Lie expression for multi-parameter Klyachko idempotent
Askar Dzhumadil'daev
DOI: 10.1007/s10801-010-0256-2
Abstract
An expression for the multi-parameter Klyachko idempotent as a linear combination of Lie base elements is given.
Pages: 531–542
Keywords: keywords free Lie algebras; Lie elements; klyachko idempotent
Full Text: PDF
References
1. Bergeron, F., Bergeron, N., Garsia, A.M.: Idempotents for the free Lie algebra and q-enumeration. In: Stanton, D. (ed.) Invariant Theory and Tableaux. IMA Vol. Math. Appl., vol. 19, pp. 166-190. Springer, New York (1990)
2. Blessenohl, D., Laue, H.: A basis construction for free Lie algebras. Expo. Math. 11, 145-152 (1993)
3. Garsia, A.M.: Combinatorics of the free Lie algebra and the symmetric group. In: Analis, et cetera, pp. 309-382. Academic Press, Boston (1990)
4. Jacobson, N.: Lie Algebras. Interscience, New York (1962)
5. Klyachko, A.A.: Lie elements in a tensor algebra. Sib. Mat. Zh. 15(6), 1296-1304 (1974)
6. Krob, D., Leclerc, B., Thibon, J.-Y.: Noncommutative symmetric functions II: Transformations of alphabets. Int. J. Algebra Comput. 7, 181-264 (1997)
7. McNamara, P., Reutenauer, C.: P -partitions and multi-parameter Klyachko idempotent. Electron. J.
2. Blessenohl, D., Laue, H.: A basis construction for free Lie algebras. Expo. Math. 11, 145-152 (1993)
3. Garsia, A.M.: Combinatorics of the free Lie algebra and the symmetric group. In: Analis, et cetera, pp. 309-382. Academic Press, Boston (1990)
4. Jacobson, N.: Lie Algebras. Interscience, New York (1962)
5. Klyachko, A.A.: Lie elements in a tensor algebra. Sib. Mat. Zh. 15(6), 1296-1304 (1974)
6. Krob, D., Leclerc, B., Thibon, J.-Y.: Noncommutative symmetric functions II: Transformations of alphabets. Int. J. Algebra Comput. 7, 181-264 (1997)
7. McNamara, P., Reutenauer, C.: P -partitions and multi-parameter Klyachko idempotent. Electron. J.
© 1992–2009 Journal of Algebraic Combinatorics
©
2012 FIZ Karlsruhe /
Zentralblatt MATH for the EMIS Electronic Edition