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Abstract We give a new bijective interpretation of the Cauchy identity for Schur
operators which is a commutation relation between two formal power series with
operator coefficients. We introduce a plactic algebra associated with the Kashiwara’s
extremal weight crystals over the Kac—-Moody algebra of type Ao, and construct
a Knuth type correspondence preserving the plactic relations. This bijection yields
the Cauchy identity for Schur operators as a homomorphic image of its associated
identity for plactic characters of extremal weight crystals, and also recovers Sagan
and Stanley’s correspondence for skew tableaux as its restriction.
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1 Introduction

Let A = Ax be the algebra of symmetric functions in a set of formal commuting
variables x = {x1, x2, ...} over Q. We denote by & the set of partitions and let s, (X)
be the Schur function in x corresponding to A € . Let

PE =) sm®, QX =Y 55 €Endg(A)lxl],

rEP rEP

where s; and sl\l are linear operators on A induced from the left multiplication by
s (x) and its adjoint with respect to the Hall inner product on A, respectively. One
may regard s, and sj- as operators on QP = @, . » QA, where 1 is identified with
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s, (x). Moreover s, and skl can be given as Schur functions in certain locally non-
commutative operators on Q& called Schur operators by Fomin, while #(x) and
@ (x) can be written as Cauchy products in Schur operators and x [3, 4].

Let y = {y1, y2, ...} be another set of formal commuting variables. It is well
known that the following commutation relation holds:

QAy)P(x)= Px)Q(y) (1.1)

1
Hi,j(l - xiyj)
called generalized Cauchy identity or Cauchy identity for Schur operators. Consider-
ing both sides as operators with coefficients in Ax ® Ay and then equating each entry
of their matrix forms, we obtain a Cauchy identity for skew Schur functions [16],

> s ®)si/p(y) = > 5pmsas ),
A n

1
l_[i,j(l _xiyj)

where «, B are given partitions. A bijective interpretation of the Cauchy identity for
skew Schur functions was given by Sagan and Stanley [17], and it was extended to a
bijection in a more general framework by Fomin [3] including various analogues of
Knuth correspondence.

Recently, a new representation theoretic interpretation of the Cauchy identity for
Schur operators was given by the author [11] using the notion of Kashiwara’s ex-
tremal weight crystals [8] over the quantized enveloping algebra associated with the
Kac—Moody algebra of type A, say gl.g. It is proved that a Schur operator can
be realized as a functor of tensoring by an extremal weight crystal element and (1.1)
can be understood as a non-commutative character identity corresponding to the de-
composition of the crystal graph of the Fock space with infinite positive level, which
is an infinite analogue of the level n fermionic Fock space decomposition due to
Frenkel [5].

Motivated by a categorification of Schur operators in [11], we give a new com-
binatorial way to explain both the Cauchy identities for Schur operators and skew
Schur functions in terms of a single bijection. More precisely, the main result in this
paper is to construct a Knuth type correspondence, which gives a bijective interpreta-
tion of the identity (1.1) or its dual form, as the usual Knuth correspondence does for
the Cauchy product, and also recovers the Sagan and Stanley’s correspondence as its
restriction.

Our approach is to define a 7-analogue of the plactic algebra U(¢) for gl. gener-
ated by u; and u;v for i € N with ¢ an indeterminate, where the subalgebra generated
by u; (resp. u;v) (i € N) is isomorphic to the usual plactic algebra introduced by
Lascoux and Schiitzenberger [14]. We show that U(1) is isomorphic to the plactic
algebra defined by using the notion of crystal equivalence (cf. [15]). Note that each
monomial in U (1) corresponds in general to an element of an extremal weight crys-
tal, which may not be either highest weight or lowest weight crystal.

Now, let My g be the set of A x B matrices A = (g;;) with entries in Z>( such
that ) ;s Zjeﬁaij < oo and g;; < 1 for |i| # | j|, where A and B are arbitrary Z,-
graded sets and | - | denotes the degree of an element in A or B. We assume that all
the elements in N and NV = {iV|i € N} are of degree 0. By using the usual Knuth
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map and non-commutative Littlewood—Richardson rule of extremal weight crystals
for gl_( [11, 12], we construct an explicit bijection (Theorem 5.1);

Mp N X Mpnv — My X Mpnv X Ma N,

which preserves the weights with respect to A and B, and the plactic relations of U(¢)
for the column words with entries in N U N on both sides. As a corollary, we ob-
tain a character identity in locally non-commuting variables u = {u;, u;v|i € N} and
commuting variables x5 = {x,|a € A}, xg = {x3|b € B} (Corollary 5.2). In particu-
lar, when A = B = N, this identity recovers (1.1) under a homomorphism sending u;
and u;v to Schur operators on Q4 and specializing ¢t = 1. Moreover, the Knuth cor-
respondence for skew tableaux by Sagan and Stanley can be recovered by restricting
the above bijection to the pairs of matrices on the left-hand side whose column words
are Littlewood—-Richardson words of shape («, §) with «, B € &P (see Sect. 5.3 for a
definition).

The paper is organized as follows. In Sect. 2, we briefly recall necessary back-
ground for semistandard tableaux and the Knuth correspondence. In Sect. 3, we recall
the notion of rational semistandard tableaux for gl_ and their insertion algorithm.
In Sect. 4, we introduce a plactic algebra for gl_  associated with rational semistan-
dard tableaux. Finally, in Sect. 5, we construct a Knuth type correspondence and its
associated non-commutative character identity.

2 Preliminaries
2.1 Semistandard tableaux

Throughout this paper, we assume that A (or B) is a linearly ordered Z,-graded set,
that is, A = Ag U A, which is at most countable. We usually denote by < a linear
ordering on a given linearly ordered Z-graded set. For a € A, (€ € Z,), we put
|a| = €. By convention, welet N={1 <2 <---},and [n]={1 <--- <n}forn>1,
where all the elements are of degree 0.

Let &# denote the set of partitions. We identify a partition A = (X;);>1 with a
Young diagram or a subset {(i, j)|1 < j < A;} of N x N following [16]. Let £(A) =
[{i|A; # 0}|. We denote by A" = ()\;)121 the conjugate partition of A whose Young
diagram is {(i, j)|(j,i) € A}. For u € # with A D u, A/ denotes the skew Young
diagram.

For a skew Young diagram A/u, a tableau T obtained by filling A /u with entries
in A is called A-semistandard if (1) the entries in each row (resp. column) are weakly
increasing from left to right (resp. from top to bottom), (2) the entries in Ag (resp.
Ay) are strictly increasing in each column (resp. row). We say that A/u is the shape
of T, and write sh(T) = A/u. We denote by T'(i, j) the entry of T at (i, j) € A/u.

We denote by SST s (A/u) the set of all A-semistandard tableaux of shape A/u.
We set Py = {1 € P|SSTx (L) # @}. For example, Py = & when A is an infinite set,
and P[,; = {A[L(A) < n}.

Let W4 be the set of finite words with letters in A. For T € SST 4 (A /1), we denote
by w(T) = weo1(T) € Wy the word obtained by reading the entries of T column by
column from right to left, and from top to bottom in each column.
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Let Py = @, Zeq be the free abelian group with a basis {e,|a € A} and let
xp = {xq|a € A} be a set of formal commuting variables. For A = ZaeA Aa€q € Py,
let XAA = ]_[aeAx;”". For w = wy...w, € Wy, we define wty(w) = leiﬁr €y; €

Py. For T € SSTa (A /), we define wtpy(T) = Z(i,j)ek/u €7, j)- Let 55/, (Xa) =

ZTESSTA(A/M) XXtA(T), which is the character of SST'4 (A/u). Note that s;,/,,(x4) is a

usual (skew) Schur function when A = N.
We will also use the following operations on tableaux.

(1) dual: Let AY = {a"|a € A} be the linearly ordered Z,-graded set with |a"| = |a|
and a) < ay for a; > ay. For T € SST(A/n), we define T to be the tableau
obtained by applying 180°-rotation to 7' and replacing each entry a in T with
a”.Then TV € SST pv ((A/10)Y), where (A /)Y denotes the shape of TV . We use
the convention that (a¥)Y = a for a € A and hence (TY)Y =T.

(2) gluing: Let A x B be the Z;-graded set A LB with the extended linear ordering
given by a < b fora € A and b € B. For S € SSTx(u) and T € SSTr(A/ 1), we
define S x T € SSTa«g(X) by SxT (i, j) = S(, j) for (i, j) € w and T (i, j) for
(i, )) €r/p.

2.2 Littlewood—Richardson rule

For a € A and T € SSTa(A) with L € Py, a — T (resp. T < a) denotes the
tableau obtained by the Schensted column (resp. row) insertion (see for example,
[6, Appendix A.2] and [2] for its super-analogue). For w = wy ... w, € Wy, we let
(w—->T)=(wy > (- (wy = T)---)). For § € SSTa(n) and T € SST 4 (v) with
un,v € Py, we define (T — ) = (w(T) — ).

For A, u,v € # with |A| = || + |v], let LRi‘w be the set of tableaux U in
SSTn(A /) such that

(1) win(U) =35 vi€i,
(2) for 1 <k < |v|, the number of occurrences of each i > 1 in wj...wy is no less
than that of i + 1 in wy ... wg, where w(U) = wy ... w)y).

We call LRﬁv the set of Littlewood—Richardson tableaux of shape A /u with content v

and put cl)\w = |LR/AW| [16]. Let us introduce a variation of LRI’\W,

for our later arguments. We define ﬁfw to be the set of tableaux U in SST_n(X/u)
such that

(1) wt_n(U) = Zizl Vi€—i,
(2) for 1 <k < |v], the number of occurrences of each —i < —1 in wy ... w),| is no
less than that of —(7 + 1) in wy ... wy,|, where w(U) = wy ... wyy).

Note that for U € SSTn(A /), U € LR”  if and only if U is Knuth equivalent

Ay
to H, € SSTn(v), where H, (i, j) =i for (;, Jj) € v (cf. [6]). Similarly, we have for
UeSST_n(A/n),U € ﬁfw if and only if U is Knuth equivalentto L, € SST _n(v),
where L, (i, j) = —v} +i—1for (i, j) €v.

There is also a one-to-one correspondence from the set of V € SSTn(v) such that
(V— H,)=H,to LR,)lu- Indeed, V corresponds to:(V) € Lwa where the number
of k’s in the ith row of V is equal to the number of i’s in the kth row of 1 (V) for
i,k>1.

which is necessary
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Example 2.1
112 S S
1
$STn((3.3.2)> 2 2 3 — . €LRG1) (332
3 4 3

For S € SSTa () and T € SST p (v) with u, v € Py, suppose that L = sh(T — S)
and w(T) = wy...w,. Define (T — S)g to be the tableau of shape A/u such that
sh(wy ... wg — S)/sh(wy ... wxg—1 — S) is filled with i when wy appears in the ith
row of T for 1 <k <r. Then the map (S,T) — (T — S),(T — S)g) gives a
bijection [20]

SSTp (1) x SSTa(v) —> | | SSTa(1) x LR}, (2.1)

LEP)
which also implies s, (Xa)s,(Xa) =, cﬁvsx (xp).
2.3 Skew Littlewood—Richardson rule

Let . /u be a skew Young diagram. Let U be a tableau of shape X/u with entries in
A LB, satisfying the following conditions;

(S1) U@, j) < U, j) whenever U(, j),U(’, j") € X for (i, j), (', j) € A/
withi <i’"and j </,

(S2) in each column of U, entries in X increase strictly from top to bottom,

(S3) in each row of U, entries in X increase strictly from left to right,

where X = A or B. Suppose that a € A and b € B are two adjacent entries in U such
that b is placed above or to the left of a. Interchanging a and b is called a switching
if the resulting tableau still satisfies the conditions (S1), (S2) and (S3).

For T € SST 5 (A/1), let U be a tableau obtained from H,, *+ T by applying switch-
ing procedures as far as possible (in this case, B = N). Then U = j(T) * j(T)r for
some j(T) € SSTa(v) and j(T)gr € SSTn(A/v) with v € Py. Then by [1, Theo-
rem 3.1], the map sending T to (j(T), j(T)g) gives a bijection

SSTh( /1) —> | | SSTa(v) x LRY,,. (2.2)

VEPA

In particular, the map Q — j(Q)pr restricts to a bijection from LRI’\W to LRi‘ > and

from ﬁ;v to LR . When A = N, respectively.

2.4 Knuth correspondence

Let My B be the set of A x B matrices A = (a;;) with entries in Zxq such that
Yiea ZjeIBaij <ooanda;; <1 for|i| #|j|. Let 24 p be the set of biwords (i, j) €

Wa x Wg such that
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(1) i=iy---i,and j= j;--- j, for some r >0,

) (1, J1) < =< (r, Jjr)s

3) (s, Js) < (s+1, js+1) if |ig] #Z | jg| for 1 <s <r,
where for (i, j) and (k,l) € A x B,

(i <k) or,
i j) <k — (i=k, |i|=0,and j >1) or,
=k, li|=1, and j <1).

There is a bijection from 24 g to M g, where (i, j) is mapped to A(i, j) = (a;;) with
ajj = {k|(ix, jx) = (i, j)}|. Note that the pair of empty words (¥, ¥) corresponds to
Zero matrix.

For A = A(,j) € Map, we let P(A) = (j — 0), where ¢ is the empty tableau,
and let Q(A) be the tableau of the same shape as P(A) such that sh(j;...jx —
#)/sh(ji ... jx—1 — @) is filled with iy for k > 1. Then the map sending A to
(P(A), O(A)) gives a bijection

Mas— || SSTe() x SSTA(), (2.3)
AEPANPE

which is the (super-analogue of) Knuth (or RSK) correspondence [10]. If we define
wtp(A) = wtg(j) and wty (A) = wta (i), then the bijection preserves wty and wtg. In
terms of characters, we obtain the following Cauchy identity:

[Tappp (1 + Xaxp) _
H|a|:\b|(1 — XaXp) B

> sixe)si(xa),

AEPANPE

where a € A and b € B.

Similarly, for A = (a;;) € Mg, let A’ = (alfjv) be the unique matrix in My gv
such that a;; = alfjv for (i, j) € A x B. Then the map sending A to (P(A")Y, Q(A"))
gives a bijection

Mas— || SSTBOY) x SSTA). (2.4)
AEPANPE
Finally, for u € £4, we have
SSTp () x Mu B

S | SSTa( x SSTs(v) x SSTA(W) by (23)

vePyNPr

4| ssTa x ( | | ssTe() x LR§M> by (2.1)

LEP) VEPR
HCA
1-1
— || SSTAM) x SSTR(/1) by (2.2).
LEP
HUCA
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Hence we obtain a bijection

SSTa(11) x Mg —> | | SSTA(R) x SSTE(A/1). (2.5)
LEP)
MCA

Also by using (2.4), we have a bijection

SSTa(1t) x Mas —> | | SSTa() x SSTa((/1)Y). (2.6)

rEP)
HCA

3 Rational semistandard tableaux
3.1 Rational semistandard tableaux for gl. g

For convenience, we let for a skew Young diagram A/,
B =SSTu(r/w), By, =SSTrwe (/).

Definition 3.1 For u, v € 2, we define B, , to be the set of bitableaux (S, T') such
that

(1) (S, T)eB, xBY,
) [{ilSG, 1) <k}| 4+ |{|TV (i, 1) <k}| <k fork>1.

For convenience, we identify B, 4 and By, with B, and B/, respectively.

Example 3.2

1 1 3 7V
2 3 , 5V5Y)e B3 n,2.2.1-
4 4V 3V

Remark 3.3 Let gl be the general linear Lie algebra spanned by N x N complex
matrices of finite support. Then B, , parameterizes a basis of an extremal weight
module over the quantized universal enveloping algebra U, (gl.o) [11]. Recall that
Buu.v N (SST () x SSTv (vY)) (n > 2) is a set of rational tableaux for gl,, intro-
duced by Stembridge, which parameterizes a basis of a finite dimensional complex
irreducible representation of gl,, [18].

Let us review an insertion algorithm for B, ,, [11], which is an infinite analogue of
those for rational semistandard tableaux for gl,, [18, 19]. Fora e Nand (S, T) € By,
we define a — (S, T) in the following way.

Suppose first that S is the empty tableau and T is a single column tableau. Let
(T', a’) be the pair obtained as follows.
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(1) If T contains aV, (a + 1)V, ..., (b — 1)V as its entries but not bV, then T’ is
the tableau obtained from T by replacing a", (a + 1), ..., (b — 1)¥ with (a +
DY, (a+2)V,...,bY,and puta’ =b.

(2) If T does not contain aV, then leave T unchanged and put @’ = a.

Now, we suppose that § and T are arbitrary.

(1) Apply the above process to the leftmost column of 7" with a.

(2) Repeat (1) with a’ and the next column to the right.

(3) Continue this process to the rightmost column of T to get a tableau 7’ and a”.
(4) Define

(a— (5, 7)=(@"— 9,T).

Then a — (S, T) € B,,, for some o € P with |o/u| =1. For w=w;...w, € Wy,
welet (w— (S, 7)) =w, = (- (w1 = (S, T))---)).

Next, we define (S, T) < a" to be the pair (S, T') obtained in the following
way:

(1) If the pair (S, (TY <« a)V) satisfies the condition (2) in Definition 3.1, then put
S=Sand T'=(TV <a)".

(2) Otherwise, choose the smallest k such that a; is bumped out of the kth row in
the row insertion of a into TV and the insertion of ay into the (k + 1)-st row
violates the condition (2) in Definition 3.1.

(2-a) Stop the row insertion of a into T when a; is bumped out, and let T’ be the
resulting tableau after taking V.

(2-b) Remove ay in the leftmost column of S, which necessarily exists, and then play
the jeu de taquin (see for example [6, Sect. 1.2]) to obtain a tableau S’.

In this case, (S, T) < a" € B, 1, where either (1) |u/o|=1and t =v,0or(2) o = p

and |[t/v| =1. For w = w; ... w, € Wyv, we let ((S,T) < w) = ((---((S,T) <«
wp)--e) <= wp).

3.2 Non-commutative Littlewood—Richardson rule

Let us recall the Littlewood—Richardson rule for B, ,, (see [11, Proposition 4.9] for
more details).

Let i, v € & be given. For (S, T) € B} x By, consider (w(T) — (¥, S)). Suppose
that w(T) = wy ... w, and (wy ... wr — (4, 95)) € Bﬂ(k)’v for 1 <k <r. Let (i, jx)
€ u correspond to wy in T (1 <k <r). Then u® = pu®&=D U {(iy, P‘E,]:_l) + D}
(adding a box or dot in the ixth row of the Young diagram w* =1y where 1 © = ¢.
In particular, u(’) = w. Hence, the map sending (S, T') to (w(T) — (4, S)) gives a
bijection [11, Corollary 4.11]

B)Y x By, —> By.v. (3.1)
Next, for (S,T) € B, x B), consider ((S,#) < w(T)). Suppose that w(T) =

wi...wy and ((S,0) < wy...wy) € Bp,(k),v(k) for 1 <k <r. Let (i, jr) € v corre-
spond to wg in T (1 <k <r). Define U to be the tableau of shape v such that for
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I1<k<r

. . _ . k—1
i, ifp® = p 0\ (G D),

U(ig, jr) = _
(ik, Jk) i ifv(k)zv(kfl)u{(hvi(k D4y,

where 1@ =y and v =@. Then U = U, % U_, where U, € SSTx(X) and U_ €
SST_n(v/A) for some A C v. Let o = ) and T = v"”). We have 1 (U4) € LRY, and
U_e ﬁ;r, hence j(U-)g € LR, (see Sects. 2.2 and 2.3). Therefore, we have a
bijection [12, Proposition 4.3]

B, x BY — |_| By x LRY, x LRY,, (3.2)
r,o,T
where (S, T') is mapped to (((S, @) < w(T)),1(U4+), j(U-)g). Now, we have
| | Bor x LRY, xLRY,

r,0,T

&5 || BY x Be x LRY, x LRY; by (3.1)

A,0,T

<5 || BY X LRY, x By x LRY,

A,0,T

1-1
— || BYuxBun by (2.2).
ACW,V

Hence, we obtain the following bijection [12, Proposition 5.1]:
By x B — | | By x Bu. (3.3)
ACH,V
4 Plactic algebra
4.1 A plactic algebra for gl_

Let ¢ be an indeterminate. Define U(¢) to be an associative Q[z, t_l]-algebra with
unity generated by u; and u;v (i € N) subject to the following relations:

Will jUp = Ujugl, URVU VUGN = UV URY WY (j<i<k)),
Wil jUf =UjUjUg, upvu vy = ugviupvu v (j <k <i),

4.1
Ui 1U(Gi+1)Y = UjvUL; @i>=D, upuy =1,

uinjv =ujvu; (1 # j).

Let U(t)+ (resp. U(¢)—) be the subalgebra of U(¢) generated by u; (resp. u;v) for
i € N. Then U(t)+ is isomorphic to the usual plactic algebra for gl_ over Q[z,77!]
[14], where the first two relations in (4.1) are Knuth relations.
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Let W be the set of finite words with letters in NUNY. For w = w; ---w, € W,
put Uy, =y, - - Uy, € U(t), where we assume that ug = 1 for the empty word @. It
is well known that if w € Wiy (resp. Wiyv), then there exists a unique T' € B, (resp.
BX) such that uy, = uy(1).

For a skew Young diagram A/u and T € B;,/,, or BX/M, we let ur = uy(r), and
forpw,ve P and (S, T) € By, welet ucs 7y =usur.

Lemma 4.1 For p,q > 1, let S € Bary and T € B(qu) be given and let (S',T) =
(w(S) = B, T)) € Bary,a9). Then utus =u(s 7).

Proof 1Tt is straightforward to check it from (3.1) and (4.1). O

Lemma 4.2 For p,q > 1, let S € Byry and T € B(vlq) be given with w(S) =
w;r...w;r and w(T) = w, ...wy . Suppose that there exists k > 1 such that
Hw'" < + [{jlw; > >k. Ifw"  =kand w. = or some i and j, an
i lw;" <k} +1{/] eI i =kand ; =k d d

, € By (1a-1y, where T’ is obtained from removin, , then
usur =tuw|+“"; +u _—

Wy Wp o Wy wj < Wy

Proof We use inductionon p+q.If p4+g =2,thenk =1 and Uyl = ULULY =T
Suppose that p + g > 2. First we assume thati < p or j < g. Then

w;fH...wlf:(k+a1)...(k+ap_,'),

Wy Wiy = (k+bg—j)7 . (k+ b)Y,

for some 1 <aj <---<ap_;and 1 < by <--- < by_;. Also it follows from our
hypothesis that i + j = k + 1, and hence we can choose (S,T) € Bjp-i) (i)
such that w(S) = a; ...ap_; and w(T) = b;fj ...b). By Lemma 4.1, there exists
- < . —/ —

(T,S)e BE/H*J') X Bjp-iy with w(S') =aj .. .a;ﬂ. and w(T ) = (b;fj)v DY
such that uzu = u g 7, = uguz. This implies that

uwltrl‘..w;;rquimwjjrl — u(k+b;_./_)v e M(k+b/1)vu(k+ai) e M(k+a;7_i).

Since wlf" =k <k+ b} and w; =k" > (k+a})", we have

usur = u(k-ﬁ—h;_j)v“.(k-l—ba)v (I/tler e uw’fruw; e Mw;)u(k+ﬂg)--<(k+a/p_i)’

and by induction hypothesis,
usur = t“(k+b;7j)v..‘(k+b’l)v (uw?— .. uwgruw; . uwl_)u(k‘l'ai)m(k“‘a;,,i)

=tuw|+...uw;r...uw;rqu—...uw
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Next, we assume that i = p and j = ¢, that is, w;; =k and w, = kY. Note that
p+q=k+1.1fw;_l;ek—1and w,_; # (k—1)Y, then
ilw" <k =2} + [{jlw; =k =2)"}|=p+g-2=k—-1>k-2,

which contradicts the fact that (S, 7") € B(») (14-1)- So we also assume that either
wy =k—lorw, _;=(k-D".
Case 1. Suppose that w;;] #k —1and w,_ = (k —1)V. We have

USUT = Uyt - "“w;_luk“kvqu’_, ety

=u,+...Uu, + Uk-1VU—-1U, - ...U —
wi e Mt M=) U=y ey

=U(p—-NVu, +...u + U UG}-1)VU, - ... U —
N e L DL

=tU(—)VU, +...U + U — ..U —
(k=1)Y %] wy_Sw, w)

=tu,+... U, + UG-]VU, - ...U —
w) W, (k—1) w,_, w;

=tuyro Uyt Uy - ...uwl—,

Wy w1771 q—1

where we use induction hypothesis in the third line.

Case 2. Suppose that w;_l =k —1 and w;_l # (k — 1)V. By almost the same
argument as in Case 1, we have

MsMT=thl+.--uw+ Uy ooty
-

1 W41

Case 3. Suppose that w[f_l =k—Tlandw,_, = (k- 1)V. We have

usur = uw?— . ..uw;lukukvqu—il .. .Mwl—
=u,+...U + UGk(-1VU-U, - ...U —
L AL DL S LR s
= U(k—a)V Uy -- 'uUp—zuk—zuk—lqu_71 .o .Mwl—,

forsome 1 <a <kand 1 <wv; <--- <vp_2 <k —2.So by induction hypothesis,

USUT = U(k—q)VUy, - - - uvl)_zuk_zuk_1u(k_1)vqu—72 . uwl—

= tU(k—q)V Uy, - - Uy Uk =2l Uy
= tuw?’ ce ”w;,zuk—lu(k—l)vqulz ce uwl—
= luw1+ . uw;r_lqu—_] . uw]—.
This completes the induction. U
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Lemma 4.3 Let v € P be given. Fora e Nand (S,T) € By, v,

(1) ucs,ryta =t@—(s.1y)>
2) US, T)UgV = teu((S’T)gav), where € =0, 1.

Proof We keep the notations in Sect. 3.1. Consider (a — (S, T)) = (§',T’). Let
(T', a’") be the pair obtained by the first step in the definition of a — (S, T). It is
straightforward to check that upu, = u,u7:. Since S’ = (@’ — S), which is a usual
column insertion, we have ug = usu, . Hence

U, T)ha =USUTUg = USUgUT = USTUT = U(a—(S,T))-

Next, consider ((S, T) < a") = (S', T'). If the pair (S, (T < a)") satisfies the
condition (2) in Definition 3.1, then (S', T') = (S, (TY < a)V), which implies that
us=ug and uru,v =ug. Hence, us ryuqv = u(s,7y«<av)-

Suppose that there exists j such that a; = k is bumped out of the (j — 1)-st row
in the row insertion of a into 7" and the insertion of a; into the jth row violates the
condition (2) in Definition 3.1.

Let T = (T < a)V. Suppose that w(S) = wTw™ and w(T") = w~w~, where

wt = wl+ . w;; is the subword corresponding to the leftmost column of S and w™ =

w, ... wy is the subword corresponding to the rightmost column of T” reading from

top to bottom. Note that w; = kY. Suppose that w;r =k. By Lemma 4.2, we have

Uy+Uy— =1TU —F u _ — .
wT%w + o+ +
wl ...w,. ...wp wq ...wj .A.wl

P

Note that w(T’) = w, ... w; ...w; w~. Recalling that § is obtained by playing

the jeu de taquin after removing k in the first column of S, it follows that ug =
uwuwfﬁw; Therefore,
U(S,T)Ugy = USUTUgV = USUT"

= U+ U+ Uy -Ug-

=tug+u - u _ — Uy
w + + + w
Wi Wi Wp Wy W W)

=tugur =1u(s,T)«av)- O
Now, we obtain the following immediately.

Proposition 4.4 For w = wy...w, € W, there exists (S,T) € B, such that u,, =
tu(s,y where e =r — || — |v].

Corollary 4.5 The set {u(s,T) ’(S, T)e By, w,veP}spans U(t) over Q[t, 1.

The uniqueness of (S, 7') in Proposition 4.4 and the linear independence of the
spanning set in Corollary 4.5 will be proved in Sect. 4.2.
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4.2 Crystal equivalence

Let P = Py = D,y Ze; be the weight lattice of gl_, with a symmetric bilinear
form (-, -) given by (¢;,€;) = §;;. Let {a; = ¢; — €;41|i € N} be the set of simple
roots of gl_ (. A (normal) gl_ y-crystal is a set B together with the maps wt: B — P,
i, ¢ : B— 7> and?,-,ﬁ:B—> B U {0} (i € N) such that for b, b’ € B

(1) ¢i(b) = (wt(b), o) + i (D),

(2) &;(b) = max{k|e¥b # 0} and ¢; (b) = max{k| f¥b # 0},

(3) Wt(@;b) = wt(b) + a; if ;b # 0, and wt(f;b) = wt(b) — a; if fib #0,
4) fib=10ifand only if b=2;b/,

where 0 is a formal symbol (cf. [7]). Note that B is equipped with a colored oriented
graph structure, where b — b’ if and only if ' = f;b for b,b’ € B and i € N. The
dual crystaLBV of B is defined to be the set {bV|b € B} with wt(b") = —wt(b),
¢;(bY) = (f;b)" and f;(bY) = (e;b)" for b € B and i € N. We assume that 0¥ = 0.
Note that N is naturally equipped with a gl. y-crystal structure;

LN NN S N

with wt(i) = ¢; (i € N), while NV is its dual.

For gl_ (-crystals B; and B,, a tensor product B; @ B; is defined to be By x B; as
a set with elements denoted by b1 ® by, where

wt(b1 ® by) = wt(by) + wt(by),

- eib by, if@;(b1) > ¢ (by),
% (b ® by) = €j l% 2 1 @i(b1) > € (b2)
b1 ®eiby, if g;(b1) <é&i(b2),
~ fibi @by, ifg;(b (b2),
Fib @ by) = fll@i,2 ?‘Pt( 1) > €i(b2)
b1 ® fibz, if @;i(b1) <ei(b2),

for i e N and b ® b) € B ® By. Here we assume that 0 ® b = b; ® 0 = 0. For
example, W is a gl_-crystal, where each word wy ... w, is identified with w; ®
-+ ® w, in a mixed r-tensor product of N and NV,

For b; € B; (i =1,2), we say that b; is equivalent to b,, and write b; = b if
wt(b1) = wt(by) and they generate the same N-colored graph with respect to &;, f,
(i € N). We usually call = the crystal equivalence.

For a skew Young diagram A/u, B/, has a well-defined gl. y-crystal structure
such that X; (S) = S if X;w(S) #0 (i € N, x = e, f), where S’ is the unique tableau
in B/, with w(S") =X;w(S), and X; (S) = 0 otherwise [9]. We regard B/\V/u as the
dual of By . Moreover, for u,v € P, B, U{0} C (B, ® B}) U {0} is invariant
under ¢;, f; (i € N), and hence a gl_y-crystal, which is connected as a graph [11,
Proposition 3.4]. It is shown in [11, Theorem 3.5] that B, , is an extremal weight
crystal which was introduced by Kashiwara [8].
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Let ‘W be an associative Q-algebra with unity generated by the symbol [w] (w €
W) subject to the relations;

[w]lw'] = [ww'],
[wl=[w], ifw=w,
for w, w’ € W. Note that [f)] = 1 is the unity in ‘W, where ¢ is the empty word.

Lemma 4.6 The set
B ={[wSw(D][(5.T) € By, n,veP}
is a Q-basis of W.
Proof Fora eNand (S,T) € By, itis shown in [11, Lemma 4.4] that
(a— (5. 7))=(5,T)Qa, (($,T)«<a")=(S5,T)®a". 4.2)

This implies that for w € W, [w] = [w(S)w(T)] for some (S, T) € B, ,,, and hence
‘W is spanned by 8.
Now, suppose that

n

Zc, (S w(TD)]=0 4.3)
i=1

for some ¢; € Q and (SO, TW) e B o (1 <i <n).Since (S,T)= (S, T') im-
plies (S,T) = (8, T’) for (S,T) € By, and (§',T') € B5r [11, Lemma 5.1], we
assume that (S@, T®)’s are mutually different.

We use induction on 7 to show that ¢; =0 for 1 <i <n. It is clear when n = 1.
Suppose that n > 2.

We claim that there exist ji,..., j such that X ~~3er($(1), TW) = 0 but
Xj, %, (SO, T®) =£ 0 for some 2 < i < n, where x denotes e or f for each jj.

Consider (S, T®) (i = 1,2) and suppose that Xj, - --X;, (S, TM) #£ 0 if and
only if X, ---X;,(S®,T®) = 0 for all jj, ..., j-. Then by applying suitable &;’s,
we may assume that SO =H o) and (TOY (k1) > p for (k,1) € v where

p> () (i =1,2). Now, X - H,a) # 0 if and only if X, -+ X, Ho #0
forall 1 <ji,...,j,<p—2 smc¢ le x],T(’) =0 (@G =1,2). This 1mplies that
HM(” = Hu(z)' Also, we regard TO (i =1,2) as elements in gl_ (-crystals (whose

weight lattice is €D, , Ze;) with respect to ¢ and fi (k= p). Then X, ---X;, TM #
0 if and only if X, "'erT(z) # 0 for all ji,..., j- > p since X, --~)?/rHM<i) =0
(i = 1,2). This implies that 7" = T Therefore, (S, TV) = (§@, 7@), which
is a contradiction. This proves our claim.

Note that X; (x =e, f, i € N) acts on W by X;[w] = [X; w], where we assume that
[0] = 0. Hence by applying X =X, ---X, to (4.3), we get

n

3 e [Xw(SO)w(TD)] = ici [wE)w(@T)]=0

i=2 =2
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for some [w(S)w(T")] € B. Here, we assume that ¢; = 0 if X (w(SD)w(T DY)
= (. By induction hypothesis, we have ¢y = --- = ¢;, =0, and hence c¢; = 0. There-
fore, B is a QQ-basis of ‘W. O

Theorem 4.7 Let U(1) be the Q-algebra obtained from U(t) by specializing t = 1.
Then the assignment u, — [a] for a € NUNY gives a Q-algebra isomorphism

U) = w.

Proof By (4.2), the relations in (4.1) when ¢ = 1 are preserved in ‘W under the corre-
spondence u, > [a]. Hence there exists a Q-algebra homomorphism ¥ : U(1) — W
sending u, to [a] for a € NUNY. Since {us, (S, T) € Byw, u,v e P} spans
U(1) and ¥ (s, 7)) = [w(S)w(T)], it follows from Lemma 4.6 that ¥ is an isomor-
phism. g

Corollary 4.8 The set
{u.n|(S. T) € By, n.veP}
is a Q[t, 1~ ]-basis of U(t).

Proof Note that {us 7)[(S,T) € Bu,v, n,v € P} C U) is a Q-basis of U(1)
since it is mapped to B by Theorem 4.7. Then it is not difficult to check that
{us, (S, T)eB,y, u,ve P} C U®) is linearly independent over Q[, t~1] and
hence a Q[z, ¢~ !]-basis of U(7) since U(¢) is a Q[z, t~!]-submodule of a Q(r)-vector
space Q(t) ®qpr,i-1] UW@). O

Corollary 4.9 For w € W, there exist unique (S,T) € By, and € € Zx¢ such that
Uy = tgu(S,T).

4.3 Non-commutative Schur functions

Let m = @nzo %n, where %n is the completion of Q[r, t~1]-submodule of
U(t) spanned by {(S, T)|(S,T) € By, v, || + [v] =n}. For a skew Young diagram
A, let

Ssp= Y us.  sw= > us €U,

SeBy seBy),

which are plactic skew Schur functions in u;’s and u;v’s, respectively.

Let A(r) be the algebra of symmetric functions in x = xy over Q[z,#~!]. Then
{s@)(w)|k > O} (resp. {s(vk) (w)|k > 0}) generates the subalgebra §(¢)+ of ﬁ(t\) iso-
morphic to A(f) [14], where s)(u) (resp. s(vk) (w)) corresponds to the kth complete
symmetric function A (X) = s()(x), and {s,(w)|A € P} (resp. {s,"(W)|A € P}) is a
QIt, t~"']-basis of 8(t), (resp. $(1)_).
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We define

Spp@) = Z Uues, T

(S,T)eBu,v

for u,v € P and let

s=> Qrr s c U).

w,VEP

Lemma 4.10 For pu,v € P, we have

sﬂ(u)s (w) = Z Mg U/)\(u)sﬂ/k(u) Z thcmcMsg,,(u).

ACH,V A,0,T

Proof By (3.1) and Lemma 4.3(1), we have s, ,(u) = s (w)s, (w). The identity fol-
lows from (3.3) and Lemma 4.3(2). O

Proposition 4.11 $(r) is a Q[r, 1~ ]-algebra with a basis {suvy(|w, v e P}, where
SM,V(u)SJ,I(u) = Z( Z tlﬂl Coa fxﬂcﬁy >S§7n(u)
¢ CaBy

for u,v,o,t€P.

Proof In fact, {s,,,(w)|u, v € P} is linearly independent by Lemma 4.8, and hence
a basis of 4(¢). Combining Lemma 4.10 with the usual Littlewood—Richardson rule
(2.1) for s, (u)’s and s,/ (u)’s, we obtain the above identity. Since the sum on the right
hand side is finite, $(¢) has a well-defined multiplication and hence is a Q[z, ™ ']-
algebra. 0

4.4 Heisenberg algebra

Let #() be an associative Q[7, #~!]-algebra with unity generated by B, (n € Z\ {0})
subject to the relations

BiB; — BBy = kt* 81410

For k > 1, let px(u) € 8(¢)4 (resp. plz/ (u) € 8(t)—) correspond to the kth power sum
symmetric function pg (x) € A(?).

Proposition 4.12 The assignment pi(u) — By p;/(w) — B_y for k > 1 gives a
QIt, t~"1-algebra isomorphism

8(t) =~ FH(1).
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Proof Put hi(n) = s (u) and 7}/ (n) = s(vk)(u) for k > 0 (note that ho(u) = hy (u)
= 1). By Lemma 4.10, we have

m
hs@hY @) = hY_(wh,—; (u) @.4)
i=0
for r,s > 0, where m = min{r, s}. We may view 4(¢) as an algebra generated by
{hZ (w), hx(u)|k > 0} with the defining relations (4.4). Since
1
he =" —pa(w,

[A]=r

where 2, =[]; i"™®m; ()! and m; (1) = |{k|Ax = i}|, we obtain

P p) () — p)’ () px (w) = kt* 8y

for k,/ > 1 by using the same argument as in [13, Corollary 8]. This implies that
there exists an isomorphism ¢ : #(t) — 4(¢) sending B_j (resp. Bi) to p,:/ (u) (resp.
pr(w)) for k > 1. O

Remark 4.13 Regarding $(0) and $(1) as Q-algebras generated by 4y (u) and hZ (u)
(k> 0), wehave 8(0) > A® A, and §(1) =~ (%, prlk > 1) C Endg(A), where A is
the algebra of symmetric functions in x over Q and py is the operator on A induced
from the multiplication by py(x). Therefore, we may view 4(¢) as an algebra inter-
polating the algebra of double symmetric functions and the Weyl algebra of infinite
rank.

5 Knuth correspondence and Cauchy identity

5.1 Main result

Let A and B be linearly ordered Z,-graded sets. For A € M n (or Mg nv), we put
us =ujif A=A, j). Now we are in a position to state and prove our main theorem.

Theorem 5.1 There exists a bijection
MaN X Mp Ny —> Ma g X Mpnv X MaN

sending (X,Y) to (Z,Y’', X') such that

(1) wtg(X) =wta(X') + wtp (Z2) and wig(Y) = wig(Y') + wig(Z),
) uxuy =t"%uyuy where Z = (zij) and |Z| = Zi)j Zij-

Proof 1Tt is obtained by composing the following bijections, which preserve wty, wtg
and (4.1):
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MA,N X MB’N\/
— || BuxSSTa(u) x BY x SSTp(v) by (2.3)and (2.4)

HEPA,VEPR

— |_| SSTa (1) x SSTp(v) x B, x BY

HEPA,VEPE

— || SSTa(w) x SSTe(v) x ( || B x BM> by (3.3)

HEPA,VEPE ACH,V

— || L SSTe®) x By, x SSTa(w) x By

HEPA,VEPE AC U,V

— || SSTB() x Mpnv x SSTA(L) x Man by (2.5) and (2.6)

LEPANPR
N < | | ssTwG) x SSTMA)) x Mg x M4
AEPANP
—> MA,B X M]B,NV X MA,N by (23) O

Now, let us consider the non-commutative character identity associated with The-
orem 5.1. We first define the plactic Cauchy products

— —
exp) =[]ex).  Pxp) =]]Pw).
achA beB
where the products are given with respect to the linear ordering on A or B so that

smaller terms are to the left, and

1 . _
Q(x,) = { ~Tmi)T-uria)’ if la| =0,
A+ urxg) (1 +usxg) -+, iflal=1,

1 : —
P ) = | T ) it b1 =0,
(I +upvxp) (I +upvxp)---, if [b| =1.
We assume that x4 and xp commute with u. Note that
Qxp) = Y ssi(xa),  Pxe)= Y 5’ Ws(xp),

rePa rePR

by (2.3) and (2.4).
Corollary 5.2

[jaip1 (1 + xax0)

QAxp)P(xp) = H|a|=|b|(1 — X4 Xp)

P (xp)Q(X4).
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Proof By definition, we have

ta (X tg (Y
Qxp) = Y uxx;* P pae)= Y uyxy®.
XeMpn YEMB‘N\/

Since the bijections in the proof of Theorem 5.1 preserve the plactic relations (4.1),
wta and wtg, we obtain the identity. Il

5.2 Cauchy identity for Schur operators

Fori € N, we define operators u;, u;v € Endgy, ,~1;(A(1)) by

T (5, () = | PO 0) O0), - T OAG s + DY € .
o 0, if UG, i + DY ¢ P,

)

_ _ sy, i NG wi)}y € P
(s, (%) = {0’ if o\ (G, i)} € P.

These operators are called Schur operators [3]. Let U(¢) be the subalgebra of
Endgy, ,~17(A(7)) generated by u;,u;v (i € N). It is easy_to see that there exists a
surjective Q[z, r~']-algebra homomorphism v : U(t) — U(t) such that ¥ (u;) = u;
and ¥ (u;v) =u;v fori € N.

For A € £, let
s@=) us.  s/@= ) s
SeB; SEBX

where us = ¥ (us) for S € By or By . For A, u € P, we have

sy @ (5.) =@ s, X, s, @ (s52(x) =15/, (x)

(see [3]). We also have

—_
Qxp) =[]aGa) =Y s @si(xa),

acA LEPA

JE— _)_

Pap)=[]P@) =D s @si(xp).
beB rEPR

where £ (x,) and @(xp) are obtained from £ (x,) and @(x;) by replacing u;, u;v
with w;, ;v , respectively. Therefore, the products @(x)P (xp) and P (xp)Q(Xp)
are well defined, and the identity in Corollary 5.2 gives the following, which recovers
the generalized Cauchy identity for Schur operators [3] when t = 1:

Q(xp) P (xp) = iz (0 — txaxb)J (xB)Q(x4).
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5.3 Knuth correspondence for skew tableaux

Fix o, € . For w = w;...w, € W, we define (S® 7®Y Bg(k)’r(k) (1<
k < r) inductively as follows: (1) (SO, 7Oy = (H,, %), 2) (§©, T®) = (W —
(S®=D 7&*=Dy) if w; € N and (S®, 7®) = (S*=D, 7*=Dy ) if wy € NV
forl<k<r.

Let us say that w is a Littlewood—Richardson (simply LR) word of shape («, 8)
if (S®,7®) = (H, 4,0 for | <k <r, and 0" = B. Note that for 1 <k <r,
lo®| = o® D+ 1if wp e Nand |0®| = |c® V| — 1 if wy € NV (we assume
that 0@ = ). By definition, the subword wsws41 ... w; of w is also an LR word of
shape (c©~ D, @) forl <s <t <r.

Lemma 5.3 Forw € W, w is an LR word of shape (o, B) if and only if H, @ w = Hg.
In particular, if w is an LR word of shape (a, B) and w' = w for w' € W, then w’ is
also an LR word of shape (o, B).

Proof We keep the above notations. Suppose that w is an LR word of shape («, §).
Since Hy @ wy ... wg = (Hyw,9) = Hyw for 1 <k <r, we have H, ® w = Hg.

Conversely, suppose that H, ® w = Hg = (Hg, ¥). If 7® £ @ (that is, T® = @)
for some k, then we have (") = @ (that is, T % ) by definition of the insertions
(Sect. 3.1), which contradicts the fact that (S©, T")) = H, ® w = (Hg, ¥). Hence
7® =@ (thatis, T® =) for | <k <rand o™ = B.

Now suppose that S® £ Hjw for some 1 <k < r, which is equivalent to saying
that ¢; S® = 0 for some i > 1. Then

CiHs =% (Hy ®w) =% (SP @ wie1 ... w,) = (E:5P) @ w1 ... w, #0,
which is also a contradiction. Hence w is an LR word of shape («, ). O
For A, u € # with |A| = |a| 4 ||, we have by (2.1)

{S € By.|w(S) is an LR word of shape (c, 1)} Pty LR} . (5.1)

For A, v € P with |A| = |B| + |v|, we have by (3.2)

{S € B |w(S) is an LR word of shape (1, ﬂ)} <—> LR)‘ 5.2)

Let (B, x B))(.p) be the set of (S, T) € B, x By such that w(S)w(T) is an LR
word of shape (&, 8). Combining (5.1) and (5.2), we have

1-1
(Bu x B)) o5y < ||LRE, x LR}, (5.3)
A

Similarly, for o, T € £, let (BY x Bs)(q,p) be the set of (S, T) € BY x By such that
w(S)w(T) is an LR word of shape («, 8). As in (5.3), we have a bijection

(BY x By)

1-1
- | LR, x LR/ . (5.4)
A
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Corollary 54 Let o, B, u,v € P be given. The bijection (3.2) when restricted to
(B x BY)(a,p) gives the following bijection:

| |LR}, x LR}, — | | LRY x LR, x LR”, x LR!,.
A 7,¢,0,T

Proof Since the bijection (3.2) preserves the plactic relations or the crystal equiva-
lence, we have by Lemma 5.3

(Bu x B‘Y)(a,ﬂ)—) I_l (BY x BJ)(a’ﬂ) X LRf;; x LR},

§,0,T

Hence, it follows from (5.3) and (5.4). O

Let (M4 N X Mp NY)(a,p) be the set of (A, A") such that j - j’ € W is an LR word
of shape (o, B), where A = A(i, j) and A’ = A(i, j'), and let (Mp nv X M4 N)(@.p)
be defined in the same way.

Now, we recover the Knuth type correspondence for skew tableaux by Sagan and
Stanley [17] as a restriction of the bijection in Theorem 5.1 to the set of LR words of
shape («, B).

Theorem 5.5 Let o, B € P be given. The bijection in Theorem 5.1 when restricted to
(Ma, N X Mg Nv) (. p) gives a bijection

| |SSTar /@) x SST(1/B) —> | | Mas x SSTa(B/n) x SSTw(a/n).
A n

Proof Since the bijection in Theorem 5.1 preserves the plactic relations, we have a
bijection by Lemma 5.3

(Ma,N X MBN)(@.py—>Mas X Mpnv X Ma N)(@p)- (5.5)

On the other hand, we have

(Ma,N X MBNY)(a,8)

Pl Y (B, x BY)

HEPA,VEPR

@.p) % SST () x SSTr(v)

Py LR%, x LR}, x SST4 (1) x SSTp(v) by (5.3)

HUEPN,VEPY
W, wCA

Pl SST4 (1) x LR, x SST(v) x LR

HEPA,VEPR
H,VCA

L || SSTaG /@) x SSTR(L/B) by 2.2).

o,BCA
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Similarly, we have

(Mpnv X MaN)(@.p)
1-1

— (B x B”)(a,ﬂ) X SSTp(0) x SSTR (1)
TEPA,TEP
P LRY, x LRE, x SST4(0) x SSTp(r) by (5.4)
TEP,TEPR
nCe,p
& SSTx(0) x LRE, x SSTs(v) x LR%,
OEPN, TEP
nCe,p
1-1
— || SSTa(B/n) x SSTw(a/n) by (22).
ncae,p
Combining with (5.5), we obtain the result. O

Acknowledgement The author would like to thank the referees for careful reading of the manuscript
and helpful comments on it.

References

11.

12.

13.
14.

. Benkart, G., Sottile, F., Stroomer, J.: Tableau switching: algorithms and applications. J. Comb. Theory,

Ser. A 76, 11-43 (1996)

. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representa-

tions of Lie superalgebras. Adv. Math. 64, 118-175 (1987)

. Fomin, S.: Schur operators and Knuth correspondences. J. Comb. Theory, Ser. A 72, 277-292 (1995)
. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1—

3), 179-200 (1998)

. Frenkel, I.B.: Representations of Kac—-Moody algebras and dual resonance models. In: Applications

of Group Theory in Physics and Mathematical Physics. Lectures in Appl. Math., vol. 21, pp. 325-353.
AMS, Providence (1985)

. Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge Uni-

versity Press, Cambridge (1997)

. Kashiwara, M.: On crystal bases. In: Representations of Groups. CMS Conf. Proc., vol. 16, pp. 155-

197. Amer. Math. Soc., Providence (1995)

. Kashiwara, M.: Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73, 383413

(1994)

. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the g-analogue of classical Lie

algebras. J. Algebra 165, 295-345 (1994)

. Knuth, D.: Permutations, matrices, and the generalized Young tableaux. Pac. J. Math. 34, 709-727

(1970)

Kwon, J.-H.: Differential operators and crystals of extremal weight modules. Adv. Math. 222, 1339-
1369 (2009)

Kwon, J.-H.: Crystal bases of modified quantized enveloping algebras and a double RSK correspon-
dence. Preprint (2010), arXiv:1002.1509. J. Comb. Theory Ser. A (to appear)

Lam, T.: Ribbon Schur operators. Eur. J. Comb. 29(1), 343-359 (2008)

Lascoux, A., Schiitzenberger, M.P.: Le monoide plaxique. In: Noncommutative Structures in Algebra
and Geometric Combinatorics, Naples, 1978. Quad. “Ricerca Sci.”, vol. 109, pp. 129-156. CNR,
Rome (1981)

@ Springer


http://arxiv.org/abs/arXiv:1002.1509

J Algebr Comb (2011) 34:427-449 449

15. Littelmann, P.: A plactic algebra for semisimple Lie algebras. Adv. Math. 124, 312-331 (1996)

16. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Ox-
ford (1995)

17. Sagan, B.E., Stanley, R.: Robinson-Schensted algorithms for skew tableaux. J. Comb. Theory, Ser. A
55, 161-193 (1990)

18. Stembridge, J.R.: Rational tableaux and the tensor algebra of gl,,. J. Comb. Theory, Ser. A 46, 79-120
(1987)

19. Stroomer, J.: Insertion and the multiplication of rational Schur functions. J. Comb. Theory, Ser. A 65,
79-116 (1994)

20. Thomas, G.P.: On Schensted’s construction and the multiplication of Schur functions. Adv. Math. 30,
8-32 (1978)

@ Springer



	A plactic algebra of extremal weight crystals and the Cauchy identity for Schur operators
	Abstract
	Introduction
	Preliminaries
	Semistandard tableaux
	Littlewood-Richardson rule
	Skew Littlewood-Richardson rule
	Knuth correspondence

	Rational semistandard tableaux
	Rational semistandard tableaux for gl>0
	Non-commutative Littlewood-Richardson rule

	Plactic algebra
	A plactic algebra for gl>0
	Crystal equivalence
	Non-commutative Schur functions
	Heisenberg algebra

	Knuth correspondence and Cauchy identity
	Main result
	Cauchy identity for Schur operators
	Knuth correspondence for skew tableaux

	Acknowledgement
	References


