Strongly regular graphs constructed from p-ary bent functions
Yeow Meng Chee
, Yin Tan
and Xian De Zhang
DOI: 10.1007/s10801-010-0270-4
Abstract
In this paper, we generalize the construction of strongly regular graphs in Tan et al. (J. Comb. Theory, Ser. A 117:668-682, 2010) from ternary bent functions to p-ary bent functions, where p is an odd prime. We obtain strongly regular graphs with three types of parameters. Using certain non-quadratic p-ary bent functions, our constructions can give rise to new strongly regular graphs for small parameters.
Pages: 251–266
Keywords: keywords strongly regular graphs; partial difference sets; $p$-ary bent functions; $(Weakly)$ regular bent functions
Full Text: PDF
References
1. Arasu, K., Ding, C., Helleseth, T., Kumer, P., Martinsen, H.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Inf. Theory 47, 2934-2943 (2001)
2. Brouwer, A.: Web database of strongly regular graphs. (online)
3. Calderbank, R., Kantor, W.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97-122 (1986)
4. Chen, E.: Web database of two-weight codes. (online)
5. Chen, E.: Construction of two-weight codes. Internal Reports (2008)
6. Colbourn, C., Dinitz, J.: Handbook of Combinatorial Designs, Discrete Mathematics and its Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)
7. Helleseth, T., Hollmann, H., Kholosha, A., Wang, Z., Xiang, Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory 55(5), 5272-5283 (2009)
8. Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 56(9), 4646-4652 (2010)
9. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018-2032 (2006)
10. Kumar, P., Scholtz, R., Welch, L.: Generalized bent functions and their properties. J. Comb. Theory, Ser. A 40(1), 90-107 (1985)
11. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol.
20. Cambridge University Press, Cambridge (1997)
12. Ma, S.: A survey of partial differential sets. Des. Codes Cryptogr. 4(3), 221-261 (1994)
13. Passman, D.: The Algebraic Structure of Group Rings. Krieger, Melbourne (1985). Reprint of the 1977 original
14. Pott, A., Tan, Y., Feng, T., Ling, S.: Association schemes arising from bent functions. In: Preproceedings of the International Workshop on Coding and Cryptography, Bergen, pp. 48-61 (2009)
15. Rothaus, O.: On “bent” functions. J. Comb. Theory, Ser. A 20(3), 300-305 (1976)
16. Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary bent functions. J. Comb.
2. Brouwer, A.: Web database of strongly regular graphs. (online)
3. Calderbank, R., Kantor, W.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97-122 (1986)
4. Chen, E.: Web database of two-weight codes. (online)
5. Chen, E.: Construction of two-weight codes. Internal Reports (2008)
6. Colbourn, C., Dinitz, J.: Handbook of Combinatorial Designs, Discrete Mathematics and its Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)
7. Helleseth, T., Hollmann, H., Kholosha, A., Wang, Z., Xiang, Q.: Proofs of two conjectures on ternary weakly regular bent functions. IEEE Trans. Inf. Theory 55(5), 5272-5283 (2009)
8. Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 56(9), 4646-4652 (2010)
9. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018-2032 (2006)
10. Kumar, P., Scholtz, R., Welch, L.: Generalized bent functions and their properties. J. Comb. Theory, Ser. A 40(1), 90-107 (1985)
11. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol.
20. Cambridge University Press, Cambridge (1997)
12. Ma, S.: A survey of partial differential sets. Des. Codes Cryptogr. 4(3), 221-261 (1994)
13. Passman, D.: The Algebraic Structure of Group Rings. Krieger, Melbourne (1985). Reprint of the 1977 original
14. Pott, A., Tan, Y., Feng, T., Ling, S.: Association schemes arising from bent functions. In: Preproceedings of the International Workshop on Coding and Cryptography, Bergen, pp. 48-61 (2009)
15. Rothaus, O.: On “bent” functions. J. Comb. Theory, Ser. A 20(3), 300-305 (1976)
16. Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary bent functions. J. Comb.
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition