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Abstract For each integer k > 1, we define an algorithm which associates to a par-
tition whose maximal value is at most k a certain subset of all partitions. In the case
when we begin with a partition A which is square-bounded, i.e. A = (A1 > -+ > Xg)
with A1 =k and A, = 1, applying the algorithm £ times gives rise to a set whose car-
dinality is either the Catalan number cy—_+1 (the self dual case) or twice that Catalan
number. The algorithm defines a tree and we study the propagation of the tree, which
is not in the isomorphism class of the usual Catalan tree. The algorithm can also be
modified to produce a two-parameter family of sets and the resulting cardinalities of
the sets are the ballot numbers. Finally, we give a conjecture on the rank of a partic-
ular module for the ring of symmetric functions in 2¢ 4 m variables.

Keywords Partitions - Young diagrams - Catalan numbers - Current algebras

1 Introduction

The Catalan numbers cy, where £ is a non-negative integer, appear in a large num-
ber combinatorial settings and in [10] one can find 66 interpretations of the Catalan
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numbers. Many of these generalize to the ballot numbers by ,, where £ and m are
both non-negative integers and ¢, = by o. These numbers also appear in the represen-
tation theory of the Lie algebra s(, in the following way. Consider the (2¢ 4 m)-fold
tensor product of the natural representation of sl,. As a representation of sl, this ten-
sor product is completely reducible and the multiplicity of the (m + 1)-dimensional
irreducible representation of s, is by .

The current paper was motivated by the study of the category of finite-dimensional
representations of the affine Lie algebra associated to s, and an attempt begun in [4]
and [5] to develop a theory of highest weight categories after [7]. In the course of their
work, Chari and Greenstein realized that one of the results required for this would be
to prove that a certain naturally defined module for the ring of symmetric functions
in 2¢-variables is free of rank equal to the Catalan number c,. In fact, it has turned
out that finer results are needed, namely one would need the basis of the free module
and also an extension to more general modules for the ring of symmetric functions.
The conjecture is made precise in Sect. 5 of this paper.

In Sect. 2 of this paper, we define an algorithm which, when applied ¢ times to
a partition A = (k > Ay --- > Ax—1 > 1), gives a subset of partitions with cardinality
equal to the Catalan number c;—_;1. In fact we prove that this algorithm defines an
equivalence relation on the set P* of all partitions i = (i1 > - -- > iy) which satisfy
1 < £. The algorithm defines an ordered rooted tree which is labeled either by pairs
of positive integers or by single positive integers, and thus is very different from
the usual Catalan tree. In addition, our algorithm uses a certain involution 7, which
defines a duality on P¢. Our proofs in Sect. 3 are algebraic rather than combinatorial.
A reason for this is that we were unable to find any natural bijection between the sets
we describe and the usual sets giving rise to the Catalan numbers which keeps track
of the duality.

In Sect. 4 we describe a generalization of the algorithm which gives rise to ballot
numbers by 5. This time, the algorithm describes a set of m rooted ordered trees. To
do this, we prove an alternating identity for the ballot numbers, which generalizes the
well-known one [1] for Catalan numbers. In Sect. 5, we also discuss further directions
in which these algorithms could be generalized.

2 The main results
2.1

Throughout the paper N denotes the set of natural numbers and Z_ the set of non-
negative integers. By a partition A with n parts, we mean a decreasing sequence

h=(azhez 20

of positive integers. We denote the set of all partitions by P. Given A € P set
Ml =0z =),

and for 0 < A, 11 <X, set

A A =1 = A2 > > Ay > Ayy1).
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For £, m > 0, let by ,, be the ballot number given by

by — 20+m 20+ m
e e e—1)
and set ¢, = by .

22

For k,n € N, let P™* be the set of partitions with exactly n parts where no part is
bigger than £, i.e.

'P"’k:{)hz()hlzkzz"'zkn):klSk,)un>()},
Let 7 : Pk — Pk be defined by
g == =C(k+1—A,>-->k+1—21)).

Clearly 1 is a bijection of order two. To understand the map 7 in terms of Young
diagrams, it is convenient to think of P"* as the set of partitions whose Young dia-
grams lie in an n x k rectangle and have exactly n rows. The Young diagram of i (1)
is obtained by taking the skew diagram (k + 1)" \ X and rotating it by 180 degrees.

As an example, we can regard the partition A = (7> 6> 5> 5> 4> 2) as an ele-
ment of %2 in which case we have 9(A) =(8>6>5>5=>4>3), and pictorially
we get

] [ ]

rotate p

T9(A)

23

Set P¥ = Pkk_ Given A € P¥ and ¢, k € N with ¢ > k, define subsets P¢()) of P!
inductively, by

Py = ufna), PO =Pi0) UPLO),
where
Pi ={neP :u\{n}eP ™ W},
POy ={nePliou\{t+1—pm)e PV} = wPik).
Clearly

Plizer) = P = PEO).

@ Springer



4 J Algebr Comb (2011) 34: 1-18

Lemma Let i € Pt. Then

pEePIR) = m <L—1,

pePLR) = e > 1.

Proof The first statement is clear from the definition of Pﬁ (1), while for the second,
note that if 4 = 7yv for some v € Pﬁ(k), then ug=€+1—v; >2. O

24

We illustrate the recursive definition of P¢(1) in a simple case using Young diagrams.
Consider the case when A = (1 > 1) € P2. Then, the elements of P?(X) and P3 (%)
are obtained as follows:

H ™
SN
-0 P

Fork e Z,, set

2.5

Pip=1{reP =k n=1}.

The following is the main result of this section.

Theorem 1

(i) Let £,k € N be such that £ > k and let ) € ,Pfqb' Then,

Co—ktls A=TEA,

#Pt (L) =
2c0-k+1, A F A

(ii) Let 1 € PLy, v e Pl Forall £ € Z, with £ = max(k, s), we have

PLOINP V) =0, ifvé{ra)}.

(iii) We have
Pt= | | PED).

{AePfqb: 0> k> 1}
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Remark The first part of the theorem in particular proves that applying the algorithm
m times to any element of Pf , for any k > 1 produces a set whose cardinality de-
pends only on m and the size of the orbit of the initial element. The remaining parts
prove that the algorithm gives a partition of the set |, , P

2.6

We note the following corollary of the theorem, which is also a consequence of a
well-known combinatorial identity.

Corollary For £ > 1, we have

14
e =) (E—i+2ciceiti.
i=l

2.7

We shall prove the theorem in Sect. 3. For the rest of this section we show that our
algorithm defines a tree if A = ;A and a forest with two trees if A # ;1. We study
the propagation of the tree and forest, respectively. The first step in this is to observe
that the sets Pﬁ (A) and Pf (1) need not be disjoint and to identify the intersection of
the two sets.

Proposition Let { >k>1,\ € Pskqb. We have

Pa) NP = [ e Py 1€ —1=puy = e =2}
={pePiOW:t—1>pu > pe>2}
={uePW:l—1>p >p =2}

Proof Notice that
pEPIMNPIR) = u\{ue),  wep\{+1—pu}eP™'0),
and hence we get
m1<£-—1, C+1—peg<f—1, ide £—1>pu;>pe>2.

To prove the reverse inclusion we proceed by induction on £. If £ € {k, k + 1} then
there does not exist u € Pl with2 < e < py < £—1 and hence induction begins. For
the inductive step, we must prove that if u € Pf{ (A)issuchthat — 1> u; > ue > 2,
then T, € Pﬁ (1), i.e. that o\ {€+1—p1} € PE=1(1). This is equivalent to proving
that T (zepe \ {€ + 1 — 1)) € PE1(1), ie. that

W=W—1>>p—1>pu—1HePR) (2.1)
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and in fact we claim that ' € 795_2()»). Consider the case when o\ {u¢} € Pﬁ_] (A);
then the induction hypothesis applies and we get 7,1 (1 \ {1e}) € Pg_l (A), i.e. that

V= — o1 = >0 — ) € PR,
and hence

W=t w=(ua—1>->ur 1 —1)eP20),

and we are done. Now suppose that u \ {u¢} € Pf_l (A). This means precisely that

Te—1(u \ {ue}) € sz -1 (1) and the preceding argument repeats and proves this case.
The other statements of the proposition are now clear. |

Corollary For all £ > k, we have
PO =PiM U e PEGY) iy = ¢}
=P u{nePi) :pe=1}.

Proof Suppose that 1 € P¢(1) and p ¢ Pf (1). The proposition implies that we must
then have either 41 =€ or uy = 1. Since u € Pf (1), this means by (2.3) that u, # 1
and hence we have | = £ which proves the first equality of the corollary. The second
follows by applying ;. g

2.8
Givenany pu = (u1 > -+ > py) € P, set

d@) ={(: N :1=j<pe}Ulrenu: D} c P

Notice that if pu # ' then d(u) Nd(w') = @: it is clear that (u: j) = (' : j') for
some j, j' implies that u = p/, and if (u, j) = te41(u’ : 1) for some j, then we
would have | = £ + 1, which is impossible since i € P¢. By Corollary 2.7 we see
that

PH = || dw. (2.2)
VE'PZ(A)

Let 1 € qub be such that A = 74 (1) and define a tree T, as follows. The set of

S
vertices of the tree is

Py =[P,
>k

and two vertices u, v € P()) are connected by an edge precisely if v € d(u) or vice-
versa. The tree T}, is naturally rooted at A and the elements of PE()) are those vertices
with a path of length £ — & to the root. The vertices of the tree at any given level come
with a natural total order defined as follows. Suppose that we have fixed an ordering
of the vertices P%(1); then the order on P*+1(%) is as follows:

v<Vv = u=<pu Yuedy) u ed®)
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and the ordering on d(v) is given by
w:DH)<W:2)<---<@:v)<t(w:1).

In the case when XA # 1A the preceding construction gives a forest of two trees F;,
rooted at A and A respectively.

2.9

We shall now see that the propagation of the tree T, is independent of A. For this, we
define another rooted tree T as follows. The vertices of the tree will be labeled either
by a pair of integers or a single integer. The root vy of the tree will be labeled (1, 1).
We then define the labels of descendants of a node based on the label of the original
node: d((m,n)) ={(i,n+ 1) :1<i <m}U{n+ D},andd((p)) ={(i,2):1<i <
pYU{(2)}. Note that the label (1, 1) never appears again and is uniquely associated
to the root. The following picture shows the labeling at the first few levels.

(1,1

L]
1,4) @) (1,2) (2,2) (3,2 2 13 © 1,3) (2,3 (3 1,2) (2,2 (2)

Proposition For ) € Pfqb’ we have an isomorphism of trees  : T) =T such that

Y (X) = vg and if v € PY()) then the vertex W (v) has label (vg, £+ 1 —vy), if v e
PY(1), and label (v¢) if v € PE(L).

Proof We define the isomorphism inductively and note that mapping the root A of T,
to the root vg of T gives the desired labels. Let T?, Ti be the subtree of T and T}
respectively, consisting of the first s propagations of the root. Assume that we have
defined the isomorphism v : (T3)*~! — T*~! with the desired properties. By (2.2) it
suffices to show that we can extend ¢ to a map from d(v) — T for all v € P* +k Q).
Suppose first that v € Pj“‘(k), in which case ¥ (v) has label (Vsqr, s +k+ 1 —v1).
This means that the vertex v (v) has v, descendants with labels (j, s +k+2 —vy),
1 < j < vg4k and one descendant with label (s + k + 2 — vy). Thus if (v: j) €
d(v), we let ¥ ((v : j)) be the vertex which is the descendant of ¥ (v) with label
(j,s+k+2—v) and ¥ maps Tyyr+1(v : 1) to the vertex with label (s +k+2 —vy).

Similarly, if v € P‘,H'k (A) then ¥r(v) has label (v;) and hence the vertex ¥ (v) has
vy descendants with labels {(k,2) : 1 <k < v¢} and one descendant with label {(2)}.

@ Springer



8 J Algebr Comb (2011) 34: 1-18

This time, we assign to a descendant (v : m) the vertex labeled (m,2) and to the
descendant ty4;4+1(v : 1) the vertex labeled (2). This establishes a bijection between
the vertices of T, and the vertices of T, which by construction is now an isomorphism
of trees. Il

3 Proof of Theorem 1

3.1

Forr,keZi, )€ Pk set
PO = {neP ) ipe =1,
e (V) =#P ().

The subsets Pg (A7), PE(x, r) are defined in the obvious way. Note that by apply-
ing 7y, we get

e, ) =#ueP Q) :m<t+1-r). 3.1

As a consequence, we see that e; o(A) = eg.1(A) = #PY()L). To prove part (i) of the
main theorem we must prove that eg 1 (L) = c/—x+1. We do this by showing that the
e¢ - (A) satisfy a suitable recurrence relation and by determining the initial conditions;
this is the content of the next proposition.

Proposition Let r, £ € N and assume € > k. We have

e, =Y er1 M) =er 1,10 +err1(0). (3.2)
s>r—1
Moreover,
e,(M)=0, r>0—k+1, (3.3)
er,i—k+1(1) =#PF(). (3.4)
3.2

Before proving the proposition, we deduce part (i) of the theorem. It is clear that the
system of recurrence relations with the initial conditions given in the proposition has
a unique solution. It is also well known [1] and is a simple matter to check that if we
set

be—k—r+1,r5 if A =12,
el r ) = .

2bg—k—ry1,r, ITAF TN,
then the recurrence relation and the initial conditions are satisfied. Since
Co—k+1, ifA=71(A),

e, 1 (M) =#P'(\) =
2co—k+1, else,

part (i) is proved.
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33
To prove (3.2) it is clear that

’Pf{()»,r) :I_l{(,u:s) :,uePe*l()»,s)},

S Zr
and hence

#P{(L 1) =) e 15(0).

s=>r

By Corollary 2.7 we may write
PO =Pl U e PEL 1) 1 =€),
We have a bijection of sets
wePlrim=t)—{veP" v <t+1-r},
given by

uw—p\{1} v—or1:1),

hence by using (3.1) we see that
#HuePlonr) m = =#{veP W)y <t+1—r}=e1,-1(1),
which proves (3.2).

34

The initial conditions (3.3) and (3.4) are clearly immediate consequences of the fol-
lowing.

Lemma
pePO) = nest—k+1, wzk (3.5)
weP' O :n=—k+1}c{ueP W) :u =t} (3.6)
HueP M) i ue=L—k+ 1) =#P (). (3.7)

Proof To prove (3.5) we proceed by induction on £ — k. If £ = k, then the result
holds since A € P;‘qb and by the definition of 2 (A). Assume we have proved (3.5)

for¢ —k <sandlet u e P*HS(1). If u € Pgﬂ (X) (resp. n € Pfﬂ (X)), then we have
Wikts < Uk4s—1 <5 (resp.k+s+1— ppss >k, ie., tpps <s—+1),

and the inductive step is proved.

@ Springer



10 J Algebr Comb (2011) 34: 1-18

To prove (3.6) notice that it is obviously true if £ = k. If £ > k and
ue=L—k+1>2, u <4t

then Proposition 2.7 applies and we get u € Pg (A). Applying (3.5) to u \ {i¢} gives
e < pe—1 < £ — k which contradicts our assumption.

Suppose that u € PE()) is such that e =€ —k + 1. Using (3.6) we see that
1 = £. In particular, u ¢ Pf{ (1), forcing

p\{l} == 20+1-p) e P,
and hence we get
v (T \ (1Y) =(ua— 12> p—1=L—k) e P ).

In other words the assignment u — 7,_1(zep \ {1}) defines a bijection {1 € P¢(A) :
we=0—k+1} = {we P (1) : ue = £ — k} and hence (3.7) follows. O

3.5

To prove part (ii) of the theorem, assume that v ¢ {A, 7z A} and without loss of gen-
erality that k > s. To see that A ¢ P*(v), notice that ¢ 7?(’1‘(1)) since A1 = k and by
Lemma 2.3 we also have A ¢ Pf(v) since Ay = 1.
Suppose that 1 € P¢(A) NP (v) for some £ > max(s, k). f2 < pp <p; <€—1,
then it follows from Proposition 2.7 that u € Pﬁ (N Pg (v), i.e., that
p\ ey € PIO) NP W),

which contradicts the induction hypothesis. If | = €, then u ¢ Pg AUy Pg (v) and
so we must have

TolL € Pﬁ(k) N Pg(v).
But this implies that
wp\ (1} eP MNP )

which is again impossible. The final case to consider is when @y = 1 and this is now
immediate by applying 7, to the previous case.

3.6

The following proposition proves part (iii) of the theorem.

Proposition (i) Let A € P*, v e PS and u € P¢ withk <s < {. Then
nePiw), veP () = ueP'O.

(i) Let u € pt for some € € N. Then u € PO for some A € Pk

sqp | Sk <¢.
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Proof We proceed by induction on £ — s. If £ = s, then we have u =v or u = 75v
and the statement follows since PS()) is tg-stable. If £ > s and u € Pg (v), then
by the induction hypothesis, we have 1 \ {1¢} € P¢~1(1) and hence by definition,
w € PY()). Otherwise we have Ty \ {£ — g + 1} € P1(A) and hence T € PE(1).
Part (i) follows by using the fact that P(L) is T,-stable.

To prove (ii), we proceed by induction on £. If £ = 1, then

and we are done. Assume now that we have proved the result for all integers less
than ¢ and let o € P, If o1 = £ and p, = 1, there is nothing to prove. If j; < £,
then set v = u\{¢}. Clearly € P%(v) and since v € P¢~! we see by the induction
hypothesis that v € P*(A) for some A € Pfqb. Applying part (i) of the proposition
shows that u € PY(1). Finally, consider the case ;1 = ¢ and ¢ > 1. Then we have
v =1 € P41 and we are now in the previous case and so

v=T1op € P,

for some A € Pfqb. The result again follows since P¢(1) is T;-stable. O

The proof of the preceding proposition suggests an algorithm to find, for u € P¢,
the unique A € Pfqb such that 2 € PY()). Suppose 0 = (1 > --- > ) ¢ P;(qb' Then

set ul=(up>---> Hu,). Clearly, p is descended from w! and hence also from
7, (u!). Now repeat with 7, (1) in place of u, setting 1’ to be the partition ob-
tained after iterating this process i times. We illustrate this in the following two sim-
ple examples. Take u = (3>3>2>2>1). Then

a ut 7(1) % 7(1?)

So we have € P72 > 1).
Ifu=7>6>5>3>3>3>3>3>3>1),then

ul /—L2 lf'3

Sowe have u e P93 >1>1).

@ Springer



12 J Algebr Comb (2011) 34: 1-18

4 From the Catalan numbers to the Ballot numbers

In this section, we generalize the first part of Theorem 1. Namely, given m € N, we
modify the algorithm defined in Sect. 2 so that if we start with a suitable set of m
elements, then applying the algorithm ¢ times gives a set of cardinality equal to the
ballot number b, ,,. We use the binomial identity

()=(7)+C2)

= + ’

N s s—1

freely and without comment throughout the rest of the section. Note that in particular,

this gives
be.m =be.m—1 + be—1,m+1- 4.1)
4.1
Fix m € N, and let
Qu={lj}:1<j<m}cPtm

We generalize the definition of the sets P*() given in Sect. 2 as follows. Define
subsets Pe(.Qm) by

Pi(2m) = 2 =P (2m) = Tt 2,
Pi(S2m) = {(u: ) e POl < j < per, we PH@2w)
'Pf (82) = TE—&-m—l,Pg (£2m),
P (2m) = Pi(2m) U Py (2m)-
The main result of this section is
Theorem For {,m € N, we have
#P () = bem-1-
4.2
The proof of the theorem is very similar to the corresponding result in Sect. 2. An
inspection of Proposition 2.7 and its corollary shows that the proof works in our more

general situation and we have

Proposition For all £ > 1, the set P*(£2,,) is the disjoint union of the following sets:
forall £ > 1, we have

PU(2m) = Pg(2um) U {1 € PE(2y) : 1 = £}
= Pr () U {1 € P§(2m) - e =1}

@ Springer



J Algebr Comb (2011) 34: 1-18 13

4.3

Fors,ZeN, £ > 1, set
P (2. s) = {1 € PX(Qm) : e = s},
e,s(2m) =#P" (2, 5)

and observe that eg 0(£2,,) = e, 1(2m) = #P(2,,). Note that by applying T¢,,_1,
we get

er,s(2m) =#{n € PY(Q2w) 11 < L+m —s}. 4.2)

We now determine the recurrence relation and the initial conditions satisfied by the
eq,s($2m).

Proposition For £ > 1 and s > 0, we have

ee,x(Qm) = Z eE*l,s(Qm) = eﬁ*l,sfl(gm) + e@,s+1(9m)~ “4.3)
Jj=s—1
Moreover,
ers(£2,)=0 ifs>f+m—1, “4.4)
ee,04m—1(82m) =1, (4.5)
e1,s(§2,) = max(0,m —s + 1). (4.6)

Proof 1t is immediate from Proposition 4.2 and (4.2) that (4.3) holds. Equation (4.4)
holds since by definition € P¢(£2,,) implies 1 < £ +r — 1. Let u € P4(£2,,) be
such that ug > € +r — 1. Then we must have, uy={l+r—-1>4+r—1>...>
£ 4+ r — 1). Further, this element is ty+,—1(1 > 1--- > 1), and we clearly have (1 >
1>..->1De Pﬁ(ﬂm). This proves (4.5). Finally, (4.6) is an immediate consequence
of the definitions of eg (£2,,) and of £2,,. O

4.4

It is clear that the integers e, ;(£2,,) are completely determined by Proposition 4.3.
The proof of the theorem is completed by the following proposition which gives
closed formulas for the ey (£2,,).

Proposition For ¢,m > 1 and s > 0, we have

s>4L,

m+20—s—1
"),

ep s (£2m) = o
{ijo(—l)j (7 )be—jm-1, 1ss<€-1

In particular, eq 1 (2m) = bg m—1.
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14 J Algebr Comb (2011) 34: 1-18

Proof Notice first that the numbers on the right hand side satisfy (4.4), (4.5) and
(4.6). The proposition follows if we prove that they also satisfy (4.3). If s > £ (resp.
s < £ — 1), then we must check that

m+20—s—1 . m+20—s—2 n m+20—s—2
1 B (-1 ¢ ’

Y1y (s . ’)bz,-,ml

Jj=0

(s —i—1 (s—7+1
=Z(—1)J(? j )bejl,m1+2(—1>«'<s j.+ )be,-,ml.

Jj=0 j=0

and

The first one is just the usual binomial identity, while for the second, observe that

(s — ] s —i+1
Z(—l)/(sj’>be_,-,m_1—2(—1)f(s j.+ )bz_,-,m_l

Jj=0 j=0
. s — ]
= Z(_1)1+1< - 1>be-j,m_1
i1 J
(s—j—1
= Z(—l)’< ! )bz—j—l,m—l'
j=0 J

It remains to consider the case when s = £ — 1, i.e. we have to verify that

(l—j—1
Z(—l)]( j )bé—j,m—l

j=0
(- =2 m+4¢—1
= Z(—U’( / )be—j—l,m—1 + ( )
j=0 J ¢

This amounts to proving (by replacing j with j + 1 on the right hand side and using
the binomial identity again) that

(l— m4+4£—1
E —1)/ . —
j>0( 1) < J )bi—j,m—l —< ¢ )

This is probably well known but we isolate it as a separate lemma and give a proof,
since we were unable to find a reference in general. g

Lemma For £,m > 0, we have

(-] + ¢
Z(—l)f( j’>bz_,-,m=<’" , ) @.7)

j=0
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Proof Note that if m = 0, then this formula is known for all ¢, [1] since the by o
are Catalan numbers. Assume now that we have proved it for all pairs (¢, m’) with
m’ < m. To prove it for (£,m) we proceed again by induction on ¢. If £ = 0, the
equation is just by, = 1 which follows from the definition. Assuming the result for
(¢, m), we prove it for (£ + 1, m) as follows. Consider:

L+1—
- 1)/( " >btz+1 g

jz0

L+2— L+1—j
= Z( 1/ (( * ) - ( + ])) (bes2—jm—1—bey2—jm—2)

j=0 J=1

L42—
= Z( 1)’( . )(bz+2—j,m—1 —bgy2—jm-2)

J=0

+Z( 1)]< J )(b€+1 —j.m— 1_b€+l —j.m— -2)

j=0

V4
—Z( 1)’( +. )(bz+2 jm—1 —bet2—jm—2)

j=0

+Y (- 1>f< )bz jm-

Jj=0

For the inductive step to work, we must have the result for m = 1 as well. For this,
note that by 11 =beq2—j,0 and by 1 = 0 for all £. Hence, we get

L+1—
S (- 1)f( - )bz“_/,l

jz0
L+2—
=) (- 1>f< . >b2+2 jot Y (= 1)]( )bz j
Jj=0 j=0 J
=2+¢

as required. In the general case, the induction hypothesis applies to all the terms on
the right hand side and we get

Z( 1), E+1 b _ r+£+1 B m+ ¢ . m+ 0
= =42 €+2 ¢

_(m+El+1
S\ e+ )
and the proof is complete. O
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5 Concluding Remarks and a Conjecture
5.1

As we mentioned in the introduction, our motivation for this paper came from the
study of the representation theory of affine Lie algebras and the current algebra asso-
ciated to a simple Lie algebra. There is a well-known relationship [2, 6, 8] between
the ring of symmetric functions in infinitely many variables and the universal en-
veloping algebra of the affine Lie algebra, and this relationship plays an important
role in the finite-dimensional representation theory of these algebras.

5.2

To explain our motivation further, let sl be the Lie algebra of 2 x 2 trace zero com-
plex matrices and let C[¢] be the polynomial algebra in one variable. The associated
current algebra is slp ® C[¢] with the Lie bracket given by,

k®fiy®gl=[x,yI® fg, x,yesh, f,geClt]

Clearly, sl ® C[¢] has a natural Z_ -grading given by powers of # and we let G be the
category of Z_ -graded modules for this Lie algebra. The category is not semi-simple
and one is interested in its homological properties; some of these have been studied
in [4] and [5]. There are three families of interesting modules in this category, all
indexed by Z x Z, : the irreducible modules V (n, r), their projective covers P(n, r)
and an intermediate family of modules W (n, r) called the global Weyl modules. This
is very similar to the situation in the BGG category O for semisimple Lie algebras.
The global Weyl modules do share some of the properties of the Verma modules,
[3] and it is natural to ask if, for instance, a version of BGG-reciprocity holds in G.
Although the global Weyl modules are infinite-dimensional, one can define a suitable
notion of the multiplicity of V (n,r) in W (m, s), which allows one to formulate a
statement analogous to BGG-reciprocity.

The modules P(n,r) have a natural decreasing filtration and we would like to
prove that the successive quotients P (n, r)z’”, m > 0 are isomorphic to a finite direct
sum of global Weyl modules. The module P (n, r)*" has a set of generators which is
indexed by all partitions 1 > --- > u,,, with exactly m parts. The first challenge is
to prove that in fact a finite subset of these generators is enough and we can do this by
using results of [8] which gives us an upper bound for 1. This proves simultaneously
that P(n,r)?" is a quotient of a direct sum of global Weyl modules. However, the
results of [8] do not immediately give the minimal set of generators. But calculations
in small cases showed that elements indexed by the set P (£2,,) were in fact minimal.
This was the first motivation for this paper: to come up with a natural algorithm which
would allow us to identify a conjecturally minimal set of generators for P (n, r)".

53

The next step in the program would be to prove that P (n,r)>" is actually a direct
sum of global Weyl modules, and this too has been checked for small values of m.
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The global Weyl module W (n 4 2m) also admits the structure of a right module for
the ring of symmetric functions in (n 4 2m)-variables and is in fact a free module for
this ring of rank 2”72 Using [3] and the structure of the global Weyl modules [6],
we can show that the desired BGG-reciprocity would follow, if in addition we can
establish the following conjecture, which can be formulated without any mention of
representation theory.

For r > 1, let C[x1, ..., x,] be the polynomial ring in r-variables, S, be the sym-
metric group on r letters, and let

Ay =Clxy, ..., xr]sr

be the ring of invariants under the canonical action of S, on the polynomial ring.
Given elements a, b € C[xq, ..., x,] and m > 0, set

m—1
po(a.b)=1,  pula.by=>Y a"/7'bl.
j=0

Given a partition = (1 > - -+ > ), g > 0, let comp(n) C Z7% be the set of all
distinct elements arising from permutations of (i1, ..., us) € Z,..

From now on, we consider the case when r = 2¢ + m for some £, m > 1. Given
ne Pt we set

p(u) = Z Py (X1, %2) -+ - Py (X201, X20)-
w ecomp(u)

Let M(¢, m) be the A,-submodule of C[xy, ..., x,] spanned by the elements p(u),
w € Pt. We can now state our conjecture.

Conjecture The A,-module M(£, m) is free with basis

{p(w) : 1 € PX(2m)}.

and in particular is of rank by p,—1.

We have checked that the conjecture is true for all m if £ = 1,2 and for £ = 3,4
form=0,1,2.

54

There are other natural generalizations of the algorithm. Namely, we could start with
any partition A € P and define a subset Q(1) by setting

Q') =M U {m a1},
and then defining Qﬁ (%) in the obvious way and

QL (M) = Ty 1t e—1 Q5.
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Computations for small values of £ and specific A do yield sequences of numbers
found in [9] for the cardinality of the sets. The abstract result needed, however, to
compute the recurrence relations in general is the analog of Corollary 2.7. The corol-
lary is definitely false in this generality and it should be interesting to find the correct
statement.

6 Index of notation

Section 2.1: N, Z, A\ {An}, (X2 A1)y boms Co
Section 2.2: Pk 7.
Section 2.3: Pk, PL(n), Pﬁ()\), PE(L).

Section 2.5: Pfqb.

Section 3.1: P(h,r), P{(A,r), PEOL 1), e r (M)
Section 4.1: 2, P*(21), P (21), PE(2).
Section 4.3: PY(2, 5), €e(£2, ).
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