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Abstract We consider quivers/skew-symmetric matrices under the action of muta-
tion (in the cluster algebra sense). We classify those which are isomorphic to their
own mutation via a cycle permuting all the vertices, and give families of quivers
which have higher periodicity.

The periodicity means that sequences given by recurrence relations arise in a nat-
ural way from the associated cluster algebras. We present a number of interesting
new families of nonlinear recurrences, necessarily with the Laurent property, of both
the real line and the plane, containing integrable maps as special cases. In particular,
we show that some of these recurrences can be linearised and, with certain initial
conditions, give integer sequences which contain all solutions of some particular Pell
equations. We extend our construction to include recurrences with parameters, giving
an explanation of some observations made by Gale.

Finally, we point out a connection between quivers which arise in our classification
and those arising in the context of quiver gauge theories.

Keywords Cluster algebra · Quiver mutation · Periodic quiver · Somos sequence ·
Integer sequences · Pell’s equation · Laurent phenomenon · Integrable map ·
Linearisation · Seiberg duality · Supersymmetric quiver gauge theory

1 Introduction

Our main motivation for this work is the connection between cluster algebras and
integer sequences which are Laurent polynomials in their initial terms [8]. A key
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Fig. 1 The Somos 4 quiver and its mutation at 1

example of this is the Somos 4 sequence, which is given by the following recurrence:

xnxn+4 = xn+1xn+3 + x2
n+2. (1)

This formula, with appropriate relabelling of the variables, coincides with the cluster
exchange relation [7] (recalled below; see Sect. 8) associated with the vertex 1 in
the quiver S4 of Fig. 1(a). Mutation of S4 at 1 (as in [7]; see Definition 2.1 below)
gives the quiver shown in Fig. 1(b) and transforms the cluster (x1, x2, x3, x4) into
(x̃1, x2, x3, x4), where x̃1 is given by

x1x̃1 = x2x4 + x2
3 .

Remarkably, after this complicated operation of mutation on the quiver, the result is a
simple rotation, corresponding to the relabelling of indices (1,2,3,4) �→ (4,1,2,3).
Therefore, a mutation of the new quiver at 2 gives the same formula for the exchange
relation (up to a relabelling). It is this simple property that allows us to think of an
infinite sequence of such mutations as iteration of recurrence (1).

In this paper, we classify quivers with this property. In this way we obtain a classi-
fication of maps which could be said to be ‘of Somos type’. In fact we consider a more
general type of “mutation periodicity”, which corresponds to Somos type sequences
of higher dimensional spaces.

It is interesting to note that many of the quivers which have occurred in the the-
oretical physics literature concerning supersymmetric quiver gauge theories are par-
ticular examples from our classification; see for example [5, §4]. We speculate that
some of our other examples may be of interest in that context.

We now describe the contents of the article in more detail. In Sect. 2, we recall
matrix and quiver mutation from [7], and introduce the notion of periodicity we are
considering. It turns out to be easier to classify periodic quivers if we assume that
certain vertices are sinks; we call such quivers sink-type. In Sect. 3, we classify the
sink-type quivers of period 1 as nonnegative integer combinations of a family of
primitive quivers. In Sect. 4, we do the same for sink-type period 2 quivers, and in
Sect. 5 we classify the sink-type quivers of arbitrary period.

In Sect. 6, we give a complete classification of all period 1 quivers (without the
sink assumption), and give some examples. It turns out the arbitrary period 1 quivers



J Algebr Comb (2011) 34: 19–66 21

can be described in terms of the primitives with N nodes, together with the primitives
for quivers with N ′ nodes for all N ′ less than N of the same parity (Theorem 6.6).

In Sect. 7, we classify quivers of period 2 with at most five nodes. These descrip-
tions indicate that a full classification for higher period is likely to be significantly
more complex than the classification of period 1 quivers. However, it is possible to
construct a large family of period 2 (not of sink-type) quivers, which we present in
Sect. 7.4.

In Sect. 8, we describe the recurrences that can be associated to period 1 and
period 2 quivers via Fomin–Zelevinsky cluster mutation. The nature of the cluster
exchange relation means that the recurrences we have associated to periodic quivers
are in general nonlinear. However, in Sect. 9, we show that the recurrences associated
to period 1 primitives can be linearised. This allows us to conclude in Sect. 9 that
certain simple linear combinations of subsequences of the first primitive period 1
quiver (for arbitrarily many nodes) provide all the solutions to an associated Pell
equation.

In Sect. 10 we extend our construction of mutation periodic quivers to include
quivers with frozen cluster variables, thus enabling the introduction of parameters
into the corresponding recurrences. As a result, we give an explanation of some ob-
servations made by Gale in [13].

In Sect. 11, we give an indication of the connections with supersymmetric quiver
gauge theories.

In Sect. 12, we present our final conclusions. The last section is an appendix to
Sect. 9.

2 The periodicity property

We consider quivers with no 1-cycles or 2-cycles (i.e. the quivers on which cluster
mutation is defined). Any 2-cycles which arise through operations on the quiver will
be cancelled. The vertices of Q will be assumed to lie on the vertices of a regular
N -sided polygon, labelled 1,2, . . . ,N in clockwise order.

In the usual way, we shall identify a quiver Q, with N nodes, with the unique
skew-symmetric N × N matrix BQ with (BQ)ij given by the number of arrows from
i to j minus the number of arrows from j to i. We next recall the definition of quiver
mutation [7].

Definition 2.1 (Quiver mutation) Given a quiver Q we can mutate at any of its nodes.
The mutation of Q at node k, denoted by μkQ, is constructed (from Q) as follows:

1. Reverse all arrows which either originate or terminate at node k.
2. Suppose that there are p arrows from node i to node k and q arrows from node

k to node j (in Q). Add pq arrows going from node i to node j to any arrows
already there.

3. Remove (both arrows of) any two-cycles created in the previous steps.

Note that Step 3 is independent of any choices made in the removal of the two-
cycles, since the arrows are not labelled. We also note that in Step 2, pq is just the
number of paths of length 2 between nodes i and j which pass through node k.
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Remark 2.2 (Matrix mutation) Let B and B̃ be the skew-symmetric matrices corre-
sponding to the quivers Q and Q̃ = μkQ. Let bij and b̃ij be the corresponding matrix
entries. Then quiver mutation amounts to the following formula

b̃ij =
{

−bij if i = k or j = k,

bij + 1
2 (|bik|bkj + bik|bkj |) otherwise.

(2)

This is the original formula appearing (in a more general context) in [7].
We number the nodes from 1 to N , arranging them equally spaced on a

circle (clockwise ascending). We consider the permutation ρ : (1,2, . . . ,N) →
(N,1, . . . ,N − 1). Such a permutation acts on a quiver Q in such a way that the
number of arrows from i to j in Q is the same as the number of arrows from ρ−1(i)

to ρ−1(j) in ρQ. Thus the arrows of Q are rotated clockwise while the nodes re-
main fixed (alternatively, this operation can be interpreted as leaving the arrows fixed
whilst the nodes are moved in an anticlockwise direction). We will always fix the
positions of the nodes in our diagrams.

Note that the action Q �→ ρQ corresponds to the conjugation BQ �→ ρBQρ−1,
where

ρ =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 1

1 0
...

. . .
. . .

...

1 0

⎞
⎟⎟⎟⎟⎠

(we will use the notation ρ for both the permutation and corresponding matrix).
We consider a sequence of mutations, starting at node 1, followed by node 2, and

so on. Mutation at node 1 of a quiver Q(1) will produce a second quiver Q(2). The
mutation at node 2 will therefore be of quiver Q(2), giving rise to quiver Q(3) and
so on.

Definition 2.3 We will say that a quiver Q has period m if it satisfies Q(m + 1) =
ρmQ(1), with the mutation sequence depicted by

Q = Q(1)
μ1−→ Q(2)

μ2−→ · · · μm−1−→ Q(m)
μm−→ Q(m + 1) = ρmQ(1). (3)

We call the above sequence of quivers the periodic chain associated to Q.

Note that permutations other than ρm could be used here, but we do not consider
them in this article. If m is minimal in the above, we say that Q is strictly of period m.
Also note that each of the quivers Q(1), . . . ,Q(m) is of period m (with a renumbering
of the vertices), if Q is.

Recall that a node i of a quiver Q is said to be a sink if all arrows incident with i

end at i, and is said to be a source if all arrows incident with i start at i.

Remark 2.4 (Admissible sequences) Recall that an admissible sequence of sinks in an
acyclic quiver Q is a total ordering v1, v2, . . . , vN of its vertices such that v1 is a sink
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in Q and vi is a sink in μvi−1μvi−2 · · ·μv1(Q) for i = 2,3, . . . ,N . Such a sequence
always has the property that μvN

μvN−1 · · ·μv1(Q) = Q [1, §5.1]. This notion is of
importance in the representation theory of quivers.

We note that if any (not necessarily acyclic) quiver Q has period 1 in our sense,
then μ1Q = ρQ. It follows that μNμN−1 · · ·μ1Q = Q. Thus any period 1 quiver has
a property which can be regarded as a generalisation of the notion of existence of an
admissible sequence of sinks. In fact, higher period quivers also possess this property
provided the period divides the number of vertices.

3 Period 1 quivers

We now introduce a finite set of particularly simple quivers of period 1, which we
shall call the period 1 primitives. Remarkably, it will later be seen that in a certain
sense they form a “basis” for the set of all quivers of period 1. We shall also later
see that period m primitives can be defined as certain sub-quivers of the period 1
primitives.

Definition 3.1 (Period 1 sink-type quivers) A quiver Q is said to be a period 1 sink-
type quiver if it is of period 1 and node 1 of Q is a sink.

Definition 3.2 (Skew-rotation) We shall refer to the matrix

τ =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · −1

1 0
...

. . .
. . .

...

1 0

⎞
⎟⎟⎟⎟⎠

as a skew-rotation.

Lemma 3.3 (Period 1 sink-type equation) A quiver Q with a sink at 1 is period 1 if
and only if τBQτ−1 = BQ.

Proof If node 1 of Q is a sink, there are no paths of length 2 through it, and the
second part of Definition 2.1 is void. Reversal of the arrows at node 1 can be done
through a simple conjugation of the matrix BQ:

μ1BQ = D1BQD1, where D1 = diag(−1,1, . . . ,1).

Equating this to ρBQρ−1 leads to the equation τBQτ−1 = BQ as required, noting
that

τ = D1ρ. �

The map M �→ τMτ−1 simultaneously cyclically permutes the rows and columns
of M (up to a sign), while τN = −IN , hence τ has order N . This gives us a method
for building period 1 matrices: we sum over τ -orbits.
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The period 1 primitives P
(k)
N We consider a quiver with just a single arrow from

N −k+1 to 1, represented by the skew-symmetric matrix R
(k)
N with (R

(k)
N )N−k+1,1 =

1, (R
(k)
N )1,N−k+1 = −1 and (R

(k)
N )ij = 0 otherwise.

We define skew-symmetric matrices B
(k)
N as follows:

B
(k)
N =

⎧⎪⎨
⎪⎩

∑N−1
i=0 τ iR

(k)
N τ−i , if N = 2r + 1 and 1 ≤ k ≤ r ,

or if N = 2r and 1 ≤ k ≤ r − 1;∑r−1
i=0 τ iR

(r)
N τ−i , if k = r and N = 2r .

(4)

Let P
(k)
N denote the quiver corresponding to B

(k)
N . We remark that the geometric ac-

tion of τ in the above sum is to rotate the arrow clockwise without change of ori-
entation, except that when the tail of the arrow ends up at node 1 it is reversed. It
follows that 1 is a sink in the resulting quiver. Since it is a sum over a τ -orbit, we
have τB

(k)
N τ−1 = B

(k)
N , and thus that P

(k)
N is a period 1 sink-type quiver. In fact, we

have the simple description:

B
(k)
N =

{
τ k − (τ t )k, if N = 2r + 1 and 1 ≤ k ≤ r, or N = 2r and 1 ≤ k ≤ r − 1;
τ r , if N = 2r and k = r,

where τ t denotes the transpose of τ .
Note that we have restricted to the choice 1 ≤ k ≤ r because when k > r , our

construction gives nothing new. Firstly, consider the case N �= 2k. Then B
(N+1−k)
N =

B
(k)
N , because the primitive B

(k)
N has exactly two arrows ending at 1: those starting

at k + 1 and at N + k − 1. Starting with either of these arrows produces the same
result. If N = 2k, these two arrows are identical, and since τ k is skew-symmetric,
τ k − (τ t )k = 2τ k . The sum over N = 2k terms just goes twice over the sum over k

terms.
In this construction we could equally well have chosen node 1 to be a source. We

would then have R
(k)
N �→ −R

(k)
N , B

(k)
N �→ −B

(k)
N and P

(k)
N �→ (P

(k)
N )opp, where Qopp

denotes the opposite quiver of Q (with all arrows reversed). Our original motivation
in terms of sequences with the Laurent property is derived through cluster exchange
relations, which do not distinguish between a quiver and its opposite, so we consider
these as equivalent.

Remark 3.4 We note that each primitive is a disjoint union of cycles or arrows, i.e.
quivers whose underlying graph is a union of components which are either of type
A2 or of type Ãm for some m.

Figures 2 to 4 show the period 1 primitives we have constructed, for 2 ≤ N ≤ 6.

Remark 3.5 (An involution ι : Q �→ Qopp) It is easily seen that the following permu-
tation of the nodes is a symmetry of the primitives P

(i)
N (if we consider Q and Qopp

as equivalent):

ι : (1,2, . . . ,N) �→ (N,N − 1, . . . ,1).
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Fig. 2 The period 1 primitives for two, three and four nodes

Fig. 3 The period 1 primitives
for five nodes

Fig. 4 The period 1 primitives for six nodes

In matrix language, this follows from the facts that ιR
(k)
N ι = −R

(k)
N and ιτ ι = τ t ,

where

ι =

⎛
⎜⎜⎝

0 1
. .

.

. .
.

1 0

⎞
⎟⎟⎠ .

It is interesting to note that ρ is a Coxeter element in ΣN regarded as a Coxeter
group, while ι is the longest element.

We may combine primitives to form more complicated quivers. Consider the sum

P =
r∑

i=1

miP
(i)
N ,
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where N = 2r or 2r + 1 for r an integer and the mi are arbitrary integers. It is easy
to see that the corresponding quiver is a period 1 sink-type quiver whenever mi ≥ 0
for all i. In fact, we have

Proposition 3.6 (Classification of period 1 sink-type quivers) Let N = 2r or 2r + 1,
where r is an integer. Every period 1 sink-type quiver with N nodes has correspond-
ing matrix of the form B = ∑r

k=1 mkB
(k)
N , where the mk are arbitrary nonnegative

integers.

Proof Let B be the matrix of a period 1 sink-type quiver. It remains to show that B

is of the form stated. We note that conjugation by τ permutes the set of summands
appearing in the definition (4) of the B

(k)
N , i.e. the elements τ iR

(k)
N τ−i for 0 ≤ i ≤

N − 1 and 1 ≤ k ≤ r if N = 2r + 1, for 0 ≤ i ≤ N − 1 and 1 ≤ k ≤ r − 1 if N = 2r ,
together with the elements τ iR

(r)
N τ−i for 0 ≤ i ≤ r − 1 if N = 2r . These 1

2N(N − 1)

elements are easily seen to form a basis of the space of real skew-symmetric matrices.
By Lemma 3.3, τBτ−1 = B , so B is a linear combination of the period 1 primitives
(which are the orbit sums for the conjugation action of τ on the above basis), B =∑r

k=1 mkB
(k)
N . The support of the B

(k)
N for 1 ≤ k ≤ r is distinct, so BN−k+1,1 = mk

for 1 ≤ k ≤ r (where the support of a matrix is the set of positions of its non-zero
entries). Hence the mk are integers, as B is an integer matrix. Since B is sink-type,
all the mk must be nonnegative. �

Note that this means all period 1 sink-type quivers are invariant under ι in the
above sense. We also note that if the mk are taken to be of mixed sign, then Q is no
longer periodic without the addition of further “correction” terms. Theorem 6.6 gives
these correction terms.

4 Period 2 quivers

Period 2 primitives will be defined in a similar way. First, we make the following
definition:

Definition 4.1 (Period 2 sink-type quivers) A quiver Q is said to be a period 2 sink-
type quiver if it is of period 2, node 1 of Q(1) = Q is a sink, and node 2 of Q(2) =
μ1Q is a sink.

Let Q be a period 2 quiver. Then we have two quivers in our periodic chain (3),
Q(1) and Q(2) = μ1Q, with corresponding matrices B(1),B(2). If Q(1) is of sink-
type then, since node 1 is a sink in Q(1), the mutation Q(1) �→ μ1Q(1) = Q(2) again
only involves the reversal of arrows at node 1. Similarly, since node 2 is a sink for
Q(2), the mutation Q(2) �→ μ2Q(2) only involves the reversal of arrows at node 2.

Obviously each period 1 quiver Q is also period 2, where B(2) = ρB(1)ρ−1.
However, we will construct some strictly period 2 primitives.
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As before, we have

Lemma 4.2 (Period 2 sink-type equation) Suppose that Q is a quiver with a sink at
1 and that Q(2) has a sink at 2. Then Q is period 2 if and only if τ 2BQτ−2 = BQ.

Proof As before, reversal of the arrows at node 1 of Q can be achieved through a
simple conjugation of its matrix: μ1BQ = D1BQD1. Similarly, reversal of the arrows
at node 2 of Q(2) can be achieved through

μ2BQ(2) = D2BQ(2)D2, where D2 = diag(1,−1,1, . . . ,1) = ρD1ρ
−1.

Equating the composition to ρ2BQρ−2 leads to the equation

BQ = D1D2ρ
2BQρ−2D2D1 = τ 2BQτ−2. �

Following the same procedure as for period 1, we need to form orbit-sums for τ 2

on the basis considered in the previous section; we shall call these period 2 primitives.
A τ -orbit of odd cardinality is also a τ 2-orbit, so the orbit sum will be a period

2 primitive which is also of period 1. Thus we cannot hope to get period 2 solutions
which are not also period 1 solutions unless there are an even number of nodes.
A τ -orbit of even cardinality splits into two τ 2-orbits.

When N = 2r , the matrices R
(k)
N , for 1 ≤ k ≤ r − 1, generate strictly period 2

primitives P
(k,1)
N,2 , with matrices given by

B
(k,1)
N,2 =

r−1∑
i=0

τ 2iR
(k)
N τ−2i .

If, in addition, N is divisible by 4, we obtain the additional strictly period 2 primitives
P

(r,1)
N,2 , with matrices given by

B
(r,1)
N,2 =

r/2−1∑
i=0

τ 2iR
(r)
N τ−2i .

Geometrically, the primitive P
(k,1)
N,2 is obtained from the period 1 primitive P

(k)
N

by “removing half the arrows” (the ones corresponding to odd powers of τ ). The
removed arrows form another period 2 primitive, called P

(k,2)
N,2 , which may be defined

as the matrix:

B
(k,2)
N,2 = τB

(k,1)
N,2 τ−1.

We make the following observation:

Lemma 4.3 We have

ρ−1μ1B
(k,1)
N,2 ρ = B

(k,2)
N,2

for 1 ≤ k ≤ r .
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Fig. 5 The strictly period 2 primitives for four nodes

Fig. 6 The period 2 primitives for six nodes

Proof For 1 ≤ k ≤ r − 1, we have

ρ−1μ1B
(k,1)
N,2 ρ = ρ−1D1B

(k,1)
N,2 D−1

1 ρ

= τ−1
(r−1∑

i=0

τ 2iR
(k)
N τ−2i

)
τ

= τ

(r−1∑
i=0

τ 2i−2R
(k)
N τ 2−2i

)
τ−1,

since ρ−1D1 = τ−1. Since τ−2 = −τ 2r−2, we have ρ−1B
(k,1)
N,2 (2)ρ = τB

(k,1)
N,1 τ−1 =

B
(k,2)
N,2 . A similar argument holds for k = r , noting that in this case, τ−2R

(k)
N =

τ r−2R
(k)
N . �

Figures 5 and 6 show the strictly period 2 primitives with four and six nodes.
We need the following:

Lemma 4.4

(a) Let M be an N × N skew-symmetric matrix with Mij ≥ 0 whenever i ≥ j . Then
τMτ−1 has the same property.

(b) All period 2 primitives B
(k,l)
N,2 have nonnegative entries below the leading diago-

nal.
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Proof We must also have Mij ≤ 0 for i ≤ j . We have

(
τMτ−1)

ij
=

⎧⎪⎪⎨
⎪⎪⎩

Mi−1,j−1 i > 1, j > 1,

−MN,j−1 i = 1, j > 1,

−Mi−1,N i > 1, j = 1,

MN,N i = 1, j = 1

from which (a) follows. Part (b) follows from part (a) and the definition of the period
2 primitives. �

As in the period 1 case, we obtain period 2 sink-type quivers by taking orbit-sums
of the basis elements:

Proposition 4.5 (Classification of period 2 sink-type quivers) If N is odd, there are
no strictly period 2 sink-type quivers with N nodes. If N = 2r is an even integer then
every strictly period 2 sink-type quiver with N nodes has corresponding matrix of the
form

B =
{∑r

k=1
∑2

j=1 mkjB
(k,j)

N,2 if 4|N ,

(
∑r−1

k=1
∑2

j=1 mkjB
(k,j)

N,2 ) + mr1B
(r)
N if 4 � N ,

where the mjk are arbitrary nonnegative integers such that if 4|N , there is at least
one k, 1 ≤ k ≤ r , such that mk1 �= mk2, and if 4 � N , there is at least one k, 1 ≤ k ≤
r − 1, such that mk1 �= mk2.

Proof Using the above discussion and an argument similar to that in the period 1
case, we obtain an expression as above for B for which the mkj are integers. It is easy
to check that each primitive has a non-zero entry in the first or second column, below
the leading diagonal. By Lemma 4.4, this entry must be positive. If the entry is in the
first column, the corresponding mkj must be nonnegative as 1 is a sink. If it is in the
second column then, since 1 is a sink, mutation at 1 does not affect the entries in the
second column below the leading diagonal. Since after mutation at 1, 2 is a sink, the
corresponding mkj must be nonnegative in this case also. �

Whilst the formulae above depend upon particular characteristics of the primitives,
i.e. having a specific sink, a similar relation exists for any period 2 quiver. For any
quiver Q (regardless of any symmetry or periodicity properties), we have μk+1ρQ =
ρμkQ, which just corresponds to relabelling the nodes. We write this symbolically as
μk+1ρ = ρμk and ρ−1μk+1 = μkρ

−1. For the period 2 case, the periodic chain (3)
can be written as

Q(1)
μ1−→ Q(2)

μ2−→ Q(3) = ρ2Q(1)
μ3−→ Q(4) = ρ2Q(2)

μ4−→ · · · .
Whilst μ1 and μ2 are genuinely different mutations, μ3 and μ4 are just μ1 and μ2
after relabelling. Since ρ−1μ2Q(2) = ρQ(1), we have μ1(ρ

−1Q(2)) = ρQ(1).
We also have μ2 (ρ Q(1)) = ρ μ1 Q(1) = ρ Q(2). Since Q(3) = μ2Q(2) =

ρ2Q(1), we have ρ−1μ2Q(2) = ρQ(1), and thus we obtain μ1(ρ
−1Q(2)) = ρQ(1).

We thus can extend the above diagram to that in Fig. 7.
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Fig. 7 Period 2 quivers and mutations

If Q(1),Q(2) have sinks at nodes 1 and 2, respectively, then so do ρ−1Q(2) and
ρQ(1) and the mutations μ1 and μ2 in the above diagram act linearly. This gives

μ1
(
Q(1) + ρ−1Q(2)

) = Q(2) + ρQ(1) = ρ
(
Q(1) + ρ−1Q(2)

)
and

μ2
(
Q(2) + ρQ(1)

) = ρ2Q(1) + ρQ(2) = ρ
(
Q(2) + ρQ(1)

)
,

so Q(1) + ρ−1Q(2) is period 1.
We have proved the following:

Proposition 4.6 Let Q be period 2 sink-type quiver. Then Q(1) + ρ−1Q(2) is a
quiver of period 1.

5 Quivers with higher period

Higher period primitives are defined in a similar way. The periodic chain (3) contains
m quivers Q(1),Q(2), . . . ,Q(m), with corresponding matrices B(1), . . . ,B(m).

Definition 5.1 (Period m sink-type quivers) A quiver Q is said to be a period m

sink-type quiver if it is of period m and, for 1 ≤ i ≤ m, node i of Q(i) is a sink.

Thus the mutation Q(i) �→ Q(i + 1) = μiQ(i) again only involves the reversal
of arrows at node i, so can be achieved through a simple conjugation of its matrix:
μiB(i) = DiB(i)Di . Here

Di = diag(1, . . . ,1,−1,1, . . . ,1) = ρi−1D1ρ
−i+1

(with a “−1” in the ith position).
As in the period 1 and 2 cases, we obtain:

Lemma 5.2 (Period m sink-type equation) Suppose that Q is a quiver with a sink
at the ith node of Q(i) for i = 1,2, . . . ,m. Then Q is period m if and only if
τmBQτ−m = BQ.
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Proof We know that Q has period m if and only if Dm · · ·D1BQD1 · · ·Dm =
ρmBQρ−m, i.e. if and only if

BQ = D1 · · ·DmρmBQρ−mDm · · ·D1 = τmBQτ−m. �

Starting with the same matrices R
(k)
N , we now use the action M �→ τmMτ−m to

build an invariant, i.e. we take orbit sums for τm. We only obtain strictly m-periodic
elements in the case where the orbit has size divisible by m.

When m|N , the matrices R
(k)
N , for 1 ≤ k ≤ r − 1 (where N = 2r or 2r + 1, r an

integer), generate period m primitives B
(k,1)
N,m , with matrices given by

B
(k,1)
N,m =

(N/m)−1∑
i=0

τmiR
(k)
N τ−mi.

Geometrically, the primitive P
(k,1)
N,m is obtained from the primitive P

(k)
N by only in-

cluding every mth arrow. As before, we form another m − 1 period m primitives,
P

(k,j)
N,m for j = 2, . . . ,m, with matrices given by

B
(k,j)
N,m = τ j−1B

(k,1)
N,m

(
τ j−1)−1

.

Note that the elements τ lR
(k)
N τ−l , for 0 ≤ l ≤ N − 1, form a τ -orbit of size N . Since

m|N , this breaks up into m τm-orbits each of size N/m; the elements above are the
orbit sums.

Similarly, if (2m)|N (so we are in the case N = 2r) then the τm-orbit-sum of R
(r)
N

is

B
(k,1)
N,m =

(N/2m)−1∑
i=0

τmiR
(r)
N τ−mi

with corresponding quiver P
(k,1)
N,m . We also obtain another m − 1 period m primitives,

P
(r,j)
N,m , for j = 2, . . . ,m, with matrices

B
(r,j)
N,m = τ j−1B

(r,1)
N,m

(
τ j−1)−1

.

As in the period 1 and 2 cases, we obtain arbitrary strictly period m sink-type quiv-
ers by taking orbit-sums of the basis elements. The nonnegativity of the coefficients
mkj is shown in a similar way also.

Proposition 5.3 (Classification of period m sink-type quivers) If m � N , there are no
strictly period m sink-type quivers. If (2m)|N , the general strictly period m sink-type
quiver is of the form

B =
r∑

k=1

m∑
j=1

mkjB
(k,j)
N,m ,
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where the mkj are nonnegative integers and there is at least one k, 1 ≤ k ≤ r , for
which the mkj are not all equal.

If m|N but (2m) � N then the general period m sink-type quiver has the form

B =
{∑r

k=1
∑m

j=1 mkjB
(k,j)
N,m if N = 2r + 1 is odd;∑r−1

k=1
∑m

j=1 mkjB
(k,j)
N,m + ∑m/2

j=1 mrjB
(r,j)

N,m/2 if N = 2r is even,

where the mkj are nonnegative integers and where in the first case, there is at least
one k, 1 ≤ k ≤ r , for which the mkj are not all equal, and in the second case, there is
at least one k, 1 ≤ k ≤ r − 1, for which the mkj are not all equal.

As before, we use μk+1ρ = ρμk and ρ−1μk+1 = μkρ
−1, from which it follows

that μkρ
−j = ρ−jμk+j . In turn, this gives

μk

(
ρ−jQ(j + k)

) = ρ−jμj+kQ(j + k) = ρ−jQ(j + k + 1).

Suppose now that Q is a period m quiver. Then we have Q(sm + j) = ρsmQ(j) for
1 ≤ j ≤ m. We use this to extend the periodic chain (3) to an m level array. We have

μ1
(
ρ−jQ(j + 1)

) = ρ−jQ(j + 2), μ2
(
ρ−jQ(j + 2)

) = ρ−jQ(j + 3), . . . ,

arriving at

μm

(
ρ−jQ(j + m)

) = ρ−jQ(j + m + 1) = ρm
(
ρ−jQ(j + 1)

)
.

We write this period m sequence in the j th level of the array, i.e.

ρ−jQ(j + 1)
μ1−→ ρ−jQ(j + 2)

μ2−→ · · · μm−1−→ ρ−jQ(j +m)
μm−→ ρm

(
ρ−jQ(j + 1)

)
.

Again we know that if Q(j) has a sink at node j for each j , then each ρ−jQ(j +1)

has a sink at node 1 and the mutation μ1 acts linearly. This gives

μ1
(
Q(1) + ρ−1Q(2) + · · · + ρ−m+1Q(m)

)
= ρ

(
Q(1) + ρ−1Q(2) + · · · + ρ−m+1Q(m)

)
,

so Q(1) + ρ−1Q(2) + · · · + ρ−m+1Q(m) is period 1.
We have proved:

Proposition 5.4 Let Q be period m sink-type quiver. Then Q(1) + ρ−1Q(2) + · · · +
ρ−m+1Q(m) is a quiver of period 1.

Example 5.5 (Period 3 primitives) Proceeding as described above, whenever N is a
multiple of 3 we obtain three period 3 primitives for each period 1 primitive. Figure 8
shows those with six nodes.
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Fig. 8 The period 3 primitives for six nodes

6 Period 1 general solution

In this section we give an explicit construction of the N × N skew-symmetric matri-
ces corresponding to arbitrary period 1 quivers, i.e. those for which mutation at node
1 has the same effect as the rotation ρ. We express the general solution as an explicit
sum of period 1 primitives, thus giving a simple classification of all such quivers.

In anticipation of the final result, we consider the following matrix:

B =

⎛
⎜⎜⎜⎝

0 −m1 · · · −mN−1
m1 0 ∗
... 0

mN−1 ∗ 0

⎞
⎟⎟⎟⎠ . (5)

Using (2), the general mutation rule at node 1 is

b̃ij =
{

−bij if i = 1 or j = 1,

bij + 1
2 (|bi1|b1j + bi1|b1j |) otherwise.

(6)
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The effect of the rotation B �→ ρBρ−1 is to move the entries of B down and right one
step, so that (ρBρ−1)ij = bi−1,j−1, remembering that indices are labelled modulo N ,
so N + 1 ≡ 1. For 1 ≤ i, j ≤ N − 1, let

εij = 1

2

(
mi |mj | − mj |mi |

)
.

Then if mi and mj have the same sign, εij = 0. Otherwise εij = ±|mimj |, where the
sign is that of mi . Let B̃ = μ1B , so that b̃ij = bij + εi−1,j−1.

Theorem 6.1 Let B be an N × N skew-symmetric integer matrix. Let bk1 = mk−1

for k = 2,3, . . . ,N . Then μ1B = ρBρ−1 if and only if mr = mN−r for r = 1,2, . . . ,

N − 1, bij = mi−j + ε1,i−j+1 + ε2,i−j+2 + · · · + εj−1,i−1 for all i > j , and B is
symmetric along the non-leading diagonal.

Proof By skew-symmetry, we note that we only need to determine bij for i > j . We
need to solve μ1B = ρBρ−1. By the above discussion, this is equivalent to solving

bij + εi−1,j−1 = bi−1,j−1, (7)

for i > j , with εij as given above. Solving the equation leads to a recursive formula
for bij .

We obtain

bij = bi−1,j−1 + εj−1,i−1

= bi−2,j−2 + εj−1,i−1 + εj−2,i−2

...

= bi−j+1,1 + εj−1,i−1 + εj−2,i−2 + · · · + ε1,i−j+1.

In particular, we have

bNj = mN−j + ε1,N−j+1 + ε2,N−j+2 + · · · + εj−2,N−2 + εj−1,N−1. (8)

We also have mj = b̃1,j+1 = (ρBρ−1)1,j+1 = bNj . In particular, m1 = bN1 = mN−1.
Equation (8) gives

m2 = bN2 = mN−2 + ε1,N−1 = mN−2 + ε11 = mN−2.

So m2 = mN−2. Suppose that we have shown that mj = mN−j for j = 1,2, . . . , r .
Then (8) gives

bN,r+1 = mN−r−1 + ε1,N−r + ε2,N−r+1 + · · · + εr,N−1

= mN−r−1 +
r∑

i=1

εi,N−r+i−1



J Algebr Comb (2011) 34: 19–66 35

= mN−r−1 +
r∑

i=1

εi,r+1−i

= mN−r−1 + ε1,r + ε2,r−1 + · · · + εr,1 = mN−r−1,

using the inductive hypothesis and the fact that εst = −εts for all s, t . Hence mr+1 =
mN−r−1 and we have by induction that mr = mN−r for 1 ≤ r ≤ N − 1.

We have, for i > j , by (8),

bN−j+1,N−i+1 = m(N−j+1)−(N−i+1) + ε(N−i+1)−1,(N−j+1)−1

+ ε(N−i+1)−2,(N−j+1)−2 + · · · + ε1,(N−j+1)−(N−i+1)+1

= mi−j + εN−i,N−j + εN−i−1,N−j−1 + · · · + ε1,i−j+1,

and we have, again using (8) and the fact that εN−a,N−b = εab ,

mi−j = mN−i+j = bN,N−i+j

= bN−j+1,N−i+1 + εN−i+j−1,N−1 + εN−i+j−2,N−2 + · · ·
+ εN−i+1,N−j+1

= bN−j+1,N−i+1 + εi−j+1,1 + εi−j+2,2 + · · · + εi−1,j−1,

so

bN−j+1,N−i+1 = mi−j + εj−1,i−1 + · · · + εi−j+2,2 + ε1,i−j+1 = bij .

Hence B is symmetric along the non-leading diagonal.
If B satisfies all the requirements in the statement of the theorem, then (8) is

satisfied, and therefore ρBρ−1 = μ1B . The proof is complete. �

We remark that with the identification mr = mN−r , we have seen that the for-
mula (8) has a symmetry, due to which the ε’s cancel in pairwise fashion:

bN,N−k+1 = bk1 + ε1k + ε2,k+1 + · · · + εk+1,2 + εk1.

The formula (8) is just a truncation of this, so not all terms cancel. As we march
from bk1 in a “south easterly direction”, we first add ε1k, ε2,k+1, etc., until we reach
εr,r+1 (when N − k = 2r) or εrr = 0 (when N − k = 2r + 1). At this stage we start
to subtract terms on a basis of “last in, first out”, with the result that the matrix has
reflective symmetry about the second diagonal as we have seen.

Remark 6.2 (Sink-type case) We note that if all the mi have the same sign, then all
the εij are zero. Equation (7) reduces to bij = bi−1,j−1 and we recover the sink-type
period 1 solutions considered in Proposition 3.6.

6.1 Examples

The simplest nontrivial example is when N = 4.
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Example 6.3 (Period 1 quiver with four nodes) Here the matrix has the form

B =

⎛
⎜⎜⎝

0 −m1 −m2 −m1
m1 0 −m1 − ε12 −m2
m2 m1 + ε12 0 −m1
m1 m2 m1 0

⎞
⎟⎟⎠ .

As previously noted, if m1 and m2 have the same sign, then ε12 = 0 and this matrix
is just the sum of primitives for four nodes. The 2 × 2 matrix in the “centre” of B

(formed out of rows and columns 2 and 3),(
0 −ε12

ε12 0

)
,

corresponds to ε12 times the primitive P
(1)
2 with two nodes (see Fig. 2). For the case

m1 = 1,m2 = −2, ε12 = 2, we obtain the Somos 4 quiver in Fig. 1(a). The action of ι

(see Remark 3.5) is 1 ↔ 4,2 ↔ 3 and clearly just reverses all the arrows as predicted
by Remark 3.5.

Example 6.4 (Period 1 quiver with five nodes) Here the general period 1 solution has
the form

B =

⎛
⎜⎜⎜⎜⎝

0 −m1 −m2 −m2 −m1
m1 0 −m1 − ε12 −m2 − ε12 −m2
m2 m1 + ε12 0 −m1 − ε12 −m2
m2 m2 + ε12 m1 + ε12 0 −m1
m1 m2 m2 m1 0

⎞
⎟⎟⎟⎟⎠

which can be written as

B =
2∑

k=1

mkB
(k)
5 + ε12B

(1)
3 ,

where B
(1)
3 is embedded symmetrically in the middle of a 5 × 5 matrix (surrounded

by zeros).
When m1 = 1 and m2 = −1, this matrix corresponds to the Somos 5 sequence;

see Fig. 9 for the corresponding quiver.

Fig. 9 The Somos 5 quiver
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Example 6.5 (Period 1 quiver with six nodes) Here the matrix has the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −m1 −m2 −m3 −m2 −m1
m1 0 −m1 −m2 −m3 −m2
m2 m1 0 −m1 −m2 −m3
m3 m2 m1 0 −m1 −m2
m2 m3 m2 m1 0 −m1
m1 m2 m3 m2 m1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 −ε12 −ε13 −ε12 0
0 ε12 0 −ε12 −ε13 0
0 ε13 ε12 0 −ε12 0
0 ε12 ε13 ε12 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 −ε23 0 0
0 0 ε23 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which can be written as

B =
3∑

j=1

mkB
(k)
6 +

2∑
k=1

ε1,k+1B
(k)
4 + ε23B

(1)
2 ,

where the periodic solutions with fewer rows and columns are embedded symmetri-
cally within a 6 × 6 matrix.

6.2 The period 1 general solution in terms of primitives

It can be seen from the above examples that the solutions are built out of a sequence
of sub-matrices, each of which corresponds to one of the primitives. The main matrix
is just an integer linear combination of primitive matrices for the full set of N nodes.
The next matrix is a combination (with coefficients ε1j ) of primitive matrices for the
N − 2 nodes 2, . . . ,N − 1. We continue to reduce by 2 until we reach either two
nodes (when N is even) or three nodes (when N is odd).

Remarkably, as can be seen from the general structure of the matrix given by (8),
together with the symmetry mN−r = mr , this description holds for all N .

Recall that for an even (or odd) number of nodes, N = 2r (or N = 2r + 1), there
are r primitives, labelled B

(k)
2r (or B

(k)
2r+1), k = 1, . . . , r . We denote the general linear

combination of these by

B̃2r (μ1, . . . ,μr) =
r∑

j=1

μjB
(j)

2r , or B̃2r+1(μ1, . . . ,μr) =
r∑

j=1

μjB
(j)

2r+1,

for integers μj .
The quivers corresponding to B̃2r (μ1, . . . ,μr) and B̃2r+1(μ1, . . . ,μr) (i.e. with-

out the extra terms coming from the εij ) do not have periodicity properties (in gen-
eral).

We now restate Theorem 6.1 in this new notation:
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Theorem 6.6 (The general period 1 quiver) Let B2r (respectively B2r+1) denote the
matrix corresponding to the general even (respectively odd) node quiver of mutation
periodicity 1. Then

1.

B2r = B̃2r (m1, . . . ,mr) +
r−1∑
k=1

B̃2(r−k)(εk,k+1, . . . , εkr ),

where the matrix B̃2(r−k)(εk,k+1, . . . , εkr ) is embedded in a 2r ×2r matrix in rows
and columns k + 1, . . . ,2r − k.

2.

B2r+1 = B̃2r+1(m1, . . . ,mr) +
r−1∑
k=1

B̃2(r−k)+1(εk,k+1, . . . , εkr ),

where the matrix B̃2(r−k)+1(εk,k+1, . . . , εkr ) is embedded in a (2r + 1)× (2r + 1)

matrix in rows and columns k + 1, . . . ,2r + 1 − k.

7 Quivers with mutation periodicity 2

Already at period 2, we cannot give a full classification of the possible quivers. How-
ever, we can give the full list for low values of N , the number of nodes. We can also
give a class of period 2 quivers which exists for odd or even N .

When N is even, primitives play a role, but the full solution cannot be written
purely in terms of primitives. When N is odd, primitives do not even exist, but there
are still quivers with mutation periodicity 2.

Consider the period 2 chain:

Q(1)
μ1−→ Q(2)

μ2−→ Q(3) = ρ2Q(1).

A simpler way to compute is to use μ2Q(3) = Q(2), so μ2ρ
2Q(1) = Q(2). Hence

we must solve

ρμ1ρQ(1) = μ1Q(1), (9)

which are the equations referred to below. We first consider the solution of these
equations for N = 3, . . . ,5.

We need one new piece of notation, which generalises our former εij . We define

ε(x, y) = 1

2

(
x|y| − y|x|).

Thus, εij = ε(mi,mj ).
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7.1 3 node quivers of period 2

Let

B(1) =
⎛
⎝ 0 −m1 −m2

m1 0 −b32
m2 b32 0

⎞
⎠ .

Equation (9) gives the equalities m1 = b32 and m2 − m1 = −ε12. If the signs of m1

and m2 are the same, we obtain a period 1 solution. Assuming otherwise leads to the
equation m2 −m1 = ±m1m2 depending on the sign of m1 (and m2). The only integer
solutions to this equation are m1 = ±2 and m2 = ∓2.

It follows that there are just two solutions of period two: the following matrix and
its negative:

B(1) =
⎛
⎝ 0 −2 2

2 0 −2
−2 2 0

⎞
⎠ .

This corresponds to a 3−cycle of double arrows. Notice that in this case, there are no
free parameters. Mutating at node 1 just gives B(2) = −B(1), i.e. Q(2) = Q(1)opp.
Note that the representation theoretic properties of this quiver are discussed at some
length in [4, §8, §11].

7.2 4 node quivers of period 2

We start with the matrix

B(1) =

⎛
⎜⎜⎝

0 −m1 −m2 −m3
m1 0 −b32 b42
m2 b32 0 −b43
m3 b42 b43 0

⎞
⎟⎟⎠ .

Setting p1 = b42 and solving for b43 and b32 in terms of p1 and the mi ’s we find

b43 = m1, and b32 = m3 + ε(m1,p1).

We also obtain the three conditions

ε13 = 0, ε12 − ε(m1,p1) = 0, ε23 + ε(m3,p1) = 0.

The first of these three conditions just means that m1 and m3 have the same sign (or
that one of them is zero). Choosing m1 > 0, so m3 ≥ 0, we must have m2 < 0 for
node 1 not to be a sink. The remaining conditions are then

m1
(|p1| − p1 + 2m2

) = 0, m3
(|p1| − p1 + 2m2

) = 0.
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For a nontrivial solution we must have p1 < 0, which leads to p1 = m2. The final
result is then the following:

B(1) =

⎛
⎜⎜⎝

0 −m1 −m2 −m3
m1 0 m1m2 − m3 −m2
m2 m3 − m1m2 0 −m1
m3 m2 m1 0

⎞
⎟⎟⎠ ,

(10)

B(2) =

⎛
⎜⎜⎝

0 m1 m2 m3
−m1 0 −m3 −m2
−m2 m3 0 m2m3 − m1
−m3 m2 m1 − m2m3 0

⎞
⎟⎟⎠ ,

with m1 > 0, m2 < 0 and m3 ≥ 0. Notice that B(2)(m1,m3) = ρB(1)(m3,m1)ρ
−1,

so the period 2 property stems from the involution m1 ↔ m3. If m3 = m1, then the
quiver has mutation period 1. We may choose either of these to be zero, but not m2,
since, again, node 1 would be a sink.

Remark 7.1 (The quiver and its opposite) We made the choice that m1 > 0. The
equivalent choice m1 < 0 would just lead to the negative of B(1), corresponding to
Q(1)opp.

Remark 7.2 (A graph symmetry) Notice that all 4-node quivers of period 2 have the
graph symmetry (1,2,3,4) ↔ (4,3,2,1), under which Q �→ Qopp.

For N ≥ 5, we cannot construct the general solution of (9) without further assump-
tions. However, we can find some solutions and these also have this graph symmetry.
Furthermore, if we assume the graph symmetry, then we can find the general solution
for some higher values of N , but have no general proof that this will be the case for
all N .

We previously saw this graph symmetry in the context of period 1 primitives (see
Remark 3.5).

7.3 5 node quivers of period 2

Starting with the general skew-symmetric, 5 × 5 matrix, with

bk1 = mk−1, k = 2, . . . ,5 and b52 = p1,

we immediately find

b32 = m4 + ε12, b42 = m2 + ε14 + ε(m1,p1),

b43 = m4 + ε(m1,p1 − ε14), b53 = p1 − ε14, b54 = m1,

together with the simple condition m3 = m2 + ε14 and four complicated conditions.
Imposing the graph symmetry (Remark 7.2) leads to p1 = m2 = ε14, after which

two of the four conditions are identically satisfied, whilst the other pair reduce to a
single condition:

ε(m2,p1) + ε(m4,p1) − ε12 = m4 − m1.
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We need integer solutions for m1,m2,m4. There are a number of subcases.

The case m1 > 0, m4 > 0

In this case the remaining condition reduces to

(|m2| − m2 − 2
)
(m1 − m4) = 0.

Discarding the period 1 solution, m4 = m1, we obtain m2 = −1, leading to

B(1) =

⎛
⎜⎜⎜⎜⎝

0 −m1 1 1 −m4
m1 0 −m1 − m4 1 − m1 1
−1 m1 + m4 0 −m1 − m4 1
−1 m1 − 1 m1 + m4 0 −m1
m4 −1 −1 m1 0

⎞
⎟⎟⎟⎟⎠ ,

(11)

B(2) =

⎛
⎜⎜⎜⎜⎝

0 m1 −1 −1 m4
−m1 0 −m4 1 1

1 m4 0 −m1 − m4 1 − m4
1 −1 m1 + m4 0 −m1 − m4

−m4 −1 m4 − 1 m1 + m4 0

⎞
⎟⎟⎟⎟⎠ .

Notice again that B(2)(m1,m4) = ρB(1)(m4,m1)ρ
−1, so the period 2 property

stems from the involution m1 ↔ m4.

The case m1 > 0, m4 < 0, m2 > 0

There is one condition, which can be reduced by noting that m2 − m1m4 > 0, giving

m4(m2 − 1) = m1
(
m2

4 − 1
)
.

The left side is negative and the right positive unless m2 = 1, m4 = −1. We then have
m3 = p1 = m1 + 1, giving

B(1) =

⎛
⎜⎜⎜⎜⎝

0 −m1 −1 −m1 − 1 1
m1 0 1 −m1 − 1 −m1 − 1
1 −1 0 1 −1

m1 + 1 m1 + 1 −1 0 −m1
−1 m1 + 1 1 m1 0

⎞
⎟⎟⎟⎟⎠ ,

(12)

B(2) =

⎛
⎜⎜⎜⎜⎝

0 m1 1 m1 + 1 −1
−m1 0 1 −m1 − 1 −1
−1 −1 0 1 0

−m1 − 1 m1 + 1 −1 0 1
1 1 0 −1 0

⎞
⎟⎟⎟⎟⎠ .
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The case m1 > 0, m4 < 0, m2 < 0

Here we have no control over the sign of m2 − m1m4.
When m2 − m1m4 > 0, we have the single condition

(m2 − m1m4)(m2 + m4) + m1(m2 + 1) − m4 = 0.

Whilst any integer solution would give an example, we have no way of determin-
ing these. (However, Andy Hone has communicated to us that an algebraic-number-
theoretic argument can be used to show that there are no integer solutions.)

When m2 − m1m4 < 0, we have m4 = m1(m2 + 1), so m3 = m2 − m1m4 =
m2 − m2

1(m2 + 1). We must have m2 ≤ −2 for m4 < 0. Since m2 − m1m4 = m2 −
m2

1(m2 + 1) < 0, we then choose m1 to be any integer satisfying m1 >
√

m2
m2+1 .

Subject to these constraints, the matrices take the form:

B(1) =

⎛
⎜⎜⎜⎜⎝

0 −m1 −m2 −m3 −m1(m2 + 1)

m1 0 −m1 m3(m1 − 1) −m3
m2 m1 0 −m1 −m2
m3 −m3(m1 − 1) m1 0 −m1

m1(m2 + 1) m3 m2 m1 0

⎞
⎟⎟⎟⎟⎠ ,

B(2) =

⎛
⎜⎜⎜⎜⎝

0 m1 m2 m3 m1(m2 + 1)

−m1 0 −m1(m2 + 1) m3 −m2
−m2 m1(m2 + 1) 0 −m1 −m2
−m3 −m3 m1 0 −m1

−m1(m2 + 1) m2 m2 m1 0

⎞
⎟⎟⎟⎟⎠ .

(13)

The simplest solution has m1 = 2, m2 = −2.

7.4 A family of period 2 solutions

We are not able to classify all period 2 quivers. Note that in Sect. 4 we have classified
all sink-type period 2 quivers. In this section we shall explain how to modify the
proof of the classification of period 1 quivers (see Sect. 6) in order to construct a
family of period 2 quivers (which are, in general, not sink-type). The introduction of
the involution σ , defined below, is motivated by the matrices (10) and (11).

As before, we consider the matrix:

B =

⎛
⎜⎜⎜⎝

0 −m1 · · · −mN−1
m1 0 ∗
... 0

mN−1 ∗ 0

⎞
⎟⎟⎟⎠ . (14)

However, we assume that, for r = 2,3, . . . ,N − 2, mr = mN−r (in the period 1 case
this property follows automatically). We write m1 instead of mN−1, for convenience.
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We also assume that m1 ≥ 0, mN−1 = m1 ≥ 0 and m1 �= m1 (the last condition to
ensure we obtain strictly period 2 matrices). We consider the involution σ which
fixes mr for r �= 1 and interchanges m1 and m1. Let m = (m1,m2, . . . ,mN−2,m1).
We write σ(m) = σ(m1,m2, . . . ,mN−2,m1) = (m1,m2, . . . ,mN−2,m1).

Our aim is to construct a matrix B = B(m1,m2, . . . ,mN−1) which satisfies the
equation

μ1(B) = ρB
(
σ(m)

)
ρ−1. (15)

Since σ is an involution, we shall obtain period 2 solutions in this way. As in the
period 1 case, (15) implies that (bN1, bN2, . . . , bN,N−1) = σ(m). The derivation of
(7) in the period 1 case is modified by the action of σ to give

bij = σ(bi−1,j−1) + εj−1,i−1. (16)

An easy induction shows that

bij = σ j−1(bi−j+1,1) +
j−1∑
s=1

σ j−1−s(εs,i−j+s).

Applying this in the case i = N we obtain

bNj = σ j−1(bN−j+1,1) +
j−1∑
s=1

σ j−1−s(εs,N−j+s).

Hence we have

bNj = σ j−1(bN−j+1,1) + εj−1,1 +
j−2∑
s=1

σ j−1−s(εs,j−s)).

For j ≤ N − 2, this gives

mj = mN−j + σ j−2(ε1,j−1) + εj−1,1.

Since mj = mN−j , this is equivalent to σ j−2(ε1,j−1) + εj−1,1 = 0. For j = 2 this
is automatically satisfied, since ε11 = 0. For j ≥ 3 and odd, this is always true. For
j ≥ 4 and even, this is true if and only if mj−1 ≥ 0. For j = N − 1, we obtain

m1 = bN,N−1 = σN−2(m1) + ε2,1 +
N−3∑
s=1

σN−2−s(εs,j−s)

and thus

m1 = σN−2(m1) + σN−3(ε1,2) + ε2,1.

For N even this is equivalent to ε1,2 + ε2,1 = 0, which always holds. For N odd this
gives the condition

m1 = m1 + ε1,2 + ε2,1.
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If m2 ≥ 0, this is equivalent to m1 = m1, a contradiction to our assumption. If m2 < 0,
this is equivalent to m1 = m1 − m1m2 + m2m1, which holds if and only if m2 = −1
(since we have assumed that m1 �= m1). Therefore, we obtain a period 2 solution
provided mr ≥ 0 for r odd, r ≥ 3 and, in addition, m2 = −1 for N odd.

8 Recurrences with the Laurent property

As previously said, our original motivation for this work was the well known connec-
tion between cluster algebras and sequences with the Laurent property, developed by
Fomin and Zelevinsky in [7, 8]. We note that cluster algebras were initially introduced
(in [7]) in order to study total positivity of matrices and the (dual of the) canonical
basis of Kashiwara [20] and Lusztig [23] for a quantised enveloping algebra.

In this section we use the cluster algebras associated to periodic quivers to con-
struct sequences with the Laurent property. These are likely to be a rich source of
integrable maps. Indeed, it is well known (see [19]) that the Somos 4 recurrence can
be viewed as an integrable map, having a degenerate Poisson bracket and first in-
tegral, which can be reduced to a 2-dimensional symplectic map with first integral.
This 2-dimensional map is a special case of the QRT [27] family of integrable maps.
The Somos 4 Poisson bracket is a special case of that introduced in [14] for all clus-
ter algebra structures. For many of the maps derived by the construction given in this
section, it is also possible to construct first integrals, often enough to prove complete
integrability. We do not yet have a complete picture, so do not discuss this property
in general. However, the maps associated with our primitives are simple enough to
treat in general and can even be linearised. This is presented in Sect. 9.

A (skew-symmetric, coefficient-free) cluster algebra is an algebraic structure
which can be associated with a quiver. (Recall that we only consider quivers with
no 1- or 2-cycles.) Given a quiver (with N nodes), we attach a variable at each
node, labelled (x1, . . . , xN). When we mutate the quiver we change the associated
matrix according to formula (2) and, in addition, we transform the cluster variables
(x1, . . . , xN) �→ (x1, . . . , x̃�, . . . , xN), where

x�x̃� =
∏

bi�>0

x
bi�

i +
∏

bi�<0

x
−bi�

i , x̃i = xi for i �= �. (17)

If one of these products is empty (which occurs when all bi� have the same sign) then
it is replaced by the number 1. This formula is called the (cluster) exchange relation.
Notice that it just depends upon the �th column of the matrix. Since the matrix is
skew-symmetric, the variable x� does not occur on the right side of (17).

After this process we have a new quiver Q̃, with a new matrix B̃ . This new quiver
has cluster variables (x̃1, . . . , x̃N ). However, since the exchange relation (17) acts
as the identity on all except one variable, we write these new cluster variables as
(x1, . . . , x̃�, . . . , xN). We can now repeat this process and mutate Q̃ at node p and

produce a third quiver ˜̃
Q, with cluster variables (x1, . . . , x̃�, . . . , x̃p, . . . , xN), with

x̃p being given by an analogous formula (17), but using variable x̃� instead of x�.
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Remark 8.1 (Involutive property of the exchange relation) Since the matrix mutation
formula (2) just changes the signs of the entries in column n, a second mutation at
this node would entail an identical right hand side of (17) (just interchanging the two
products), leading to

x̃�
˜̃x� = x�x̃� ⇒ ˜̃x� = x�.

Therefore, the exchange relation is an involution.

Remark 8.2 (Equivalence of a quiver and its opposite) The mutation formula (17) for
a quiver and its opposite are identical since this corresponds to just a change of sign
of the matrix entries bi�. This is a reason for considering these quivers as equivalent
in our context.

In this paper we have introduced the notion of mutation periodicity and followed
the convention that we mutate first at node 1, then at node 2, etc. Mutation periodicity
(period m) meant that after m steps we return to a quiver which is equivalent (up to a
specific permutation) to the original quiver Q (see the diagram (3)). The significance
of this is that the mutation at node m + 1 produces an exchange relation which is
identical in form (but with a different labelling) to the exchange relation at node 1.
The next mutation produces an exchange relation which is identical in form (but with
a different labelling) to the exchange relation at node 2. We thus obtain a periodic
listing of formulae, which can be interpreted as an iteration, as can be seen in the
examples below.

8.1 Period 1 case

We start with cluster variables (x1, . . . , xN), with xi situated at node i. We then suc-
cessively mutate at nodes 1,2,3, . . . and define xN+1 = x̃1, xN+2 = x̃2, etc. The ex-
change relation (17) gives us a formula of the type

xnxn+N = F(xn+1, . . . , xn+N−1), (18)

with F being the sum of two monomials. This is interpreted as an N th order recur-
rence of the real line, with initial conditions xi = ci for i = 1, . . . ,N . Whilst the right
hand side of (18) is polynomial, the formula for xn+N involves a division by xn. For
a general polynomial F , this would mean that xn, for n > 2N , is a complicated ra-
tional function of c1, . . . , cN . However, in our case, F is derived through the cluster
exchange relation (17), so, by a theorem of [7], xn is just a Laurent polynomial in
c1, . . . , cN , for all n. In particular, if we start with ci = 1, i = 1, . . . ,N , then xn is an
integer for all n.

Remark 8.3 (F not Fn) For emphasis, we repeat that for a generic quiver we would
need to write Fn, since the formula would be different for each mutation. It is the
special property of period 1 quivers which enables the formula to be written as a
recurrence.
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The recurrence corresponding to a general quiver of period 1 with N nodes (as
described in Theorems 6.1, 6.6) corresponding to integers m1,m2, . . . ,mN−1 (with
mr = mN−r ) is

xnxn+N =
N−1∏
i=1

mi>0

x
mi

n+i +
N−1∏
i=1

mi<0

x
−mi

n+i . (19)

Example 8.4 (4 node case) Consider Example 6.3, with m1 = r,m2 = −s, both r

and s positive. With r = 1, s = 2, the quiver is shown in Fig. 1(a). We start with the
matrix

B(1) =

⎛
⎜⎜⎝

0 −r s −r

r 0 −r(1 + s) s

−s r(1 + s) 0 −r

r −s r 0

⎞
⎟⎟⎠

and mutate at node 1, with (x1, x2, x3, x4) �→ (x5, x2, x3, x4). Formula (17) gives

x1x5 = xr
2xr

4 + xs
3, (20)

whilst the mutation formula (2) gives

B(2) =

⎛
⎜⎜⎝

0 r −s r

−r 0 −r s

s r 0 −r(1 + s)

−r −s r(1 + s) 0

⎞
⎟⎟⎠ .

Note that the second column of this matrix has the same entries (up to permutation)
as the first column of B(1). This is because μ1B(1) = ρB(1)ρ−1. Therefore, when
we mutate Q(2) at node 2, with (x5, x2, x3, x4) �→ (x5, x6, x3, x4), formula (17) gives

x2x6 = xr
3xr

5 + xs
4, (21)

which is of the same form as (20), but with indices shifted by 1. Formulae (20) and
(21) give us the beginning of the recurrence (18), which now explicitly takes the form

xnxn+4 = xr
n+1x

r
n+3 + xs

n+2.

When r = 1, s = 2, this is exactly the Somos 4 sequence (1). When r = s = 1, we
obtain the recurrence considered by Dana Scott (see [13] and [17]). This case was also
considered by Hone (see Theorem 1 in [19]), who showed that it is super-integrable
and linearisable.
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Example 8.5 (5 node case) Consider Example 6.4, with m1 = r,m2 = −s, both r and
s positive. We start with the matrix

B =

⎛
⎜⎜⎜⎜⎝

0 −r s s −r

r 0 −r(1 + s) −s(r − 1) s

−s r(1 + s) 0 −r(1 + s) s

−s s(r − 1) r(1 + s) 0 −r

r −s −s r 0

⎞
⎟⎟⎟⎟⎠

and mutate at node 1, with (x1, x2, x3, x4, x5) �→ (x6, x2, x3, x4, x5). Formula (17)
gives

x1x6 = xr
2xr

5 + xs
3x

s
4.

Proceeding as before, the general term in the recurrence (18) takes the form

xnxn+5 = xr
n+1x

r
n+4 + xs

n+2x
s
n+3,

which reduces to Somos 5 when r = s = 1 (giving us the quiver of Fig. 9).

Example 8.6 (6 node case) Consider Example 6.5. The first thing to note is that there
are three parameters mi , so we have rather more possibilities in our choice of signs.
Having already obtained Somos 4 and Somos 5, one may be lured into thinking that
Somos 6 will arise. However, Somos 6

xnxn+6 = xn+1xn+5 + xn+2xn+4 + x2
n+3

has three terms, so it cannot directly arise through the cluster exchange relation (17),
although we remark that it is shown in [8] that the terms in the Somos 6 and Somos 7
sequences are Laurent polynomials in their initial terms. However, various subcases
of Somos 6 do arise in our construction. They are, in fact, special cases of the Gale–
Robinson sequence of Example 8.7.

The case m1 = r , m2 = −s, m3 = 0 with r, s positive We can read off the recurrence
from the first column of the matrix of Example 6.5, which is (0, r,−s,0,−s, r)T ,
giving

xnxn+6 = xr
n+1x

r
n+5 + xs

n+2x
s
n+4,

which gives the first two terms of Somos 6 when r = s = 1.

The case m1 = r , m2 = 0, m3 = −s with r, s positive The first column of the matrix
is now (0, r,0,−s,0, r)T , giving

xnxn+6 = xr
n+1x

r
n+5 + xs

n+3.

For a subcase of Somos 6 we choose r = 1, s = 2.
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The case m1 = 0, m2 = r , m3 = −s with r, s positive The first column of the matrix
is now (0,0, r,−s, r,0)T , giving

xnxn+6 = xr
n+2x

r
n+4 + xs

n+3,

again with r = 1, s = 2.

Example 8.7 (Gale–Robinson sequence (N nodes)) The two-term Gale–Robinson
recurrence (see (6) of [13]) is given by

xnxn+N = xn+N−rxn+r + xn+N−sxn+s ,

for 0 < r < s ≤ N/2, and is one of the examples highlighted in [8]. We remark that
this corresponds to the period 1 quiver with mr = 1 and ms = −1 (unless N = 2s, in
which case we take ms = −2); see Theorem 6.6.

8.2 Period 2 case

We start with cluster variables (z1, . . . , zN), with zi situated at node i. We then suc-
cessively mutate at nodes 1,2,3, . . . and define zN+1 = z̃1, zN+2 = z̃2, etc. However,
the exchange relation (17) now gives us an alternating pair of formulae of the type

z2n−1z2n−1+N = F0(z2n, . . . , z2n+N−2),

z2nz2n+N = F1(z2n+1, . . . , z2n+N−1), n = 1,2, . . .
(22)

with Fi being the sum of two monomials. It is natural, therefore, to relabel the cluster
variables as xn = z2n−1, yn = z2n and to interpret (22) as a two-dimensional recur-
rence for (xn, yn). When N = 2m, the recurrence is of order m. When N = 2m − 1,
the recurrence is again of order m, but the first exchange relation plays the role of
a boundary condition. We need m points in the plane to act as initial conditions.
When N = 2m, the values z1, . . . , z2m define these m points. When N = 2m − 1, we
need z2m in addition to the given initial conditions z1, . . . , z2m−1. Again, since our
recurrences are derived through the cluster exchange relation (17), the formulae for
(xn, yn) are Laurent polynomials of initial conditions. In the case of N = 2m − 1,
this really does mean initial conditions z1, . . . , z2m−1. The expression for ym = z2m

is already a polynomial, so it is important that it does not occur in the denominators
of later terms.

Example 8.8 (4 node case) Consider the general period 2 quiver with four nodes,
which has corresponding matrices (10), which we write with m1 = r , m2 = −s,
m3 = t , where r, s, t are positive:

B(1) =

⎛
⎜⎜⎝

0 −r s −t

r 0 −t − rs s

−s t + rs 0 −r

t −s r 0

⎞
⎟⎟⎠ ,

(23)



J Algebr Comb (2011) 34: 19–66 49

B(2) =

⎛
⎜⎜⎝

0 r −s t

−r 0 −t s

s t 0 −r − st

−t −s r + st 0

⎞
⎟⎟⎠ .

Mutating Q(1) at node 1, with (z1, z2, z3, z4) �→ (z5, z2, z3, z4), formula (17) gives

z1z5 = zr
2z

t
4 + zs

3, (24)

whilst mutating Q(2) at node 2, with (z5, z2, z3, z4) �→ (z5, z6, z3, z4), formula (17)
gives

z2z6 = zt
3z

r
5 + zs

4. (25)

When t �= r these formulae are not related by a shift of index. However, since
B(3) = μ2B(2) = ρ2B(1)ρ−2, mutating Q(3) at node 3, with (z5, z6, z3, z4) �→
(z5, z6, z7, z4), leads to

z3z7 = zr
4z

t
6 + zs

5, (26)

which is just (24) with a shift of 2 on the indices. This pattern continues, giving

xnxn+2 = yr
ny

t
n+1 + xs

n+1, ynyn+2 = xt
n+1x

r
n+2 + ys

n+1. (27)

The appearance of xn+2 in the definition of yn+2 is not a problem, since it can be
replaced by the expression given by the first equation.

As shown in Fig. 7, we could equally start with the matrices

B̄(1) = ρ−1B(2)ρ, B̄(2) = ρB(1)ρ−1.

Since B̄(1)(r, s, t) = B(1)(t, s, r), B̄(2)(r, s, t) = B(2)(t, s, r), we obtain a two-
dimensional recurrence

unun+2 = vt
nv

r
n+1 + us

n+1, vnvn+2 = ur
n+1u

t
n+2 + vs

n+1, (28)

where we have labelled the nodes as ζ1, ζ2, . . . and then substituted uk = ζ2k−1,
vk = ζ2k . With initial conditions (z1, z2, z3, z4) = (1,1,1,1) and (ζ1, ζ2, ζ3, ζ4) =
(1,1,1,1), recurrences (27) and (28) generate different sequences of integers. How-
ever, just making the change ζ4 = 2, reproduces the original zn sequence. This corre-
sponds to a shift in the labelling of the nodes, given by

un = yn, vn = xn+1, n = 1,2, . . . .

Example 8.9 (5 node case) Consider the case with matrices (11), which we write with
m1 = r , m4 = t , where r, t are positive. The same procedure leads to the recurrence

ynxn+3 = yr
n+2x

t
n+1 + xn+2yn+1,

xn+1yn+3 = yr
n+1x

t
n+3 + xn+2yn+2, n = 1,2, . . .

(29)

together with

x1y3 = yr
1xt

3 + x2y2,
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and initial conditions (x1, y1, x2, y2, x3) = (c1, c2, c3, c4, c5). The iteration (29) is a
third order two-dimensional recurrence and y3 acts as the sixth initial condition.

As above, it is possible to construct a companion recurrence, corresponding to the
choice

B̄(1) = ρ−1B(2)ρ, B̄(2) = ρB(1)ρ−1.

9 Linearisable recurrences from primitives

This section is concerned with the recurrences derived from period 1 primitives. Sim-
ilar results can be shown for higher periods, but we omit these here.

Our primitive quivers are inherently simpler than composite ones (as their name
suggests!). The mutation process (at node 1) reduces to a simple matrix conjugation.
The cluster exchange relation is still nonlinear, but it turns out to be linearisable, as
is shown in this section.

Consider the kth (period 1) primitive P
(k)
N with N nodes, such as those depicted

in Figs. 2 to 4. As before, we attach a variable at each node, labelled (x1, . . . , xN),
with xi situated at node i for each i. We then successively mutate at nodes 1,2,3, . . .

and define xN+1 = x̃1, xN+2 = x̃2, etc. At the nth mutation, we start with the clus-
ter {xn, xn+1, . . . , xN+n−1}. By the periodicity property, the corresponding quiver is
always P

(k)
N . The exchange relation (17) gives us the formula

xnxn+N = xn+kxn+N−k + 1, (30)

where xn+N is the new cluster variable replacing xn. Note that one of the products
in (17) is empty. This is the nth iteration, which we label En. For gcd(k,N) = 1,
this is a genuinely new sequence for each N . However, when gcd(k,N) = m > 1, the
sequence (30) decouples into m copies of an iteration of order (N/m).

Specifically, if N = ms and k = mt , for integers s, t , the quiver P
(k)
N separates

into m disconnected components (see Figs. 2(d), 4(b) and 4(c)). The corresponding
sequence decouples into m copies of the sequence associated with the primitive P

(t)
s ,

since (30) then gives

xnxn+ms = xn+mtxn+(s−t)m + 1.

With n = ml + r , y
(r)
l = xml+r , 0 ≤ r ≤ m − 1, this gives m identical iteration for-

mulae

y
(r)
l y

(r)
l+s = y

(r)
l+t y

(r)
l+s−t + 1. (31)

Thus if, in (30), we use the initial conditions xi = 1, 1 ≤ i ≤ N , we obtain m copies
of the integer sequence generated by (31).

9.1 First integrals

Subtracting the two equations En and En+k (see (30)) leads to

xn + xn+2k

xn+k

= xn+N−k + xn+N+k

xn+N

.
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With the definition

Jn,k = xn + xn+2k

xn+k

, (32)

we therefore have

Jn+N−k,k = Jn,k, (33)

giving us N − k independent functions {Ji,k : 1 ≤ i ≤ N − k} (or equivalently {Ji,k :
n ≤ i ≤ n + N − k − 1}).

Remark 9.1 (Decoupled case) Again, when gcd(N, k) = m > 1, the sequence (30)
decouples into m copies of (31) and the sequence Jn,k (with periodicity N − k) splits
into m copies of the corresponding sequence of J ’s for the primitive P

(t)
s (where

N = ms and k = mt), since, putting n = ml + r and I
(r)
l,t = Jml+r,k we obtain

I
(r)
l,t = xml+r + xml+r+2mt

xml+r+mt

= y
(r)
l + y

(r)
l+2t

y
(r)
l+t

,

satisfying I
(r)
l+s−t,t = I

(r)
l,t .

Let α be any function of N − k variables and define α(n) = α(Jn,k, . . . ,

Jn+N−k−1,k). Then, from the periodicity (33), α(n+N−k) = α(n) (it can happen that
the function will have periodicity r < N − k). Then the function

K(n)
α =

N−k−1∑
i=0

α(n+i)

is a first integral for the recurrence (30), meaning that it satisfies K
(n+1)
α = K

(n)
α . It

is thus always possible to construct, for the recurrence (30), N − k independent first
integrals. For k = 1 this is the maximal number of integrals, unless the recurrence is
itself periodic (see [30] for the general theory of integrable maps).

For example, N − k independent first integrals {K(n)
p : 1 ≤ p ≤ N − k} are given

by

K(n)
p =

N−k−1∑
i=0

α(n+i)
p , where α(n)

p =
p−1∏
i=0

Jn+i,k.

Using the condition (33) and the definition (32), it can be seen that the α
(n)
p de-

pend upon the variables xn, . . . , xn+N+k−1, so (30) must be used to eliminate
xn+N, . . . , xn+N+k−1 in order to get the correct form of these integrals in terms of
the N independent coordinates.

Example 9.2 As an example, consider the case N = 4 and k = 1. This corresponds
to the recurrence:

xnxn+4 = xn+1xn+3 + 1 (34)
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for the primitive P
(1)
4 . We have

Jn,1 = xn + xn+2

xn+1
.

Then α
(n)
1 = Jn,1, α

(n)
2 = Jn,1Jn+1,1 and α

(n)
3 = Jn,1Jn+1,1Jn+2,1. So

K
(n)
1 = α

(n)
1 + α

(n+1)
1 + α

(n+2)
1 = Jn,1 + Jn+1,1 + Jn+2,1;

K
(n)
2 = α

(n)
2 + α

(n+1)
2 + α

(n+2)
2 = Jn,1Jn+1,1 + Jn+1,1Jn+2,1 + Jn+2,1Jn+3,1

= Jn,1Jn+1,1 + Jn+1,1Jn+2,1 + Jn+2,1Jn,1;
K

(n)
3 = α

(n)
3 + α

(n+1)
3 + α

(n+2)
3 = Jn,1Jn+1,1Jn+2,1 + Jn+1,1Jn+2,1Jn+3,1

+ Jn+2,1Jn+3,1Jn+4,1

= 3Jn,1Jn+1,1Jn+2,1.

Using (34), we obtain N − k = 3 independent first integrals. For simplicity we write
a = xn, b = xn+1, c = xn+2 and d = xn+3:

K
(n)
1 = a

b
+ b

a
+ b

c
+ c

b
+ c

d
+ d

c
+ 1

ad
;

K
(n)
2 = 3 + a

c
+ c

a
+ b

d
+ d

b
+ 1

ac
+ 1

bd
+ ad

bc
+ bd

ac
+ ac

bd
+ b2

ac

+ c2

bd
+ b

acd
+ c

abd
;

K
(n)
3 = 3

(
a

b
+ b

a
+ b

c
+ c

b
+ c

d
+ d

c
+ a

d
+ d

a
+ 1

ab
+ 1

bc
+ 1

cd
+ 1

ad

)
.

Remark 9.3 (Decoupled case) Again, when gcd(N, k) > 1, the sequence (30) decou-
ples into m copies of (31) and we use the first integrals built out of the functions I

(r)
l,t .

Let the sequence {xn} be given by the iteration (30), with initial conditions {xi =
ai : 1 ≤ i ≤ N}. We have K

(n)
p = K

(1)
p , which is evaluated in terms of ai . We also have

{Ji,k = ci : 1 ≤ i ≤ N − k}, together with the periodicity condition (33), which can
also be written as Jn,k = cn with cn+N−k = cn. The first integrals K

(n)
p have simpler

formulae when written in terms of c1, . . . , cN−k (each of which is a rational function
of the ai ).

Remark 9.4 (Complete integrability) The complete integrability of the maps associ-
ated with the P

(1)
N (N even) is shown in [9].

9.2 A linear difference equation

We show in this subsection that the difference equation (30) can be linearised.
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Theorem 9.5 (Linearisation) If the sequence {xn} is given by the iteration (30), with
initial conditions {xi = ai : 1 ≤ i ≤ N}, then it also satisfies

xn + xn+2k(N−k) = SN,kxn+k(N−k), (35)

where SN,k is a function of c1, . . . , cN−k , which is symmetric under cyclic permuta-
tions.

Proof of case k = 1 We first prove this theorem for the case k = 1, later showing that
the general case can be reduced to this.

We fix k = 1. For i ∈ N, let Li = xi + xi+2 − cixi+1. For 1 ≤ i ≤ 2N − 3, we find
that Ji,1 = ci (see the last paragraph of the previous section), from which it follows
that Li = 0, but we regard the xi as formal variables for the time being (see the end
of the proof of Proposition 9.8). For i = 0,1, . . . ,2N − 2, we define a sequence ai as
follows. Set a0 = 0, a1 = 1 and then, for 2 ≤ n ≤ N − 1, define an recursively by

an = −an−2 − cn−1an−1. (36)

We also set b2N−2 = 0, b2N−3 = 1 and then, for N − 1 ≤ n ≤ 2N − 3, define bn

recursively by

bn = −bn+2 − cn+1bn+1. (37)

�

Lemma 9.6 For 0 ≤ n ≤ N − 1, we have b2N−2−n = an|cl �→c2N−2−l
.

Proof This is easily shown using induction on n and (36) and (37). �

The proofs of the following results (Lemma 9.7, Proposition 9.8 and Corollary 9.9)
will be given in the appendix. We first describe the an explicitly. Define

tnk,odd =
∑

1≤i1<i2<···<ik≤n
i1 odd, i2 even,...

ci1ci2 · · · cik

tnk,even =
∑

1≤i1<i2<···<ik≤n
i1 even, i2 odd,...

ci1ci2 · · · cik

Lemma 9.7 Suppose that 0 ≤ n ≤ N − 1. Then

(a) If n = 2r is even,

a2r = (−1)r
r−1∑
k=0

(−1)kt
(2r−1)
2k+1,odd.

(b) If n = 2r − 1 is odd,

a2r−1 = (−1)r−1
r−1∑
k=0

(−1)kt
(2r−2)
2k,odd .
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(c) We have an = an|cl �→cn−l
and aN−1 = bN−1.

For n ∈ N and 0 ≤ k ≤ n, define

tnk,alt =
{∑

1≤i1<i2<···<ik≤n
i1,i2,...,ik of alternating parity

ci1ci2 · · · cik if k > 0;

2 if k = 0.

Let L = ∑N−1
i=1 (−1)iaiLi + ∑2N−3

i=N (−1)ibiLi . Since a1 = b2N−3 = 1, the coef-
ficients of x1 and x2N−1 in L are both 1. By (36) and (37), the coefficient of xi in L

is zero for i = 2,3, . . . ,N − 1,N + 2, . . . ,2N − 2. By Lemma 9.7(c), aN−1 = bN−1,
and it follows that the coefficient of xN+1 is also zero. The coefficient of xN is

SN,1 = (−1)N−2(aN−2 + cN−1aN−1 + bN).

Note that bN = aN−2|cl �→c2N−2−l
by Lemma 9.6, so bN = aN−2|cl �→cN−1−l

, since
cn+N−1 = cn. This allows us to compute the coefficient of xN explicitly to give

Proposition 9.8 We have

x1 + x2N−1 = SN,1xN,

where

SN,1 =
{

(−1)r−1 ∑r−1
k=0(−1)kt

(2r−1)
2k+1,alt if N = 2r is even;

(−1)r−1 ∑r−1
k=0(−1)kt

(2r−2)
2k,alt if N = 2r − 1 is odd.

Corollary 9.9 For all n ∈ N,

xn + xn+2(N−1) = SN,1xn+N−1,

where SN,1 is as above.

Example 9.10 We calculate SN,1 for some small values of N . We have

S2,1 = c1;
S3,1 = c1c2 − 2;
S4,1 = c1c2c3 − c1 − c2 − c3;
S5,1 = c1c2c3c4 − c1c2 − c2c3 − c3c4 − c4c1 + 2;
S6,1 = c1c2c3c4c5 − c1c2c3 − c2c3c4 − c3c4c5 − c4c5c1 − c5c1c2 + c1 + c2

+ c3 + c4 + c5;
S7,1 = c1c2c3c4c5c6 − c1c2c3c4 − c2c3c4c5 − c3c4c5c6 − c4c5c6c1 − c5c6c1c2

− c6c1c2c3 + c1c2 + c1c4 + c1c6 + c3c4 + c3c6 + c5c6 + c2c3

+ c2c5 + c4c5 − 2.
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We remark that N = 7 gives the first example where the terms of fixed degree in
SN,1 (in this case degree 2) do not form a single orbit under the cyclic permutation
(1 2 · · · N − 1).

The case of N = 4 can be found in [19].

9.2.1 The case of general k > 1

When k > 1, the system of equations Jn,k = cn (with cn+N−k = cn) splits into k

subsystems. Writing n = mk − r for some m ≥ 1 and 0 ≤ r < k we define

zm = xmk−r , and I
(r)
m,1 = zm + zm+2

zm+1
.

Writing Jn,k (see (32)) in terms of zm, we see that Jn,k = I
(r)
m,1. Define M =

N − k + 1, so cn+M−1 = cn. If gcd(N, k) = 1, then, for each r , I
(r)
m,1 cycle through

all of c1, . . . , cM−1 (in some order). For r = k − 1, label this sequence of ci as
d1, . . . , dM−1. It is important to note that, for other values of r , the order is just
a cyclic permutation of d1, . . . , dM−1. We therefore have the conditions for Corol-
lary 9.9, giving

zm + zm+2(M−1) = SM,1(d1, . . . , dM−1)zm+(M−1).

Writing this in terms of xn gives (35) with SN,k = SM,1(d1, . . . , dM−1), given by
Proposition 9.8.

When (N, k) �= 1, we should first use (31) to reduce to the relatively prime case
and proceed as above.

Remark 9.11 We need 2k(N − k) initial conditions in order to generate a sequence
with (35), but are only supplied with {xi = ai : 1 ≤ i ≤ N}. If we use the iteration (30)
to generate the remaining initial conditions for (35), then (30) and (35) will generate
exactly the same sequence of numbers.

9.3 Pell’s equation

For k = 1, the sequence (30) arising from the primitive B1
n has entries which are

closely related to Pell’s equation, as indicated to us by examples in [28], e.g. se-
quences A001519 and A001075 for N = 2,N = 3, respectively. By Theorem 9.5, we
have

xn + xn+2(N−1) = SN,1xn+N−1, (38)

for n ≥ 1. We have set xn = 1 for 1 ≤ n ≤ N , and it is easy to check that xn =
n − N + 1 for N ≤ n ≤ 2N − 1. It follows that SN,1 = N + 1. Subsequences of
the form ym = xm(N−1)+c for some constant c satisfy the recurrence ym + ym+2 =
(N + 1)ym+1 which has associated quadratic equation λ2 − (N + 1)λ + 1 = 0, with
roots

α± = N + 1 ± √
(N + 1)2 − 4

2
. (39)
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Proposition 9.12

(a) Suppose that N = 2r − 1 is odd. For m ∈ Z, m ≥ 0, let am = x(N−1)m+r .
Choose 1 ≤ t ≤ N − 1, and let bm = x(N−1)m+t+1 − x(N−1)m+t . Then the
pairs (am, bm) for m > 0 are the positive integer solutions of the Pell equation
a2 − (r2 − 1)b2 = 1.

(b) Suppose that N = 2r is even. Choose t, t ′ such that 1 ≤ t ≤ r and 1 ≤ t ′ ≤
N − 1. For m ∈ Z, m ≥ 0, let am = x(N−1)m+t + x(N−1)m+N+1−t and let
bm = x(N−1)m+t ′+1 − x(N−1)m+t ′ . Then the pairs (am, bm) for m > 0 are the
positive integer solutions of the Pell equation a2 − ((2r + 1)2 − 4)b2 = 4.

Proof The general solution of ym + ym+2 = (N + 1)ym+1 is

ym = A+αm−1+ + A−αm−1−

for arbitrary constants A±. The description above of the initial terms in the sequence
(xn) gives initial terms (for m = 0 and 1) for the subsequences am and bm in each
case, and it follows that, in the odd case,

am + bm

√
r2 − 1 = (

r +
√

r2 − 1
)m

,

and, in the even case,

am + bm

√
(2r + 1)2 − 4 = 21−m

(
2r + 1 +

√
(2r + 1)2 − 4

)m
.

In the odd case, it is well-known that these are the positive integer solutions to a2 −
(r2 − 1)b2 = 1, and in the even case, the description of the solutions is given in [18]
(see also [32, Theorem 1]). (For the N = 2 case, see for example [28], sequence
A001519.) �

10 Parameters and coefficients

We recalled the definition of a skew-symmetric coefficient-free cluster algebra in
Sect. 8. The general definition [7] of a cluster algebra allows for coefficients in the
exchange relations. We use the ice quiver approach of [12, 2.2] in which some of the
cluster variables are specified to be frozen. The definition of the cluster algebra is the
same, except that mutation at the frozen cluster variables is not allowed. Our aim in
this section is to describe the period 1 ice quivers. Each such quiver models a cor-
responding Laurent recurrence with parameters, again via the Laurent phenomenon
[7, 3.1]. In other words, we will give an answer to the question as to when can we take
an iterative binomial recurrence coming from a periodic quiver and add coefficients
to the recurrence and still explain this recurrence in terms of periodic mutations of
a frozen quiver using our methods. We will then give some examples of recurrences
modelled by periodic ice quivers.

We consider an initial cluster consisting of N unfrozen cluster variables x1, x2, . . . ,

xN and M frozen cluster variables y1, y2, . . . , yM . Thus, each seed contains a clus-
ter with N unfrozen cluster variables together with the frozen variables y1, . . . , yM ,
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which never change. The quiver in the seed has N unfrozen vertices 1,2, . . . ,N and
M frozen vertices N + 1, . . . ,N + M . The exchange matrix B will be taken to be
the corresponding skew-symmetric matrix. The entries bN+i,N+j , 1 ≤ i, j ≤ M do
not play a role, so we take them to be zero (equivalently, there are no arrows from a
vertex N + 1, . . . ,N + M of the quiver to another such vertex).

Note that in the usual frozen variable set-up, columns N + 1, . . . ,N + M of B

are not included. This makes no difference, since the entries in these columns do not
appear in the exchange relations. They are determined by the rest of B since B is
skew-symmetric, and by the above assumption on zero entries. In order to ensure that
the entries bN+i,N+j remain zero, we must modify the mutation μi slightly: μ̃i is the
same as μi except that the entries bN+i,N+j , 1 ≤ i, j ≤ M , remain zero by definition.
We find it convenient to include the extra columns in order to study the period 1 ice
quiver case.

The exchange relation can then be written as follows, for 1 ≤ � ≤ n:

x�x̃� =
∏

1≤i≤M
bN+i,�>0

y
bN+i,�

i

∏
1≤i≤N
bi�>0

x
bi�

i +
∏

1≤i≤M
bN+i,�<0

y
−bN+i,�

i

∏
1≤i≤N
bi�<0

x
−bi�

i . (40)

Thus, the coefficients appearing in the exchange relation change with each succes-
sive mutation, since they depend on the exchange matrix.

Let ρ̃ = ( ρ 0
0 IM

)
, where 0 denotes zeros and IM denotes the M ×M identity matrix.

Thus ρ̃ represents the permutation sending (1,2, . . . ,N) to (N,1,2, . . . ,N − 1) and
fixing N + 1, . . . ,N + M .

Definition 10.1 A quiver Q, with N + M vertices as above, satisfying

μ̃1BQ = ρ̃BQρ̃ −1 (41)

is said to be a period 1 ice quiver.

Since the effect of conjugation by ρ̃ on the first N elements of each of the rows
N + 1, . . . ,N + M of the matrix BQ is to cyclically shift them along one position
to the right (with the entries in the opposite positions in the extra columns cyclically
moving down one position), it is easy to see that, if we mutate such a quiver Q

successively at vertices 1,2, . . . ,N,1,2, . . . etc. we obtain the terms (as in Sect. 8)
of a recurrence:

xnxn+N = F(xn+1, . . . , xn+N−1, y1, y2, . . . , yM)

where F is a sum of two monomials in the xi with coefficients given by fixed mono-
mials in the yi . By the Laurent Phenomenon [7, 3.1], each cluster variable can be writ-
ten as a Laurent polynomial in x1, x2, . . . , xN with coefficients in Z[y1, y2, . . . , yM ].
Thus, the recurrence will be Laurent in this sense.

Theorem 10.2 Let Q be an ice quiver on N + M vertices, 1,2, . . . ,N + M , with
vertices N + 1, . . . ,N + M frozen. Then Q is a period 1 ice quiver if and only if the
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induced subquiver on vertices 1,2, . . . ,N is a period 1 quiver and, if BQ is written
as in Theorem 6.1, the following are satisfied.

(a) If N = 2r + 1 is odd, then for each 1 ≤ i ≤ M such that row N + i of B is non-
zero there is ti ∈ {1, . . . , r} such that mti = mN−ti = −1 and all other mj , for
1 ≤ j ≤ N − 1, are nonnegative, and a positive integer li such that

bN+i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

li , 1 ≤ j ≤ ti ,

0, ti + 1 ≤ j ≤ 2r + 1 − ti ,

−li , 2r + 2 − ti ≤ j ≤ 2r + 1 = N,

0, N + 1 ≤ j ≤ N + M.

Alternatively, the mj are as above with the opposite signs and the entries in the
row are the negative of the above.

(b) If N = 2r is even, then for each 1 ≤ i ≤ M such that row N + i of B is non-zero
there is ti ∈ {1, . . . , r − 1} such that mti = mN−ti = −1 and the other mj , for
1 ≤ j ≤ N − 1, are nonnegative, or mr = −2 and all other mj are nonnegative.
Furthermore, there is a positive integer li such that

bN+i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

li , 1 ≤ j ≤ ti ,

0, ti + 1 ≤ j ≤ 2r − ti ,

−li , 2r + 1 − ti ≤ j ≤ 2r = N,

0, N + 1 ≤ j ≤ N + M.

Alternatively, the mj are as above with the opposite signs and the entries in the
row are the negative of the above.

Proof To solve (41), it is clear that the induced subquiver of Q on vertices 1,2, . . . ,N

must be a period 1 quiver in our usual sense. So we assume that the entries bij for
1 ≤ i, j ≤ N are as in the general solution given in Theorem 6.1. For 1 ≤ i ≤ M ,
the N + i, j entry of ρ̃BQρ̃ −1 is bN+i,j−1 (where j − 1 is read as N if j = 1).
Thus we must solve the equations bN+i,N = −bN+i,1 and bN+i,j−1 = bN+i,j +
1
2 (bN+i,1|b1,j | + |bN+i,1|b1,j ) for i = 1,2, . . . ,M and j = 2, . . . ,N , noting that
columns N + 1, . . . ,N + M will give rise to the same equations and that bN+i,j = 0
for j > N .

We thus must solve the equations bN+i,N + bN+i,1 = 0 and bN+i,j−1 − bN+i,j =
ε(bN+i,1,mj−1) for j = 2, . . . ,N . Adding all of these, we obtain the constraint that

2bN+i,1 =
N−1∑
j=1

ε(bN+i,1,mj ). (42)

The solutions are given by the values of bN+i,1 satisfying this constraint (using the
other equations to write down the values of the other bN+i,j ).

If N = 2r + 1 is odd, the constraint can be rewritten

2bN+i,1 = bN+i,1
(|m1| + · · · + |mr |

) − |bN+i,1|(m1 + · · · + mr),
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using the fact that mj = mN−j for all j . If bN+i,1 = 0 then bN+i,j = 0 for all j , so for
a non-zero (N + i)th row we must have bN+i,1 �= 0. For solutions with bN+i,1 > 0,
we must have

|m1| − m1 + |m2| − m2 + · · · + |mr | − mr = 2.

Since |x| − x = 0 for x ≥ 0 and equals −2x for x ≤ 0, the only solutions arise when
mti = −1 for some ti (so mN−ti = −1 also) and all other mj are nonnegative. They
are of the form

bN+i,j =

⎧⎪⎨
⎪⎩

bN+i,1, 1 ≤ j ≤ ti ,

0, ti + 1 ≤ j ≤ 2r + 1 − ti ,

−bN+i,1, 2r + 2 − ti ≤ j ≤ 2r + 1,

as required. The solutions with negative bN+i,1 are the negative of these (provided
mti = mN−ti = 1 and all other mj are nonpositive).

If N = 2r is even, the constraint can be rewritten

2bN+i,1 = bN+i,1
(|m1|+· · ·+|mr−1|+|mr |/2

)−|bN+i,1|(m1 +· · ·+mr−1 +mr/2),

again using the fact that mj = mN−j for all j . As in the odd case, we must have
bN+i,1 �= 0 for a non-zero (N + i)th row. If bN+i,1 > 0, we must have

|m1| − m1 + |m2| − m2 + · · · + |mr−1| − mr−1 + |mr |/2 − mr/2 = 2.

Arguing as in the odd case, we see that solutions arise when mti = −1 for some ti
with 1 ≤ ti ≤ r − 1 (and so mN−ti = −1) and all other mj are nonnegative, or when
mr = −2 and all other mj are nonnegative. They are of the form

bN+i,j =

⎧⎪⎨
⎪⎩

bN+i,1, 1 ≤ j ≤ ti ,

0, ti + 1 ≤ j ≤ 2r − ti ,

−bN+i,1, 2r + 1 − ti ≤ j ≤ 2r,

where ti = r for the last case, as required. The solutions for negative bN+i,1 are the
negative of these (with the negative of the constraints on the mj ). �

Corollary 10.3 Consider the Laurent recurrence (19) corresponding to a period 1
quiver:

xnxn+N =
N−1∏
i=1

mi>0

x
mi

n+i +
N−1∏
i=1

mi<0

x
−mi

n+i .

The same recurrence, with parameters introduced on the right hand side as coeffi-
cients of the monomials, arises from a period 1 ice quiver as above if and only if a
parameter on a monomial is only allowed when the other monomial is of the form
xn+ixn+N−i for some i with 1 ≤ i ≤ N/2. (If both monomials are of this form then
a parameter is allowed on both.) If this condition is satisfied, the recurrence with
parameters is again Laurent.
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Fig. 10 The ice quiver for
Somos 4 with parameters

This corollary has the following interesting consequence:

Proposition 10.4 (Gale–Robinson recurrence) The only binomial recurrences corre-
sponding to period 1 quivers that, when parameters on both monomials are allowed,
correspond to period 1 ice quivers, are the two-term Gale–Robinson recurrences.

Proof The Gale–Robinson recurrences are exactly those for which both monomials
are of the required form in Corollary 10.3. See Example 8.7 in Sect. 8.1. �

Note that it follows that these recurrences, with a parameter multiplying each of
the monomials, are Laurent. This was shown in [8, 1.7].

Example 10.5 (Somos 4 recurrence with parameters) The Somos 4 recurrence is a
special case of the two-term Gale–Robinson recurrence. We can add extra coefficient
rows (1,1,−1,−1,0,0) and (−1,0,0,1,0,0) to the corresponding matrix, giving
the six-vertex quiver shown in Fig. 10, with empty circles denoting frozen vertices.
We recover the Laurent property of the corresponding recurrence:

xn+4xn = y1xn+1xn+3 + y2x
2
n+2.

Example 10.6 (A recurrence considered by Dana Scott) We have seen (see Exam-
ple 8.4 of Sect. 8.1) that the 4-node case m1 = 1, m2 = −1 corresponds to a recur-
rence considered by Dana Scott. By Theorem 10.2(b) the only possible non-zero extra
row in the matrix is (−1,0,0,1,0,0) (or a positive multiple) giving the recurrence:

xn+4xn = xn+1xn+3 + yxn+2.

It follows that this recurrence is Laurent. The corollary, that this recurrence gives
integers for all integer y (if x1 = x2 = x3 = x4 = 1), was noted in [13]. It is also
noted in [13] that the recurrence

xn+4xn = 2xn+1xn+3 + xn+2

(with the same initial conditions) does not give integers. It follows that the recurrence

xn+4xn = y1xn+1xn+3 + xn+2

does not have the Laurent property.
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Remark 10.7 (A conjecture) Although our results do not determine non-Laurentness
it is interesting to note that we obtain exactly those which are Laurent as solutions in
the above examples. It seems reasonable to conjecture that the parameter versions of
recurrences arising from period 1 quivers are Laurent if and only if they arise from a
cluster algebra with frozen variables in the above sense.

11 Supersymmetric quiver gauge theories

In this section we point to the D-brane literature in which our quivers arise in the
context of quiver gauge theories. The quivers arising in supersymmetric quiver gauge
theories often have periodicity properties. Indeed, in [24, §3] the authors consider an
N = 1 supersymmetric quiver gauge theory associated to the complex cone over the
second del Pezzo surface dP2. The quiver QdP2 of the gauge theory they consider is
given in Fig. 11(d). The authors compute the Seiberg dual of the quiver gauge theory
at each of the nodes of the quiver. The Seiberg dual theory has a new quiver, ob-
tained using a combinatorial rule from the original quiver using the choice of vertex
(see [6]). It can be checked that the combinatorial rule for Seiberg dualising a quiver
coincides with the rule for Fomin–Zelevinsky quiver mutation (Definition 2.1); see
[31] for a discussion of the relationship between Seiberg duality and quiver mutation.
In [24, §3] the authors compute the Seiberg dual of QdP2 at each node, in particu-
lar showing that the Seiberg dual of QdP2 at node 1 is an isomorphic quiver. They
indicate that such behaviour is to be expected from a physical perspective.

This quiver fits into the scheme discussed in this article: it is a period 1 quiver.
In fact it coincides with the quiver corresponding to the matrix B

(1)
5 − B

(2)
5 + B

(1)
3

(see Example 6.4 with m1 = 1,m2 = −1, and also Fig. 9), with the relabelling
(1,2,3,4,5) �→ (3,4,5,2,1) (we give all relabellings starting from our labels).
We note that this quiver also appears in [26] (with a relabelling (1,2,3,4,5) �→
(2′,3′,1,2,3)) in the context of a dP2 brane tiling and that the corresponding se-
quence is the Somos 5 sequence.

The quivers of quiver gauge theories associated to the complex cones over the
Hirzebruch zero and del Pezzo 0–3 surfaces are computed in [5, §4]. We list them
for convenience in Fig. 11 for the Hirzebruch 0 and del Pezzo 0,1 and 3 surfaces.
Note that the del Pezzo 2 case was discussed above: we chose the quiver given in
[24, §3] for this case because it fits better into our set-up. We remark that the quiver
for dP1 coincides with the Somos 4 quiver (with matrix B

(1)
4 − 2B

(2)
4 + 2B

(1)
2 ), with

Fig. 11 Quivers of quiver gauge theories associated to a family of surfaces. Quiver (d) is from [24] while
the others are from [5]
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the relabelling (1,2,3,4) �→ (B,C,D,A). Thus it is period 1. See Example 6.3 and
Fig. 1(a).

The quiver for the Hirzebruch 0 surface is period 2: with the relabelling
(1,2,3,4) �→ (C,A,D,B). It corresponds to the matrix B(1) given in (10) in
Sect. 7.2 with m1 = 2, m2 = −2 and m3 = 0. The quiver for dP3 is period two.
In fact it is one of the period two quivers described in Sect. 7.4, with m1 = m3 = 1,
m2 = −1 and m1 = 0.

Finally, we note that, by construction, the in-degree of a vertex i always coincides
with the out-degree of i for any quiver arising from a brane tiling in the sense of [11].
It is interesting to note that the only quivers of cluster mutation period 1 satisfying
this assumption with five or fewer vertices are the Somos 4 and Somos 5 quivers, i.e.
quivers associated to dP1 and dP2 (see Figs. 11(c) and 11(d)).

12 Conclusions

In this paper we have raised the problem of classifying all quivers with mutation
periodicity. For period 1 we have given a complete solution. For period 2 we have
given a solution which exists for all N (the number of nodes). In addition to these,
we have seen that for N = 5 there are some “exceptional solutions”, such as (12)
and (13). We conjecture that such “exceptional solutions” will exist for all odd N ,
but not for the even case. We also conjecture that there are more general infinite
families than the one presented in Sect. 7.4, where we took a particularly simple
initial condition for the iteration (16). We could, for instance, consider the case with
mN−r = mr for several values of r . We could also consider a family of period r

quivers, satisfying μ1(B) = ρB(σ(m))ρ−1, with σ r(m) = m.
The other main theme of our paper was the construction and analysis of recur-

rences with the Laurent property. We have shown that the recurrences associated with
our period 1 primitives can be linearised. This construction can be extended to higher
period cases, but we currently only have examples. General periodic quivers give rise
to truly nonlinear maps, the simplest of which is Somos 4, which is known [19] to be
integrable and, in fact, related to the QRT [27] map of the plane. Somos 5 is similarly
known to be integrable, as are the subcases of Somos 6 discussed in Example 8.6. On
the other hand,

xnxn+6 = x2
n+1x

2
n+5 + x2

n+2x
4
n+3x

2
n+4,

(corresponding to the choice m1 = −m2 = 2,m3 = −4 in Example 8.6) is known
to be not integrable (see (4.3) of [19]). Even though this recurrence has the Laurent
property and satisfies “singularity confinement” [15] (a type of Painlevé property
for discrete equations), it fails the more stringent “algebraic entropy” [3] test for
integrability. This simple test (or the related “diophantine integrability” [16] test) can
very quickly show that a map is not integrable. If they indicate integrability, then
it is sensible to search for invariant functions in order to prove integrability. Early
indications (preliminary calculations by C-M Viallet) are that for integers mi which
are “small in absolute value” we have integrable cases. We thus expect that small
sub-families of our general periodic quivers will give rise to integrable maps. The
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isolation and classification of integrable cases of the recurrences discussed in this
article is an important open question, which will be discussed in [10].

We have seen that many of our examples occur in the context of supersymmetric
quiver gauge theories. A deep understanding of the connection with brane tilings and
related topics would be very interesting.

After this paper first appeared on the arXiv, Jan Stienstra pointed out to us that the
quivers in Fig. 11 also appear in [29] in the context of Gelfand–Kapranov–Zelevinsky
hypergeometric systems in two variables, suggesting a possible connection between
cluster mutation and such systems.

Since we wrote the first version, the article [25] has appeared, proposing a general
study of periodicity in cluster algebras (in a wide sense), motivated by many interest-
ing examples of periodicity for cluster algebras and T and Y systems (see references
therein). In particular, periodicity of (seeds in) cluster algebras plays a key role in
the context of the periodicity conjecture for Y systems, which was proved in full
generality in [21]; see also references therein.

The articles [2, 22] have also appeared, proving the linearisation of frieze se-
quences (or frises) associated to acyclic quivers (quivers without an oriented cycle);
see these two papers and references therein for more details of these sequences. If Q

is acyclic, its vertices {1,2, . . . ,N} can be numbered so that i is a sink on the induced
subquiver on vertices i, i + 1, . . . ,N for each i; then 1,2, . . . ,N is an admissible se-
quence of sinks in the sense of Remark 2.4 and so Q has period N in our sense. The
corresponding sequence of cluster variables can be regarded as an N -dimensional re-
currence (as in the period 2 case, 8.2). Generalising results of [2], in [22] it is shown
that all components of this recurrence are linearisable if Q is Dynkin or affine (and
conversely; in fact the result is more general, including valued quivers). This linearis-
ability can be regarded as a generalisation of Theorem 9.5, since our primitives are
acyclic and the numbering of their vertices satisfies the above sink requirement, us-
ing Lemma 4.4. In fact this last statement is true for primitives of any period, so it
follows from [22] that the recurrences corresponding to primitives of any period are
linearisable, noting that the period of a primitive always divides N .
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Appendix: Proofs of results in Sect. 9.2

Proof of Lemma 9.7 We first prove (a) and (b). The result is clearly true for n = 0,1.
Assume that it holds for smaller n and firstly assume that n = 2r − 1 is odd. Then

a2r−1 = −a2r−3 − c2r−2a2r−2

= (−1)r−1
r−2∑
k=0

(−1)kt
(2r−4)
2k,odd + c2r−2(−1)r

r−2∑
k=0

(−1)kt
(2r−3)
2k+1,odd
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= (−1)r−1t
(2r−4)
0,odd + (−1)r−1

r−3∑
k=0

(−1)k+1t
(2r−4)
2k+2,odd

+ c2r−2(−1)r
r−2∑
k=0

(−1)kt
(2r−3)
2k+1,odd

= (−1)r−1t
(2r−4)
0,odd + (−1)2r−2c2r−2t

(2r−3)
2r−3,odd

+ (−1)r
r−3∑
k=0

(−1)k
(
t
(2r−4)
2k+2,odd + c2r−2t

(2r−3)
2k+1,odd

)

= (−1)r−1t
(2r−4)
0,odd + (−1)2r−2t

(2r−2)
2r−2,odd + (−1)r

r−3∑
k=0

(−1)kt
(2r−2)
2k+2,odd

= (−1)r−1
r−1∑
k=0

(−1)kt
(2r−2)
2k,odd ,

and the result holds for n. A similar argument shows that the result holds for n when
n is even. Then (a) and (b) follow by induction. To prove (c), we note that t

(2r−1)
2k+1,odd

is invariant under the transformation cl �→ c2r−l and that t
(2r−2)
2k,odd is invariant under

cl �→ c2r−1−l . We then have

bN−1 = aN−1|cl �→c2N−2−l
= aN−1|cl �→cN−1−l

= aN−1

using Lemma 9.6 and the fact that cn+N−1 = cn. �

Proof of Proposition 9.8 We first assume that N = 2r − 1 is odd, so (−1)N−2 = −1.
Then

SN,1 = −(a2r−3 + a2r−3|cl �→2r−2−l + c2r−2a2r−2)

= (−1)r−1
r−2∑
k=0

(−1)kt
(2r−4)
2k,odd + (−1)r−1

r−2∑
k=0

(−1)kt
(2r−3)
2k,even

+ c2r−2(−1)r
r−2∑
k=0

(−1)kt
(2r−3)
2k+1,odd

= (−1)r−1t
(2r−4)
0,odd + (−1)r−1

r−3∑
k=0

(−1)k+1t
(2r−4)
2k+2,odd + (−1)r−1

r−2∑
k=0

(−1)kt
(2r−3)
2k,even

+ c2r−2(−1)r
r−2∑
k=0

(−1)kt
(2r−3)
2k+1,odd

= (−1)r−1t
(2r−4)
0,odd + c2r−2(−1)2r−2t

(2r−3)
2r−3,odd
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+ (−1)r
r−3∑
k=0

(−1)k
(
t
(2r−4)
2k+2,odd + c2r−2t

(2r−3)
2k+1,odd

)

+ (−1)r−1
r−2∑
k=0

(−1)kt
(2r−3)
2k,even

= (−1)r−1t
(2r−2)
0,odd + (−1)2r−2t

(2r−2)
2r−2,odd + (−1)r

r−3∑
k=0

(−1)kt
(2r−2)
2k+2,odd

+ (−1)r−1
r−2∑
k=0

(−1)kt
(2r−3)
2k,even

= (−1)r−1
r−1∑
k=0

(−1)kt
(2r−2)
2k,odd + (−1)r−1

r−2∑
k=0

(−1)kt
(2r−2)
2k,even

= (−1)r−1
r−1∑
k=0

(−1)kt
(2r−2)
2k,alt ,

as required. A similar argument shows that the result holds when N is even.
As we have already observed, for the sequence (xi) we are interested in, the Li

vanish. It follows that L vanishes and we are done. �

Proof of Corollary 9.9 The proof of Proposition 9.8 also shows that x2 + x2+2N−1 =
SN,1|cl �→cl+1x2+N−1. It follows from the description of SN,1 in Proposition 9.8 that
SN,1 = SN,1|cl �→cl+1 (using the fact that cn+N−1 = cn) so we are done for n = 2.
Repeated application of this argument gives the result for arbitrary n. �
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