), where
p � �(μ(i)) (i = 1,2). Now, x̃j1 · · · x̃jr Hμ(1) 	= 0 if and only if x̃j1 · · · x̃jr Hμ(2) 	= 0
for all 1 ≤ j1, . . . , jr ≤ p − 2 since x̃j1 · · · x̃jr T

(i) = 0 (i = 1,2). This implies that
Hμ(1) = Hμ(2) . Also, we regard T (i) (i = 1,2) as elements in gl>0-crystals (whose
weight lattice is

⊕
i≥p Zεi ) with respect to ẽk and f̃k (k ≥ p). Then x̃j1 · · · x̃jr T

(1) 	=
0 if and only if x̃j1 · · · x̃jr T

(2) 	= 0 for all j1, . . . , jr ≥ p since x̃j1 · · · x̃jr Hμ(i) = 0
(i = 1,2). This implies that T (1) = T (2). Therefore, (S(1), T (1)) = (S(2), T (2)), which
is a contradiction. This proves our claim.

Note that x̃i (x = e, f , i ∈ N) acts on W by x̃i[w] = [̃xiw], where we assume that
[0] = 0. Hence by applying X = x̃j1 · · · x̃jr to (4.3), we get

n∑

i=2

ci

[
Xw

(
S(i)

)
w

(
T (i)

)] =
n∑

i=2

ci

[
w

(
S

(i))
w

(
T

(i))] = 0
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for some [w(S
(i)

)w(T
(i)

)] ∈ B. Here, we assume that ci = 0 if X(w(S(i))w(T (i)))

= 0. By induction hypothesis, we have c2 = · · · = cn = 0, and hence c1 = 0. There-
fore, B is a Q-basis of W . �

Theorem 4.7 Let U(1) be the Q-algebra obtained from U(t) by specializing t = 1.
Then the assignment ua �→ [a] for a ∈ N ∪ N∨ gives a Q-algebra isomorphism

U(1) � W .

Proof By (4.2), the relations in (4.1) when t = 1 are preserved in W under the corre-
spondence ua �→ [a]. Hence there exists a Q-algebra homomorphism ψ : U(1) → W
sending ua to [a] for a ∈ N ∪ N∨. Since {u(S,T )|(S,T ) ∈ Bμ,ν, μ, ν ∈ P } spans
U(1) and ψ(u(S,T )) = [w(S)w(T )], it follows from Lemma 4.6 that ψ is an isomor-
phism. �

Corollary 4.8 The set

{
u(S,T )

∣∣(S,T ) ∈ Bμ,ν, μ, ν ∈ P
}

is a Q[t, t−1]-basis of U(t).

Proof Note that {u(S,T )|(S,T ) ∈ Bμ,ν, μ, ν ∈ P } ⊂ U(1) is a Q-basis of U(1)

since it is mapped to B by Theorem 4.7. Then it is not difficult to check that
{u(S,T )|(S,T ) ∈ Bμ,ν, μ, ν ∈ P } ⊂ U(t) is linearly independent over Q[t, t−1] and
hence a Q[t, t−1]-basis of U(t) since U(t) is a Q[t, t−1]-submodule of a Q(t)-vector
space Q(t) ⊗Q[t,t−1] U(t). �

Corollary 4.9 For w ∈ W , there exist unique (S,T ) ∈ Bμ,ν and ε ∈ Z≥0 such that
uw = tεu(S,T ).

4.3 Non-commutative Schur functions

Let Û(t) = ⊕
n≥0 Û(t)n, where Û(t)n is the completion of Q[t, t−1]-submodule of

U(t) spanned by {(S,T )|(S,T ) ∈ Bμ,ν, |μ| + |ν| = n}. For a skew Young diagram
λ/μ, let

sλ/μ(u) =
∑

S∈Bλ/μ

uS, s∨
λ/μ(u) =

∑

S∈B∨
λ/μ

uS ∈ Û(t),

which are plactic skew Schur functions in ui ’s and ui∨ ’s, respectively.
Let Λ(t) be the algebra of symmetric functions in x = xN over Q[t, t−1]. Then

{s(k)(u)|k ≥ 0} (resp. {s∨
(k)(u)|k ≥ 0}) generates the subalgebra S(t)± of Û(t) iso-

morphic to Λ(t) [14], where s(k)(u) (resp. s∨
(k)(u)) corresponds to the kth complete

symmetric function hk(x) = s(k)(x), and {sλ(u)|λ ∈ P } (resp. {s∨
λ (u)|λ ∈ P }) is a

Q[t, t−1]-basis of S(t)+ (resp. S(t)−).
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We define

sμ,ν(u) =
∑

(S,T )∈Bμ,ν

u(S,T )

for μ,ν ∈ P and let

S(t) =
∑

μ,ν∈P

Q
[
t, t−1]sμ,ν(u) ⊂ Û(t).

Lemma 4.10 For μ,ν ∈ P , we have

sμ(u)s∨
ν (u) =

∑

λ⊂μ,ν

t |λ|s∨
ν/λ(u)sμ/λ(u) =

∑

λ,σ,τ

t |λ|cμ
λσ cν

λτ sσ,τ (u).

Proof By (3.1) and Lemma 4.3(1), we have sμ,ν(u) = s∨
ν (u)sμ(u). The identity fol-

lows from (3.3) and Lemma 4.3(2). �

Proposition 4.11 S(t) is a Q[t, t−1]-algebra with a basis {sμ,ν(u)|μ,ν ∈ P }, where

sμ,ν(u)sσ,τ (u) =
∑

ζ,η

( ∑

α,β,γ

t |β|cζ
σαc

μ
αβcτ

βγ cη
γ ν

)
sζ,η(u)

for μ,ν,σ, τ ∈ P .

Proof In fact, {sμ,ν(u)|μ,ν ∈ P } is linearly independent by Lemma 4.8, and hence
a basis of S(t). Combining Lemma 4.10 with the usual Littlewood–Richardson rule
(2.1) for sμ(u)’s and s∨

ν (u)’s, we obtain the above identity. Since the sum on the right
hand side is finite, S(t) has a well-defined multiplication and hence is a Q[t, t−1]-
algebra. �

4.4 Heisenberg algebra

Let H(t) be an associative Q[t, t−1]-algebra with unity generated by Bn (n ∈ Z\{0})
subject to the relations

BkBl − BlBk = ktkδk+l,0.

For k ≥ 1, let pk(u) ∈ S(t)+ (resp. p∨
k (u) ∈ S(t)−) correspond to the kth power sum

symmetric function pk(x) ∈ Λ(t).

Proposition 4.12 The assignment pk(u) �→ Bk p∨
k (u) �→ B−k for k ≥ 1 gives a

Q[t, t−1]-algebra isomorphism

S(t) � H(t).
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Proof Put hk(u) = s(k)(u) and h∨
k (u) = s∨

(k)(u) for k ≥ 0 (note that h0(u) = h∨
0 (u)

= 1). By Lemma 4.10, we have

hs(u)h∨
r (u) =

m∑

i=0

t ih∨
r−i (u)hs−i (u) (4.4)

for r, s ≥ 0, where m = min{r, s}. We may view S(t) as an algebra generated by
{h∨

k (u), hk(u)|k ≥ 0} with the defining relations (4.4). Since

hr(u) =
∑

|λ|=r

1

zλ

pλ(u),

where zλ = ∏
i≥1 imi(λ)mi(λ)! and mi(λ) = |{k|λk = i}|, we obtain

pk(u)p∨
l (u) − p∨

l (u)pk(u) = ktkδk,l

for k, l ≥ 1 by using the same argument as in [13, Corollary 8]. This implies that
there exists an isomorphism ψ : H(t) → S(t) sending B−k (resp. Bk) to p∨

k (u) (resp.
pk(u)) for k ≥ 1. �

Remark 4.13 Regarding S(0) and S(1) as Q-algebras generated by hk(u) and h∨
k (u)

(k ≥ 0), we have S(0) � Λ⊗Λ, and S(1) � 〈 ∂
∂pk

,pk|k ≥ 1〉 ⊂ EndQ(Λ), where Λ is
the algebra of symmetric functions in x over Q and pk is the operator on Λ induced
from the multiplication by pk(x). Therefore, we may view S(t) as an algebra inter-
polating the algebra of double symmetric functions and the Weyl algebra of infinite
rank.

5 Knuth correspondence and Cauchy identity

5.1 Main result

Let A and B be linearly ordered Z2-graded sets. For A ∈ MA,N (or MB,N∨ ), we put
uA = uj if A = A(i, j). Now we are in a position to state and prove our main theorem.

Theorem 5.1 There exists a bijection

MA,N × MB,N∨ −→ MA,B × MB,N∨ × MA,N

sending (X,Y ) to (Z,Y ′,X′) such that

(1) wtA(X) = wtA(X′) + wtA(Z) and wtB(Y ) = wtB(Y ′) + wtB(Z),
(2) uXuY = t |Z|uY ′uX′ where Z = (zij ) and |Z| = ∑

i,j zij .

Proof It is obtained by composing the following bijections, which preserve wtA, wtB
and (4.1):
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MA,N × MB,N∨

−→
⊔

μ∈PA,ν∈PB

Bμ × SSTA(μ) × B∨
ν × SSTB(ν) by (2.3) and (2.4)

−→
⊔

μ∈PA,ν∈PB

SSTA(μ) × SSTB(ν) × Bμ × B∨
ν

−→
⊔

μ∈PA,ν∈PB

SSTA(μ) × SSTB(ν) ×
( ⊔

λ⊂μ,ν

B∨
ν/λ × Bμ/λ

)
by (3.3)

−→
⊔

μ∈PA,ν∈PB

⊔

λ⊂μ,ν

SSTB(ν) × B∨
ν/λ × SSTA(μ) × Bμ/λ

−→
⊔

λ∈PA∩PB

SSTB(λ) × MB,N∨ × SSTA(λ) × MA,N by (2.5) and (2.6)

−→
( ⊔

λ∈PA∩PB

SSTB(λ) × SSTA(λ)

)
× MB,N∨ × MA,N

−→ MA,B × MB,N∨ × MA,N by (2.3). �

Now, let us consider the non-commutative character identity associated with The-
orem 5.1. We first define the plactic Cauchy products

Q(xA) =
−→∏
a∈A

Q(xa), P (xB) =
−→∏
b∈B

P (xb),

where the products are given with respect to the linear ordering on A or B so that
smaller terms are to the left, and

Q(xa) =
{

1
···(1−u2xa)(1−u1xa)

, if |a| = 0,

(1 + u1xa)(1 + u2xa) · · ·, if |a| = 1,

P (xb) =
{

1
···(1−u2∨xb)(1−u1∨xb)

, if |b| = 0,

(1 + u1∨xb)(1 + u2∨xb) · · ·, if |b| = 1.

We assume that xA and xB commute with u. Note that

Q(xA) =
∑

λ∈PA

sλ(u)sλ(xA), P (xB) =
∑

λ∈PB

s∨
λ (u)sλ(xB),

by (2.3) and (2.4).

Corollary 5.2

Q(xA)P (xB) =
∏

|a|	=|b|(1 + txaxb)∏
|a|=|b|(1 − txaxb)

P (xB)Q(xA).
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Proof By definition, we have

Q(xA) =
∑

X∈MA,N

uXxwtA(X)
A

, P (xB) =
∑

Y∈MB,N∨
uY xwtB(Y )

B
.

Since the bijections in the proof of Theorem 5.1 preserve the plactic relations (4.1),
wtA and wtB, we obtain the identity. �

5.2 Cauchy identity for Schur operators

For i ∈ N, we define operators ui, ui∨ ∈ EndQ[t,t−1](Λ(t)) by

ui∨
(
sμ(x)

) =
{

sμ∪{(i,μi+1)}(x), if μ ∪ {(i,μi + 1)} ∈ P ,

0, if μ ∪ {(i,μi + 1)} 	∈ P ,

ui

(
sμ(x)

) =
{

tsμ\{(i,μi)}(x), if μ \ {(i,μi)} ∈ P ,

0, if μ \ {(i,μi)} 	∈ P .

These operators are called Schur operators [3]. Let U(t) be the subalgebra of
EndQ[t,t−1](Λ(t)) generated by ui, ui∨ (i ∈ N). It is easy to see that there exists a
surjective Q[t, t−1]-algebra homomorphism ψ : U(t) → U(t) such that ψ(ui) = ui

and ψ(ui∨) = ui∨ for i ∈ N.
For λ ∈ P , let

sλ(u) =
∑

S∈Bλ

uS, s∨
λ (u) =

∑

S∈B∨
λ

uS,

where uS = ψ(uS) for S ∈ Bλ or B∨
λ . For λ,μ ∈ P , we have

s∨
μ(u)

(
sλ(x)

) = sλ(x)sμ(x), sμ(u)
(
sλ(x)

) = t |μ|sλ/μ(x)

(see [3]). We also have

Q(xA) =
−→∏
a∈A

Q(xa) =
∑

λ∈PA

sλ(u)sλ(xA),

P (xB) =
−→∏
b∈B

P (xb) =
∑

λ∈PB

s∨
λ (u)sλ(xB),

where P (xa) and Q(xb) are obtained from P (xa) and Q(xb) by replacing ui, ui∨
with ui, ui∨ , respectively. Therefore, the products Q(xA)P (xB) and P (xB)Q(xA)

are well defined, and the identity in Corollary 5.2 gives the following, which recovers
the generalized Cauchy identity for Schur operators [3] when t = 1:

Q(xA)P (xB) =
∏

|a|	=|b|(1 + txaxb)∏
|a|=|b|(1 − txaxb)

P (xB)Q(xA).
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5.3 Knuth correspondence for skew tableaux

Fix α,β ∈ P . For w = w1 . . .wr ∈ W , we define (S(k), T (k)) ∈ Bσ (k),τ (k) (1 ≤
k ≤ r) inductively as follows: (1) (S(0), T (0)) = (Hα,∅), (2) (S(k), T (k)) = (wk →
(S(k−1), T (k−1))) if wk ∈ N and (S(k), T (k)) = ((S(k−1), T (k−1)) ← wk) if wk ∈ N∨
for 1 ≤ k ≤ r .

Let us say that w is a Littlewood–Richardson (simply LR) word of shape (α,β)

if (S(k), T (k)) = (Hσ(k) ,∅) for 1 ≤ k ≤ r , and σ (r) = β . Note that for 1 ≤ k ≤ r ,
|σ (k)| = |σ (k−1)| + 1 if wk ∈ N and |σ (k)| = |σ (k−1)| − 1 if wk ∈ N∨ (we assume
that σ (0) = α). By definition, the subword wsws+1 . . .wt of w is also an LR word of
shape (σ (s−1), σ (t)) for 1 ≤ s < t ≤ r .

Lemma 5.3 For w ∈ W , w is an LR word of shape (α,β) if and only if Hα ⊗w ≡ Hβ .
In particular, if w is an LR word of shape (α,β) and w′ ≡ w for w′ ∈ W , then w′ is
also an LR word of shape (α,β).

Proof We keep the above notations. Suppose that w is an LR word of shape (α,β).
Since Hα ⊗ w1 . . .wk ≡ (Hσ(k) ,∅) ≡ Hσ(k) for 1 ≤ k ≤ r , we have Hα ⊗ w ≡ Hβ .

Conversely, suppose that Hα ⊗ w ≡ Hβ ≡ (Hβ,∅). If τ (k) 	= ∅ (that is, T (k) 	= ∅)
for some k, then we have τ (r) 	= ∅ (that is, T (r) 	= ∅) by definition of the insertions
(Sect. 3.1), which contradicts the fact that (S(r), T (r)) ≡ Hα ⊗ w ≡ (Hβ,∅). Hence
τ (k) = ∅ (that is, T (k) = ∅) for 1 ≤ k ≤ r and σ (r) = β .

Now suppose that S(k) 	= Hσ(k) for some 1 ≤ k < r , which is equivalent to saying
that ẽiS

(k) 	= 0 for some i ≥ 1. Then

ẽiHβ ≡ ẽi (Hα ⊗ w) ≡ ẽi

(
S(k) ⊗ wk+1 . . .wr

) = (
ẽiS

(k)
) ⊗ wk+1 . . .wr 	= 0,

which is also a contradiction. Hence w is an LR word of shape (α,β). �

For λ,μ ∈ P with |λ| = |α| + |μ|, we have by (2.1)

{
S ∈ Bμ|w(S) is an LR word of shape (α,λ)

} 1−1←→ LRλ
αμ. (5.1)

For λ, ν ∈ P with |λ| = |β| + |ν|, we have by (3.2)

{
S ∈ B∨

ν |w(S) is an LR word of shape (λ,β)
} 1−1←→ LRλ

βν. (5.2)

Let (Bμ × B∨
ν )(α,β) be the set of (S,T ) ∈ Bμ × B∨

ν such that w(S)w(T ) is an LR
word of shape (α,β). Combining (5.1) and (5.2), we have

(
Bμ × B∨

ν

)
(α,β)

1−1←→
⊔

λ

LRλ
αμ × LRλ

βν. (5.3)

Similarly, for σ, τ ∈ P , let (B∨
τ × Bσ )(α,β) be the set of (S,T ) ∈ B∨

τ × Bσ such that
w(S)w(T ) is an LR word of shape (α,β). As in (5.3), we have a bijection

(
B∨

τ × Bσ

)
(α,β)

1−1←→
⊔

λ

LRα
λτ × LRβ

λσ . (5.4)
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Corollary 5.4 Let α,β,μ, ν ∈ P be given. The bijection (3.2) when restricted to
(Bμ × B∨

ν )(α,β) gives the following bijection:

⊔

λ

LRλ
αμ × LRλ

βν −→
⊔

η,ζ,σ,τ

LRα
ητ × LRβ

ησ × LRμ
σζ × LRν

τζ .

Proof Since the bijection (3.2) preserves the plactic relations or the crystal equiva-
lence, we have by Lemma 5.3

(
Bμ × B∨

ν

)
(α,β)

−→
⊔

ζ,σ,τ

(
B∨

τ × Bσ

)
(α,β)

× LRμ
σζ × LRν

τζ .

Hence, it follows from (5.3) and (5.4). �

Let (MA,N × MB,N∨)(α,β) be the set of (A,A′) such that j · j′ ∈ W is an LR word
of shape (α,β), where A = A(i, j) and A′ = A(i′, j′), and let (MB,N∨ × MA,N)(α,β)

be defined in the same way.
Now, we recover the Knuth type correspondence for skew tableaux by Sagan and

Stanley [17] as a restriction of the bijection in Theorem 5.1 to the set of LR words of
shape (α,β).

Theorem 5.5 Let α,β ∈ P be given. The bijection in Theorem 5.1 when restricted to
(MA,N × MB,N∨)(α,β) gives a bijection

⊔

λ

SSTA(λ/α) × SSTB(λ/β) −→
⊔

η

MA,B × SSTA(β/η) × SSTB(α/η).

Proof Since the bijection in Theorem 5.1 preserves the plactic relations, we have a
bijection by Lemma 5.3

(MA,N × MB,N∨)(α,β)−→MA,B × (MB,N∨ × MA,N)(α,β). (5.5)

On the other hand, we have

(MA,N × MB,N∨)(α,β)

1−1←→
⊔

μ∈PA,ν∈PB

(
Bμ × B∨

ν

)
(α,β)

× SSTA(μ) × SSTB(ν)

1−1←→
⊔

μ∈PA,ν∈PB
μ,ν⊂λ

LRλ
αμ × LRλ

βν × SSTA(μ) × SSTB(ν) by (5.3)

1−1←→
⊔

μ∈PA,ν∈PB
μ,ν⊂λ

SSTA(μ) × LRλ
μα × SSTB(ν) × LRλ

νβ

1−1←→
⊔

α,β⊂λ

SSTA(λ/α) × SSTB(λ/β) by (2.2).
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Similarly, we have

(MB,N∨ × MA,N)(α,β)

1−1←→
⊔

σ∈PA,τ∈PB

(
B∨

τ × Bσ

)
(α,β)

× SSTA(σ ) × SSTB(τ )

1−1←→
⊔

σ∈PA,τ∈PB
η⊂α,β

LRα
ητ × LRβ

ησ × SSTA(σ ) × SSTB(τ ) by (5.4)

1−1←→
⊔

σ∈PA,τ∈PB
η⊂α,β

SSTA(σ ) × LRβ
ση × SSTB(τ ) × LRα

τη

1−1←→
⊔

η⊂α,β

SSTA(β/η) × SSTB(α/η) by (2.2).

Combining with (5.5), we obtain the result. �
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