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Abstract For every prime p > 2 we exhibit a Cayley graph on Zf,p 3 which is not
a Cl-graph. This proves that an elementary abelian p-group of rank greater than or
equal to 2p + 3 is not a CI-group. The proof is elementary and uses only multivariate
polynomials and basic tools of linear algebra. Moreover, we apply our technique to
give a uniform explanation for the recent works of Muzychuk and Spiga concerning
the problem.
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1 Introduction

Let G be a finite group and S a subset of G. The Cayley graph Cay(G, S) is defined
by having the vertex set G and g is adjacent to A if and only if gh~! € S. The set S is
called the connection set of the Cayley graph Cay(G, S). A Cayley graph Cay(G, S)
is undirected if and only if S = ™!, where S™! = {s~! € G | s € S}. Every right
multiplication via elements of G is an automorphism of Cay(G, S), so the automor-
phism group of every Cayley graph on G contains a regular subgroup isomorphic
to G. Moreover, this property characterises the Cayley graphs on G.

It is clear that Cay(G, S) = Cay(G, S?) for every o € Aut(G). A Cayley graph
Cay(G, S§) is said to be a CI-graph if, for each T C G, the Cayley graphs Cay(G, S)
and Cay(G, T') are isomorphic if and only if there is an automorphism o of G such
that S° = T'. Furthermore, a group G is called a CI-group if every Cayley graph on
G is a Cl-graph.
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For our discussion two previous results are relevant. It is easy to prove that if G is
a Cl-group, then every subgroup of G is a CI-group. Babai and Frankl proved in [1]
that the Sylow subgroups of a CI-group can only be Z4, Zg, Z9, Z>7, the quaternion
group of order 8 or an elementary abelian p-group. Also, they asked whether every
elementary abelian p-group is a CI-group.

Hirasaka and Muzychuk proved in [3] that Z‘[t is a Cl-group for every prime p
and this was also proved by Morris [4]. On the other hand, Muzychuk [5] proved that
an elementary abelian p-group of rank 2p — 1 + (ZPP_I) is not a CI-group and most

recently as a strengthening of this result Spiga [7] showed that if n > 4p — 2, then
Zy, is not a Cl-group. Spiga [8] also proved that Zg is a Cl-group but Zg is not a
CI-group. The problem of determining whether or not an elementary abelian group
Z, is a Cl-group is solved if p =2 as the CI property holds for 73, see [2], and a

non-CI-graph for Zg was constructed by Nowitz [6].
Further improving the upper bounds in [5] and [7], we prove the following.

Theorem 1 For every prime p > 2, the group Z?,p 3 has a Cayley graph of valency
p+3)pPT  which is not a CI-graph. Consequently, an elementary abelian p-group
of rank greater than or equal to 2p + 3 is not a CI-group.

We can formulate a similar theorem for undirected Cayley graphs.

Theorem 2 For every prime p > 3, the group Zip ™3 has an undirected Cayley graph
which is not a CI-graph.

The problem of finding undirected non-CI-graphs of elementary abelian 3-groups
is still open.

The proof of Theorem 1 is elementary and uses only the definition of the CI prop-
erty. We will construct two isomorphic Cayley graphs in Sect. 2. The connection
sets in both graphs are the union of affine subspaces in Z?,” 3 and the isomorphism
between the Cayley graphs is given in terms of polynomials. Finally, the proof in
Sect. 5 that our Cayley graphs are not CI-graphs uses only elementary tools of linear
algebra. Section 6 is devoted to prove Theorem 2. In addition, in Sect. 7 we will in-
dicate how the previous results of Muzychuk and Spiga can be obtained applying our
technique.

2 The construction

Let U = Zﬁ“ and V = Zﬁ”, then the groups U and V can be regarded as vector
spaces over the field Z,, with bases {e1, ez, ..., epr1} and { fo, f1, ..., fp41}, respec-
tively. We endow V with the natural bilinear form:

p+1 p+1 p+1
<za,-fj,zﬂ,»f,->=za,-ﬂ,~.
j=0 j=0 j=0
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Let us define the following affine subspacesof G =U @ V:

Ai=€i+{vev| f0+ﬁ } (l:111p+1)9

p+1
Bi=Z€j+{U€V<U,fi+ij>=O}, i=1,...,p+1),
j=0

j#i
p+l1 p+l1

Co=) e+ {ve 1% <U,Zf/>=()},
i=1 j=0

p+1

SN}

p+1 p+1
s={J@uByucy and T=|JAUB)HUC 1)
i=1 i=1

p+1
=Zei + {ve \%
i=1

Now

will be the connection sets of two Cayley graphs defined on G = U @ V. Note that the
sets S and T are the union of affine subspaces of G. Namely, S and T are the union of
2p + 3 affine subspaces of dimension p + 1. Therefore, |S| = |T| = 2p + 3) pP*!,
as desired.

We are going to show in Sect. 4 that Cay(G, S) = Cay(G, T) but we will also
prove in Sect. 5 that there is no automorphism of G mapping S to 7. Taken together,
these two facts establish Theorem 1.

3 Preliminary facts

In this section we introduce some notation concerning polynomials and we establish
certain equations over the field Z . These will be used in the proof of the isomorphism
between the two Cayley graphs Cay(G, S) and Cay(G, T).

For a sequence of integers n := (n1, ..., n,4+1) we denote x” := x{” . --x::’]] and
let k(x%) = |{i | n; > 0}| denote the number of variables occurring in x*. Let M
be the set of monomials of degree p involving at least two variables and for each
i=1,...,p+ 1 we divide it into two subsets M = ./\/l0 U /\/l+ where /\/lo {x2|
n; =0} and /\/l+ {x% ] n; > 0}. For amonomial x* € M we define the number ¢, =

! Y
(,1’71), An obvious consequence of the Multinomial Theorem is that ﬁ is
npinpgpt i fpt:

an integer. If x € M, then k(x™) > 2 so p does not divide the denominator of ¢, and
hence ¢, is an integer. Finally, for a € Z’; and f(x) € Zp[x1, ..., x;] we denote

ApfO=fx+a)— fx).

Lemmal Lets= Zl | Xiand s =5 —Xx; = Z#ixj.
The following two equations hold over Z[x1, ..., xpy1].
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(a)
p+1
sP = Zx/p+ Z peax™.
xie M
(b)
J#i xﬂeM?
Proof These identities are obvious. O
Define the following polynomials in Z,[x1, ..., Xpy1l:
ri= ) (I=k())eux+ Y (2—k(x))eax )
xieM!? xte M}

fori=1,...,p+1and

ro = Z (k(x2) = 2)cpx™. 3)

xte M
Lemma 2
p+1 p_ NP+l op
Sy = PR “)
p= p
P — ZI"H 14
The polynomial —’1’ is defined in Z[x1, ..., xps1], while (4) holds over
ZLp.
Proof
p+1
Yori= 2 ((p+1=k()(1 = k(") + (k(x") = 1)(2 = k(x2)))enx"
j= xte M

=(1-p) Z — — 1 cnx— Z (k(xi) — l)cixi 5)

xte M xte M
and Lemma 1 gives

p+1 $P
pSP_ZJ 1 j

p

= Z (k(x%) = 1)cpx™

xte M

as well. O
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4 Isomorphism
Proposition 1 Cay(G, S) = Cay(G, T).
Proof Let ¢ : Z2P> — 727" be defined by

G(X1s vy Xptls YOs Y1s e v v Yptl)

= (X1 oo Xpr s YO F 10X, ooy Xpg 1)y ooy Yol + P pp1 (X1 oo Xpg1)),s

where r; € Zp[x1, ..., xp11] are defined by (2) and (3).

We claim that ¢ is an isomorphism from Cay(G, S) to Cay(G, T). Note that ¢
acts by translation on u 4+ V for every u € U so ¢ is bijective. It remains to show that
fora,be Gifb—ae S, thenp(b) —¢p(a)eT.

Since G is the direct sum of U and V, an element u + v € G can be written as
(x,y), where x € U and y € V. We will also write u +v € G as (x1, ..., Xp+1, Y0, Y1,

) V)

Assume first that b —a € A; for some 1 <i < p 4 1 and write a = (x, y) with
x €U and y € V. Then we may set b = a + (e; + v), where v € V such that (v, fo +
fi) = 0. Clearly ¢ does not affect the first p 4+ 1 coordinates hence we need to show
¢(b) — ¢p(a) € A;. Now we have

(@) —p(@) — (b—a)=(¢p(b) = b) — (¢(a) —a)
= (07 ceey 01 AEfr0(£)9 Aeirl(i)a ceey Aeirp+l(£))'

Thus we have to check that ((A,ro(x), Ag;r1(X), ..., Agrpr1(X)), fo + fi) =0.
Now

((Aeﬂ’O(i)a Aeirl(i)v cees Aeirp+l(£))a fo+ .fl) = Ae,-rO()_C) + Aeiri(i)
= A¢; (ro(x) +ri(x)) =0,

since rqg + r; does not involve x;.
By the same argument if b — a € Cp, then using Lemma 2 we get

p p

D7)

j=0

Azp+1 e

j=1¢i

1 1
(p+l ) PGP+ P =G+ psP = XS]

=G+ D —sP=1.

These equations hold over Z, since (t + p)? =t” (mod p2). Hence if b — a € Cy,
then ¢ (b) — ¢ (a) € C.
Finally, if b — a € B; we need a little more computation. Equation (5) shows that

p+1

Sori= 3 (k) e

xte M
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Hence
p+1
ri—l—er: (l—k c,,x"—i— Z 2 k Cn.X*

j=0 xﬂeM? x"e/\/lfr

+ Z (k(x—) — 1)cnx—

xte M
= Z cpxt,
xte M

sP — xip — slp
p
Therefore,
s s+p)P—x=Gi+pP P —x—sf
ZI#[E,<V,+Z ) » » =0,

using again the fact that (+ + p)? = t” (mod p?). Hence if b — a € B;, then
¢ (b) — ¢(a) € B; and this finishes the proof of the fact that ¢ is indeed a graph
isomorphism. U

5 Checking the CI property

Now in order to show that Cay(G, S) is not a CI-graph we have to show that there is
no o € Aut(G) = GL(U @ V) such that o (S§) =

Proposition 2 There is no linear transformation o € GL(U & V) such that
o(S)=

Proof Assume by way of contradiction that ¢ € GL(U & V) with o(S) = T.
Let M denote the matrix of the linear transformation o with respect to the basis
{et.veptts foo fis--os fpt1} and write M = [%; ,1:,[/121;] as a block matrix, where
Mig € Z0 VXD and by 5 € ZPHX0HD)

For the purpose of the following we modify our notation as follows. Let S =
U2p+3S and T = U?p# T;, where S; = T; = A;, Sitp+1 = Tjtpt1 = B; fori =
I,...,p+1and S3p43 = Co, Trpy3 =Ci.

Now we prove two lemmas from which the proof of Proposition 2 will follow.

Lemma 3 V is an invariant subspace of ¢, i.e., M1 2 =0.
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Proof Considering only the first p + 1 coordinates it is easy to see using the assump-
tion p > 2 thatfori # j ifa € S; and b € S;, then 2a — b ¢ S and similarly for T'.
This implies that both S and T contain exactly 2p + 3 affine subspaces of dimension
p + 1. Hence for 1 <i <2p + 3 we must have 0(S;) = T; for some j and if a, b
€ S;,then o (a) —a(b) € V. Now

p+1
Span(U{a —blabe Si}) =V,

i=1

so 0 (V) C V and this finishes the proof of the fact that V is an invariant subspace
ofo. 0

It is immediate from Lemma 3 that o induces a linear transformation of (U &
V)/V, which we also denote by o. Set

p+1

§={e,-,zej|15i5p+1}u{zej}cU. (©6)
j=1

J#

In the following, Lemma 4, we shall identify the elements in S +VcWUeV)/V
with those in S. As o (S)=0(T)and S+ V =T + V,we have 6 (§) = S.

Lemma 4 M, | is a permutation matrix.

Proof In this proof we will use the natural bilinear form on U defined as follows:

p+1 p+1 p+1
D ) piei | =) b
i=1 i=1 i=1

Let e := Zl”:ll e;. Note that e is the unique element of S which is the sum of two

others within S, hence o (¢) = e. The rest of the points can be paired such that the
sum of every pair is e and by the linearity of o the set H ={o(¢;) | 1 <i < p + 1}

contains exactly one element of each pair. Furthermore, ),y h = Zf:ll o(ej) =

1
G(Z{: ej)=o(e)=e.

For every s € S we have [s,e] = 0or 1, hence if H contains an element x such
that [x, e] =0, then H contains p elements with the same property as [,y /1, e] =
[e, e] = 1. By permuting the coordinates we obtain that if H contains an element
x such that [x,e] =0, then H = {e;} U {Z#iej |2<i<p+1}but) ,.zh=

1 L .
el —ey— - —ep1 F Zf; e; = e in this case, a contradiction. O

Now we continue the proof of Proposition 2.

For every permutation of {ey, ..., e, 1} if we apply the same permutation to the
indices of { f1, ..., fp+1} and fix fo we obtain an automorphism of Cay(G, §). Hence
we may assume for the rest of the proof that M| 1 = 1.
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This assumption implies that o (¢;) € A; and U(Z#i ej)eBiforl<i<p+1
From this we get

(M 1e;, fo+ fi) =0,

Pl
<M21261 fz-l—ij>

JF#

forl <i<p+1.
The sum of these 2p + 2 equations over Z,, is

p+l p+1 p+1
Z(Mz,lei, fo+ fi) + Z<M2,1 Zej, fi + ij> =0,
i=1 i=1 J#i j=0

so using bilinearity
p+1 p+1
<M2,1zei,zf,->=o.
i=1 j=0

We also have G(Zfill e;) € C1, which gives

p+1 p+1
<M2,1 ey fj> =1L
i=l  j=0
This contradiction finishes the proof of Proposition 2. g

Finally, Proposition 1 and Proposition 2 prove Theorem 1.

6 Undirected graphs

In this section we study undirected Cayley graphs and we will prove Theorem 2.

If G is an abelian group we write —S = {—s € G | s € G} instead of S~!. For a
subset S of G we define § = S U —S. It is also clear that if ¢ is an isomorphism
between Cay(G, S) and Cay(G, T), then ¢ is an isomorphism between Cay(G, S)
and Cay(G, T) as well.

In Sect. 2 we defined two isomorphic directed Cayley graphs Cay(Zip +3, S) and

Cay(ZzP +3 ,T) of Z2p +3 , where S and T were defined in (1). Therefore, we have a

pair of isomorphic undirected Cayley graphs: Cay(Z), 2p+3 ,§) and Cay(Zzl7 3 , 7).

Proposition 3 For every prime p > 3, the graph Cay(ZzP +3, S) is an undirected
Cayley graph on the group Z,, 203 \ohich is not a CI- graph.
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Proof Tt is enough to show that there is no linear transformation o such that o (§) =
T. Seeking a contradiction, let us assume that o € GL(U @ V) with o(§)=T

The same kind of reasoning as in Lemma 3 shows that V is an invariant subspace
of o, but here we have to use the extra condition that p > 3. Hence ¢ induces a linear
transformation of (U @ V)/V, which we also denote by o. Set

p+1 p+1
{eu DI Zejlfifpﬂ}u{zew—zef'}’
==

J# J#

which is a subset of U. We shall identify the elements in S+Vc (U @ V)/V with
those in S. As O'(S) = O’(T) and S+ V =T + V, we have 6 (S) = S. Note that we
can write § = S U —S with § N —S = ¢, where § is defined in (6).

Now we prove a lemma from which the proof of Proposition 3 will follow.

Lemma 5 One of the two linear transformations o and —o permutes the elements
of S.

Proof Since o induces an automorphism of Cay(U, §) and o (0) = 0, it gives an au-
tomorphism of the induced subgraph on the neighbourhood of 0 as well. In this sub-
graph the vertices e and —e have degree 2 p + 2, the other vertices have degree 2. This
implies that cr(e) =e or o(e) = —e. So either o or —o fixes e. The neighbourhood
of ¢ in § is S, hence the proof of Lemma 4 yields the result. 0

As a consequence of Lemma 5 we get a linear transformation (o or —o’) which
maps S onto T'. This contradicts Proposition 2, finishing the proof of Theorem 2. [J

7 Connection to previous results

In this section, we modify our construction a little bit to get non-CI-graphs of the

2 1+ 2p—1
groups Z;‘,p % and Ly =) . These results provide a uniform explanation for the

recent work of Splga [7] and Muzychuk [5], respectively. The proof of these results
only simplifies the heavy machinery used in [5] and [7].

7.1 Rank4p —2

Let U = V' = Zip_l and W = U’ @ V' with the bases {e’l,...,e’zp_l} and
. fy 1} respectively. We denote by £ the set of multilinear monomials of

degree p in 2p — 1 variables. Let EO {x2 € L |n; =0} and £+ C\EO Ifx%el,
then the exponent vector n can be treated as a p-element subset of {1,...,2p —1}.
Let
Aj=ej+{v eV |V, f/)y=0},
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2p—1
B;:Ze; + {v’ eV’ <v’,fl~/+ Z f/{>=0},
i j=1
2p—1
(720}
j=1

2p—1
(.2 )1}
j=1
Similarly to the construction in Sect. 2 let S’ = Uzp l(A’ UB)UC,and T' =

UZP l(A/ U B)) U C}. We claim that Cay(W’, §") = Cay(W', T’) and the isomor-
phism is given in the same manner:

2p—1
Cp= e;+{v/ev/
j=1

2p—1
= Z e; + [v’ eV’
Jj=1

& (X1, X2p 15 V1o e os Y2p—1)
= (X1, X1, VI H T, e X2p— 1) ey Yop—1 +Hlap—1 (X1, . X2p—1)),
where [; denotes the sum of the monomials in E? fori=1,...,2p—1.

In this case the computations needed to show that ¢’ is an isomorphism of the two
Cayley graphs are easier.

Lemma 6 Assume that x € £ and m € {0, 1}?P~1 C U’

(@)
(Anlx’l) (x) = \m Z xk
kGnnm
(b)
(Azj=l 7 (x) Z x=.
kGn
Proof (a) is obvious and (b) is just a particular case of (a). O

The proof that ¢’ is an isomorphism is similar to the proof of Proposition 1. We
leave it to the reader to prove, using Lemma 7(a), that if b —a € A;, then ¢’ (b) —
¢'(a) € A’, to prove, using Lemma 7(c), that if b — a € B/, then ¢'(b) — ¢'(a) € B/,
and finally to prove, using Lemma 7(b), that if b — a € C, then ¢'(b) — ¢'(a) € C}.

Lemma 7

()
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(b)

(©)

Proof (a) Obvious, since /; does not involve x;.
(b) We have

2p—1 2p—1

UEDIPIE RIS

J=1 xneLd  xiel

and hence

2p—1
scrg( £ 0) = -aemey X -
]:

Dt @

xtel

n
EA2p],

xiel xtel
applying Lemma 6(b)

— Y Y-y

nef0.12P~1 kGn lkl<p kSn

n|=p In|=p

2p—1—lk
—_ Z < 14 ; |_|>xli.
A

The binomial coefficient (*7 '~ !

that the remaining polynomial is just the constant polynomial —(2

ing into account that (2”;1) =1 (mod p), we obtain (b).
(c) Making use of (7) we get

p—\kl_) is divisible by p if 1 < |k| < p and this implies

pp_l) over Zj,. Tak-

E Xt

2p—1
EDWEDIES MRS
iefd  anel oLy
Now
AZ/’#ie;‘<_ Z xn>=_ Z AZ#ie}xﬁ

)cieﬁiJr JcieﬁiJr
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and by Lemma 6(a)

DL IEEEID VD o
nert kCn\(i i ¢k iYUkC
ekl b et st

2p—1—1k| -1

D Il R I

Py p— k| —
|kl<p—1

Now if |k| < p — 1, then (21’;_]';"%'17 ]) =0 (mod p) and this proves the result. [

The proof of the fact that there is no linear transformation which maps S’ to T’ is
nearly the same as in Proposition 2 provided p > 3. We leave it to the reader to work
out the details and we will do so in the next case as well. If p = 3, then the statement
analogous to Lemma 4 does not hold.

7.2 Rank 2p — 14 (*1)

Here we only give the connection sets and the isomorphism of the Cayley graphs.
The proof goes along the same lines as in the previous cases.

2p—1
Let O={kC{l,....2p — 1} | |k| = p} and let U”" = 77" and V" ;Z,(, »
with the bases {e],e),..., e} »—1} and { fi' | k € O}, respectively. Since |O| equals

to the dimension of V”, for every X” e V" we can write X” =(..,y/...), where
ke O.For (x”,y") e U" @ V" we define

9y = ().

Foreach 1 <i <2p — 1 we define the set

A;/ — el{/ + {v// c V//

<v”, Zfé’> =0}.

i¢k

For every k € O there are exactly p elements k|, ..., kp of O such that [k Nk;| =1
and hence we can define

Bgzze;{—i-{v//e V”|<v”, k/; +...+fé;):0}.
J€k

The third type of affine subspaces are defined by

ez )

keO

2p—1

=3 ep+fvrev
j=1
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and
2p—1

ci=Y e+ frev
j=l1

Finally, the connection sets are given similarly to the previous cases:

s = <U A;/> U <U Bg> ucy
i

keO

-

keO

and

T = (U A;/) U (U Bg> ucy

keO

and ¢” gives the isomorphism between the two Cayley graphs.
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