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Abstract We provide a technique to compute the Euler—Poincaré characteristic of a
class of projective varieties called quiver Grassmannians. This technique applies to
quiver Grassmannians associated with “orientable string modules”. As an application
we explicitly compute the Euler—Poincaré characteristic of quiver Grassmannians as-
sociated with indecomposable pre-projective, pre-injective and regular homogeneous
representations of an affine quiver of type A p,1. For p =1, this approach provides
another proof of a result due to Caldero and Zelevinsky (in Mosc. Math. J. 6(3):411-
429, 2006).

Keywords Cluster algebras - Cluster character - Quiver Grassmannians - Euler
characteristic - String modules

1 Introduction and main results

In this paper we provide a technique to compute the Euler—Poincaré characteristic
of some complex projective varieties called quiver Grassmannians. In the last few
years many authors have shown the importance of such projective varieties and of
their Euler—Poincaré characteristic in the theory of cluster algebras (see [5-7, 16]),
introduced and studied by S. Fomin and A. Zelevinsky [18-20].

Given a quiver Q and a Q-representation M, the quiver Grassmannian Gre (M) is
the set of all sub-representations of M of a fixed dimension vector e (see Sect. 1.1).
This is a complex projective variety and our aim is to compute its Euler—Poincaré
characteristic xe(M). Our main result (Theorem 1) says that under some technical
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hypotheses on M, there is an algebraic action of the one-dimensional torus 7 = C*
on Gre(M). It is well-known (see Sect. 2) that if a complex projective variety is en-
dowed with an algebraic action of a complex torus with finitely many fixed points,
then its Euler—Poincaré characteristic equals the number of fixed points of this ac-
tion and, in particular, it is positive. In general it is not true that the Euler—Poincaré
characteristic of a quiver Grassmannian is positive (see [16, Example 3.6]) but it
is proved in [23] for quiver Grassmannians associated with rigid representations of
acyclic quivers, as conjectured in [18]. The fixed points of the action of 7" on Gre(M)
are the “coordinate” subrepresentations of M of dimension vector e (Sect. 1.2). As
a combinatorial tool to count them, we consider the coefficient-quiver introduced by
Ringel (see Sect. 1.3) and we notice that its successor closed subquivers are in bijec-
tion with coordinate subrepresentations of M (Proposition 1).

We prove that “orientable string modules” (see Definition 1) satisfy the hypotheses
of Theorem 1. Such a class of Q-representations includes (up to “right-equivalence’)
all the representations of the affine quiver of type A p,1 and most of the representations
of the affine quiver of type A D.q-

As an application we explicitly compute x(M) when M is an indecomposable
pre-projective, pre-injective and regular homogeneous representation of the affine
quiver of type A p.1. We hence find another proof of results of [9] for p =1, and
of [10] and [11] for p = 2. Such computations can be used to have an explicit descrip-
tion of the bases of cluster algebras of type A p,q foundin [11] and [17] and for further
studies of such cluster algebras [12]. In addition it would be interesting to compare
our computations with results of [22] where the authors compute the Laurent expan-
sion of cluster variables of cluster algebras arising from surfaces. In particular this
gives a technique to compute the Euler—Poincaré characteristic of quiver Grassman-
nians associated with rigid representations of quivers associated with triangulations
of surfaces with marked points. This family includes quivers of type A p.q Where our
technique applies. In type A one can compare our results with results of [1].

To conclude the introduction we remark that having a torus action on a smooth
projective variety X gives rise to a cellular decomposition of X ([4, 13]). It is known
that if M is a rigid Q-representation (i.e. without self-extensions) then Gre(M) is
smooth [8]. In particular if M is a rigid Q-representation satisfying hypothesis of
Theorem 1 then Gre(M) has a cellular decomposition. This approach is used in [12].

The paper is organized as follows: in Sect. 1.1 we recall some basic facts about
quivers and quiver Grassmannians; in Sect. 1.2 we state our main result; in Sect. 1.3
we introduce the coefficient-quiver of a Q-representation and we show how to use it
as a combinatorial tool to apply the main result; in Sect. 1.4 we introduce orientable
string modules and we prove that they satisfy the hypotheses of our main theorem; in
Sect. 1.5 we give an explicit application for quivers of type A p,1. All the remaining
sections are devoted to proofs.

1.1 Quiver Grassmannians
We recall the definition of quiver Grassmannians. Given a quiver Q = (Qo, 01),
i.e. an oriented graph with vertex set Qg = {1, ...,n} and arrow set Q1, a Q-rep-

resentation M consists of a collection of complex vector spaces {M (i), i € Qo} and
a collection of linear maps {M(a) : M(j) > M(@) |a:j— i€ Q1}.
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Table 1 Some Q-representations and their coefficient-quiver. In the fourth row, we denote by J,(0) the
2 x 2 nilpotent Jordan block. In the last two rows E;; denotes the 4 x 4 elementary matrix with 1 in the
ij-component and zero elsewhere

0 M o)
] [o]
a 1 0 a a
1 1 ——= 2 k — 12 ~ k —> 2 ——>6 o— o
k k — .
a
b 1 b
2 Il =—— 2 k =—— & e =—— °
a 1 a
1
3 a 2 b Idy K2 0 o
AN Ve AN a
] ~<— 3 [ P — ° b
c a

a

b J2(0) a
4 I =—— 2 K =—— &? <,
a Id \

w

a b a

a C 1 D b Ey 1 +E43 C K4 D E3 . . . .
a b a

a C 1 D b Ey1+E34 C k4 D E3p . ° . o

(o))

Example 1 The first column of Table 1 shows some examples of quivers Q and the
second one shows an example of a Q-representation M. We denote by k the field of
complex numbers. In the last two rows we use the notation E; ; to denote the linear
operator on k* which sends the jth basis vector to the ith one and fixes all the others.

A subrepresentation N of M consists of a collection of vector subspaces N (i) of
M(i), i € Qo, such that M(a)N(j) C N(i) for every arrow a : j — i of Q. For
example the Q-representation M shown in the first line of Table 1 does not admit
the Q-representation (k——0) as its subrepresentation (because the map M (a) has
one-dimensional image) but admits (0——k).

The dimension vector of M is the vector dim(M) := (dimc (M (i)) : i € Q¢) where
dimc (M (i)) denotes the complex dimension of the vector space M (i). For example
in Table 1 the dimension vector of M is respectively, from above to below, (1,2),
(1,1, (2,2,1),2,2), 4, (4).

The path algebra kQ of Q is the complex vector space with as basis the paths
of O (i.e. concatenations of arrows) endowed with the multiplication given by the
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juxtaposition of paths. It is known (see e.g. [3]) that the category of Q-representations
is equivalent to the category of k @-modules. In particular every Q-representation can
be seen as a kQ-module and viceversa every k Q-module has a natural structure of
Q-representation.

Finally, the quiver Grassmannian Gre(M) of M of dimension e = (¢; : i € Qo) i
defined as the set of all the subrepresentations of M of dimension vector e, that is,

Gre(M) := {N C M : dim(N) =e}.

Example 2 For the Q-representations M shown in lines 1 and 2 of Table 1 the
quiver Grassmannian Gr(j,1)(M) is a point. If M is the Q-representation of line 3,
Gr(1,1,1)(M) is the empty set. Let M be the Q-representation shown in line 4. Here
H0)=E;p= [8 é] is the 2 x 2 nilpotent Jordan block which sends the second basis
vector to the first one. We consider the set Gr(j 1)(M) of subrepresentations of M
of dimension vector (1, 1). This consists of lines in k% spanned by non-zero vectors
v=(k, u)" € k? such that v and J»(0)v are linearly dependent. In other words a line
spanned by v is in Gr(y.1)(M) if and only if det[z 0] = —n*=0. Then Grj,1)(M)
is a point which is actually not reduced, indeed the tangent space at this point has
dimension one (see e.g. [12]).

If M is the Q-representation shown in line 5 we consider Gr(jy (M) which consists
of the lines of k* invariant under the linear operators E31 + E43 and E3;. Itis easy to
see that this set consists only of the line spanned by the fourth basis vector. Similarly
if M is the Q-representation shown in the last row of Table 1, Gr(1)(M) consists only
of one point: the line spanned by the third basis vector.

We notice that the quiver Grassmannian Gre(M) is closed inside the product
Il 0o Gr,, (M (i)), where Gr,, (M (i)) denotes the usual Grassmannian of all vector
subspaces of M (i) of dimension e;, which is a projective variety. As a consequence,
Gre(M) is a complex projective variety. We denote by xe(M) its Euler—Poincaré char-
acteristic. In the examples shown above xe(M) is one if Gre(M) is a (double) point
and zero if it is the empty set.

1.2 The main result

The following theorem is our main result.

Theorem 1 Let M be a Q-representation and for every i € Qq let B(i) be a linear
basis of M (i) such that for every arrow a : j — i of Q and every element b € B(j)
there exists an element b’ € B(i) and c € k (possibly zero) such that

M(a)b = cb'. (1)

Suppose that each v € B(i) and all its multiples cv, ¢ € k*, is assigned a degree
d(cv) =d(v) € Z so that:
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(D1) foralli € Qg all vectors from B(i) have different degrees;
(D2) for every arrow a : j — i of Q, whenever by # by are elements of B(j) such
that M (a)b, and M (a)b, are non-zero we have:

d(M(a)by) —d(M(a)by) = d(by) — d(by). 2)

Then
xe(M) = |{N € Gre(M) : N(i) is spanned by a part of B(i)}| 3)

in particular xe(M) is positive.

The hypothesis (1) says that every column and every row of the matrix M (a)
contains at most one entry different from zero.

The hypothesis (D2) can be replaced by saying that every arrow a of Q has a
degree d(a) € 7Z so that d(b') = d(b) + d(a) whenever M (a)b = cb’, for some non-
zero coefficient ¢ € k.

The thesis (3) says that we need to count the number of “coordinate” subrepresen-
tations i.e. those N € Gre(M) whose vector space N (i) is a coordinate subspace in
the basis B(i) (i.e. is spanned by elements of B(i)).

Example 3 Let Q be the quiver with only one vertex and no arrows. A Q-rep-
resentation is just a vector space V and the quiver Grassmannians are usual Grass-
mannians of vector subspaces. Let {vy,...,v,} be a basis of V. We assign degree
d(v;) :=i and the hypotheses of Theorem 1 are satisfied. Then, by Theorem 1,
x (Grg(V)) is the number of coordinate vector subspaces (i.e. generated by basis vec-
tors) of V of dimension k. We hence find the well-known result: x (Gri(V)) = (Z)

Let us give other examples with the help of Table 1. The Q-representations shown
in line 1 are isomorphic, but the first one does not satisfy the hypothesis (1) and we
cannot apply Theorem 1, while the second one does.

The second line shows an interesting example. The Q-representation M of this line

s 13 . ” 1 . :
is a “deformation” of M’ := k=——k and they have the same quiver Grassmannians
0

(see Lemma 4). These two Q-representations are indeed right-equivalent in the sense
of [15]. Theorem 1 applies to M’ and we can hence compute e (M).

In line 3 of Table 1 we choose d(a) = d(b) := 0 and d(c) := 1 and hence the
choice of a degree for the generator of the one-dimensional vector space at vertex 3
determines the choice of a degree for the two basis vectors at vertices 2 and 3 and
these two degrees are different. We can hence apply Theorem 1.

In line 4 we choose d(a) :=0and d(b) :=1.

In line 5 we choose d(a) =d(b) = 1.

In line 6 we choose d(a) =1 and d(b) = 2.

1.3 Coefficient-quiver

In order to compute xe(M) with Ehe help of Theorem 1 one can use a combinatorial
tool called the coefficient-quiver Q(M, B) of M in the basis B (introduced by Ringel
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in [24]). Let us recall its definition and show its utility. Let M be a Q-representation
and B = Uier B(i) a collection of basis B(i) of M(i). The set B is hence a basis
of the vector space (P, o, M (i) and we refer to it as a basis of M. The coefficient-

quiver Q(M , B) is a quiver whose vertices are identified with the elements of B;
the arrows are defined as follows: for every arrow a : j — i of Q and every element
b € B(j) we expand M(a)b = _ cpyb’ in the basis B(i) of M (i) and we put an arrow
(still denoted by a) from b to b’ € B(i) in Q(M, B) if the coefficient c¢; of b in
this expansion is non-zero. Table 1 shows examples of coefficient-quivers (which are
denoted simply by Q(M) since they are in the basis in which M is presented).

We denote by TC O(M) a successor closed subquiver T of O(M), i.e. a sub-
quiver T such that if j € Ty is one of its vertices and a : j — i is an arrow of (M)
then a is an arrow of 7.

It is easy to see that the following proposition is equivalent to Theorem 1.

Proposition 1 Let M be a Q-representation satisfying hypotheses of Theorem 1.
Then

Xe(M) = |[TT OM) : |To N BG)| =i, Vi € Qo] 4)

where Ty denotes the vertices of T. In particular ye(M) is positive.

For example let us consider the Q-representation M shown in the third line of
Table 1. We have already noticed that M satisfies hypotheses of Theorem 1. Then
we apply Proposition 1 and we find x(1,0,0)(M) = 2. Indeed there are two successor
closed subquivers of O(M) with |To N B(1)| =2 and |To N B2)| = |To N B(3)| =0
which are the two sinks (this is consistent with the fact that Gr 9,0y (M) = P'(k?) is
a projective line). Many other examples can be taken from Table 1.

1.4 String-modules

We now show a class of Q-representations which satisfy the hypotheses of Theo-
rem 1.

A Q-representation M is called a string module if it admits a basis By such that
the coefficient-quiver Q(M, By) in this basis is a chain (i.e. a 2-regular graph not
necessarily connected) and if every column and every row of every matrix M (a) in
this basis Bg has at most one non-zero entry, i.e. it satisfies (1). We remark that this
definition follows [14] but not [24] where (1) is not required. For a string module
M we sometimes avoid mentioning the basis By and we denote the corresponding
coefficient-quiver simply by O(M). The Q-representations shown in Table 1 are all
string modules except the second one. It can be shown that a string module M is
indecomposable if and only if QO (M) is connected ([14], [21, Sects. 3.5 and 4.1]).

Given an indecomposable string module M, the chain Q(M) has two extreme
vertices (i.e. joined with exactly one vertex). We say that two arrows of O (M) have
the same orientation if they both point toward the same extreme vertex and they have
different orientation otherwise. For example the two arrows labeled by « in lines 5
and 6 of Table 1 have the same orientation in the line 5 while they have different
orientation in the line 6.
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During private conversations with J. Schréer we were introduced to the following
definition.

Definition 1 A string module M is called orientable if for every arrow a of Q, all
the corresponding arrows a of Q (M) have the same orientation.

For example line 5 of Table 1 shows an orientable string module while the line 6
shows a non-orientable one.

Proposition 2 [f M is an orientable string module then (4) holds.

In Sect. 2 we show that an orientable string module satisfies (1), (D1) and (D2)
and hence, by Proposition 1, they satisfy (4).

1.5 Explicit computations in type Ap,l

In this section we compute explicitly xe (M) for some indecomposable representation
M of the affine quiver Q1 of type A »,1. Let us recall the definition of Q1.

Let p > 1 be an integer. By definition Q1 has one sink, one source and p + 1
arrows which form two paths, one with p arrows and the other with one arrow. We
denote the vertices of O, 1 by numbers from 1 to p + 1 so that 1 is the sink, p + 1 is
the source and k is joined to k + 1 by the arrow ¢, fork=1,2,...,pand p+ 1 1is
joined to 1 by the arrow g as shown below:

&) Ep—1
) =~ «ii=— P
&1 ¢/ /ﬁap
Op1:= 1 p+1

€0

For every n > 0 and 1 <t < p we define the Q ;-representations

kn+1 k" .
P1 1z
N v \
kn-H k" K kn-H
¥ A ¥ A
_ ' b ¥ A
My(T1,2]) = gt =¥ ME([1.1]) == g» — g
%1

where the highlighted vector spaces correspond to the vertex ¢. These representations
are called respectively pre-projective and pre-injective modules (see e.g. [2]).
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Forevery L ek andn > 1, let Reg’;) (A) be the Q) 1-representation

Regh(A) := k" <——— k"

with a Jordan block J;, (1) of eigenvalue A at the arrow &g and the identity map in all
the other arrows. This representation is called regular homogeneous. It is easy to see
that M ;ﬁ([l, t)h), M ;’, ([1,¢]) and Reg;‘? (0) are orientable string modules (see Lemma 2)
and Xe(Reg’I’, ) = Xe(RegZ(O)) for every A € k (Sect. 4.2). We can hence apply
Theorem 1 (or Proposition 2).

We often use the following notation:

s—2 s—1
xe([r, 51) := ]"[( ke >= I1 (e’ _ek“) )

e — e e — €
jor ekt €5/ 7 ek T €kt

with the convention that this product equals one whenever r > s — 2. We interpret
xe([r, s]) as the Euler characteristic of the flag variety

(k" D M40 2+ D My 2k*|dim(My) = ek }.
Proposition 3 Foreveryn>1,1<t < p and A € k we have

Xermepsn (M (T1,11))
_ <e1 - 1> <n+1—e,) <n+l—et+1>< n—epi1 >
€p+l1 e —é € — €41 €t+1 — €p+1
X xe([1. 1)) xe([r + 1. p+11), (6)
Xeereper) (M ([1.11))

- (" - e”“)(e’“>(e’ - 1) (el)xe([l, Mxe(lt+1.p+10). D)
€1 — €p+1/ \€p+1 €r+1 €
xe(Regh (1) = ( “ )(” o )xe([l, p+1). ®)

ep+1/ \€1 — €p+1
We always use the convention that the binomial coefficient (s ) equals 0 if ¢ <O,
p<0,g>panditequals 1 ifg=0and p >gq.
2 Proof of Theorem 1
The proof is based on the following well-known fact: given a complex projec-

tive variety X and an algebraic action ¢ : T x X — X, (A, x) — A.x of the one-
dimensional torus 7 = C* with finitely many fixed points, then the number of fixed
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points equals the Euler—Poincaré characteristic x (X) of X. To see this we consider
the decomposition X = X7 [ [Y of X into the disjoint union of the set X7 of fixed
points of ¢ and of their complement ¥ := X \ X”. Such sets are locally closed
and hence x(X) = x(X Ty 4 x(Y). The restriction of ¢ to Y defines a surjective
morphism ¢ : T x Y — Y whose fibers are all isomorphic to C*. It follows that
x(Y) = x(C*) =0 and hence x(X) = x(X Ty which equals the number of fixed
points of ¢.

We hence find a torus action on our quiver Grassmannians.

Let M be a representation satisfying hypotheses (D1) and (D2) of the theorem.
The torus k* acts on M as follows:

Ab:=21Op ek 9)

for every element b € B of the basis B extended by linearity to all the elements of M.
This action extends to quiver Grassmannians:

Lemmal Let U € Gre(M) be a subrepresentation of M of dimension vector e. Then,
given A € k*, the set ..U := {A.u|u € U} is a subrepresentation of M of the same
dimension vector e of U.

Proof Given an arrow a : j — i of Q we define the number d(a) := d(M(a)b) —
d(b) for an element b € B(j) such that M (a)b is non-zero. This definition is inde-
pendent of the choice of b in view of (D2). Then it is easy to verify that for every
veM(Qj)

A (M(@)v) =21 M (@) (r.v)

which concludes the proof. O

Given a subrepresentation U € Gre(M), the element A € k* acts on each vector
subspace U (i) as a diagonal operator with different eigenvalues, in view of prop-
erty (D1). Then the fixed subrepresentations U = A.U € Gre(M) are precisely the
coordinate subspaces of M in the basis B of dimension e := ) _; ¢; which concludes
the proof of Theorem 1.

3 Proof of Proposition 2

We prove that an orientable string module M satisfies the hypotheses of Theorem 1.
By definition there exists a basis By of M so that (1) is satisfied and the coefficient-
quiver Q(M, Byp) in By is a chain. We have to assign a degree d(b) € Z to the el-
ements of By (which are also the vertices of Q(M, By)) so that (D1) and (D2) are
satisfied.

Since S := Q(M, By) is a chain we number the vertices of S as s1, 5o, .. . in such
a way that for every i = 1,...,m there is a unique edge &; between s; and s;41.
We assign the degree d(s;) :=i fori =1,2,.... Then (D1) is clearly satisfied (all
the elements of By have different degrees and hence all the elements of By (i) have
different degrees). Since M is orientable it is also easy to prove that (D2) is satisfied.
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Indeed, by definition, for every arrow a of Q all the corresponding arrows a of S
have all the same orientation, either all of them are oriented from s; to s;4 or from
Si+1 to ;.

4 Proof of Proposition 3
For the convenience of the reader we prove Proposition 3 first in the case p = 1 (the

Kronecker quiver) and hence for p > 1.
All the proofs are based on the following lemma.

Lemma 2 M;([l, t]), MI';([I, t]) and Reg;', (0) are orientable string modules (in the
sense of Definition 1). In particular (4) holds.

Proof All the linear maps defining such Q) 1-representations satisfy (1). It remains
to show that their coefficient-quiver is a chain.

Let S¢, be the subquiver of Q, 1 obtained by removing the arrow &y. We join
together n copies of Sg, by using the arrow gy and we get a string that we denote
by Sg. The coefficient-quiver of Reg),(0) is Sy which is a chain.

Let 1 <t < p be a vertex of Q) 1. We consider the full subquiver S([1,¢]) of
0 p,1 with vertex set all the vertices 1,2, ..., . We join the string S(’)’ with the string

S([1, ¢]) by using the arrow &y and we get a new string that we call S ([1, #]). Such a
string is the coefficient-quiver of M, (1,1

In order to get the coefficient-quiver of M} ([1,7]) we proceed similarly: we
consider the full subquiver S([1,¢]) with vertices ¢t + 1, +2,...,p,p + 1. We
join S([1,¢]) with " by using the arrow &9 and we get a quiver S”([1, ¢]). Such
a quiver is the coefficient-quiver of M7 ([1,t]). Figure 1 shows the case p = 4,
t=n=3. 0

4.1 Type A~1,1: the Kronecker quiver

el
In this section we consider the Kronecker quiver Q1 1 := 1<——2 and its represen-

, =

€0
tations over the field k of complex numbers. Let ¢y, @5 : k" — k"+! be respectively
the immersion in the vector subspace spanned by the first and by the last n basis
vectors. For every n > 0 and A € k we consider the representations

'

@1 #1
M{’([l,l]):: frtl <—— k7 M{'[l,l]:: K <—— L
2 (pé

Reg!(A) := k" =—— k.
)

The next result is contained in [9]. We give a slightly different proof by using Theo-
rem 1.
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&4 5 &4 5 &4 /
Y p
4 4 4
v, ¥ y
3 €3 €3
3 £0 3 €0 3
Y Y Y
2 2 2
Ve Ve Ve
Ss= 1 1 1
g4 /7 &4 5 &4 N
Y p Y
4 4 4
¥ ¥ y
£3 £3 €3
3 £0 3 ) 3 £ 3
Y Y Y Y
2 2 2 2
Y e Ve Ve Ve
S3(1,3D= 1 1 1 1
“ “ A e
4 4 4 4
Y Y o Y
£0 3 £0 3 £0 3
Y Y ‘e
2 2 2
Ve Ve Ve
S3([1,3]) = 1 1 1

Fig. 1 The coefficient-quiver of Regi 0), Mi ([1, 3]) and Mi ([1, 3]) respectively

Proposition 4 [9, Propositions 4.3 and 5.3] For every dimension vector e = (ey, e2)
and n > 0 we have:

— n+1—ey\ (e —1
Xieren (M7 ([1,17)) = (n 41 _€1>< e ) + 8e1,08¢,,05 (10)
er+1\/n—en
X(el,eg)(Mil([lv 1])) = ( e )(n . €1> +8e1,n§ez,n+] (11)

where 8,5 denotes the Kronecker delta. For every A € k:

X(er.er) (Regi (W) = <n B 62) (el>. (12)

n—ei/)\e
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Proof We notice that (11) follows from (10). Indeed M{[1, 1] >~ DM/ ([1, 1]) where
D = Homy(+, k) is the duality functor and the isomorphism follows by exchanging
the two vertices. Then we have (see also [8, Sect. 1.2]):

X(el,ez)(M?([lv 1])) = X(II-‘,—I—EZ,}’!—E])(M?([ls 1]))

We hence prove (10). By Lemma 2, the representation M ?([1, 1]) is an orientable
string module and we can apply Theorem 1. In order to compute x (e, ¢,) (M{ (1, 1),
we have hence to count couples {77, T»} of subsets 71 C [1,n + 1], T> C [1,n]
such that |T;| =¢; (i = 1,2) and ¢1(T2) C T, ¢2(T2) C Ty where ¢1, ¢ : [1,n] —
[1, n+ 1] are the two maps defined by @1 (k) =k and (k) =k+1fork=1,2,...,n
(here and in the sequel we use the notation [1,m] := {1, 2, ..., m}). We need the fol-
lowing lemma.

Lemma 3 [9, Proof of Proposition 4.3] Let n and r be positive integers such that
1 <r < n. For an r-element subset J of [1,n] we denote by c(J) the number of
connected components of J (i.e. the number of maximal connected intervals in J).
The number of r-element subsets J of [1, n] such that c(J) =c is (r_l) (”'H_r).

c—1 c

Proof A proof of Lemma 3 can be found in [9, Proof of Proposition 4.3]. 0

We hence continue the proof of (10). The choice of an element k € [1, n] deter-
mines the choice of the two different elements ¢ (k) and ¢, (k) of [1,n + 1]; in gen-
eral the choice of a subset 7 of [1, n] of cardinality e, with ¢ connected components
determines the choice of ¢ + e elements of [1, n + 1]. Given such a set 73, there are

hence (";:{Eﬁ:g)) choices for the sets T; such that {T}, T} is a desired couple. If
e} = ez =0 then x(,0)(M7([1,1])) = 1. We assume e; > e> > 1. By Lemma 3 the
number of e;-element subsets T» of [1, n] with ¢(T3) = ¢ equals (62_1) (”Hc_ez). The

—1
number of desired couples {77, 7>} is hence ‘

Ay - —1 1—
e () = 3 (" ) () ()
c=1

e — (c+e) c—1 c

_efz e1—ex\[(ex—1\(n+1—e
a c c—1 el —ep

c=1

n+l—ep 912_6:’2 el —ex\[ex—1
el —en pr c ery—c

_ n+l—ey\ /e —1

T \eg—e er )

In the second equality we have used the identity: ("+[1):; ~9) ("+q1_’ )= (Z) (”+117_r )

with g = ¢, p =e1 — ez and r = e; in the last equality we have used the Vander-
monde’s identity: 3", (¢)(.2,) = (“*7).
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— s

T~

oM, 1)) : o~ O(Regh): o~
_ ¢1 . Jn(0)
M1, 1D : K l<—k"; Regj : k'=—%k"
92 =

Fig. 2 Coefficient-quiver of Q j-representations

We now prove (12). We first assume that A = 0. The representation Reg 1(0) is
an orientable string module and we apply Theorem 1. We prove (12) by 1nduct10n on
n > 0. For n =0 it is clear. Let hence n > 1. We have hence to count the number of
couples {71, T»} of subsets T, C T1 C [1, n] such that |T;| = ¢; and J,(0)T> C T U0
where J,(0) : [1,n] — [1,n]U {0} maps k to k — 1 for k =1, 2, ..., n. Alternatively,
by Proposition 1, we can consider the coefficient-quiver Q(Reg’l’) of Reg] (shown in
Fig. 2) and count its successor closed subquivers with e; sources and e; sinks. Such
a subquiver either contains the unique vertex of Q(Reg’l') which is the source of a
unique arrow (highlighted in Fig. 2) or it does not. Alternatively either 7> contains
1 = Ker(J,(0)) or it does not. We hence have

x(e,,ez)(Regql(O)) = X(el—l,ez—l)(Reglf_l(O)) + X(elqez)(Mil_l([l’ 1]))

n—e\ (e —1 n—ex\ e —1

(@) G () o
n—ey)\ex—1 n—ej e

_(n—ex\ (el

- n—ej en

and we are done (we use the obvious fact that (Z:}) + (“;1) = (}) — 84,085.,0)-
It remains to be considered the case where A # 0 which is solved in the following

lemma.

Lemma 4 Forevery A € C and n > 1 we have
Xe (Reg'f ()\)) = Xe (Regrll (0)) .

Proof As vector spaces, Regf(0) and Reg{ () are isomorphic to k. The path al-
gebra kQ; 1 acts on these isomorphic vector spaces by two actions that we de-
note respectively by x and o. We consider the automorphism i of the path algebra
k Q1,1 which sends &g to g9 + Ae;. For every o in k01,1 and every m in Reg’l‘,l(O),
Y (o) * m = o o m. Roughly speaking what the automorphism i does is the follow-
ing: the arrow &g acts as J,(0) on Reg] 1(0), while the arrow &1 acts as the iden-
tity. Then ¥ (&9) acts as J,(0) + Ald = J (A). With this action Reg1 1(0) is isomor-
phic to Reg’ 11 (A) (as kQ11-module). In particular the two representations have the
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same quiver Grassmannians. This proves that they are right-equivalent in the sense

of [15]. O
This concludes the proof of Proposition 4. t
4.2 Type A p1

We prove Proposition 3 for every p > 2. The duality functor D sends a representa-
tion of Q1 to a representation of the opposite quiver Q‘;}I’7 |- The symmetries of such
quiver induce an isomorphism M;’,([l, t]) ~ DMZ([l, p + 1 —1t]) and, for every di-
mension vector e = (ey, ..., ep 1), we have:

Xe(MZ(M)) = X(dpt1—ept1s-ess dl*el)(M;( (1, P+ 1 —1] ))

where d = (dy, ..., dp41) is the dimension vector of M; ([1,¢]). Then (7) follows
from (6).
We prove (6). By Lemma 2, the representation M ([1,¢]) satisfies the hypothe-

ses of Theorem 1. In order to compute xe(Mz([l, t])) we hence have to count sets
{T1,...,Tp41} of subsets Ty, ..., T; C [1,n + 1], Ti41, ..., Tp41 C [1, n] such that:
IT;l=e; and o1(Ty41) C Ty, 2(Tpr1)) CTrand Ty C Tx—y (k#t+ 1, k#p+ 1)
where ¢1, @3 : [1,n] — [1,n + 1] are defined by ¢; (k) :=k and ¢y (k) :=k + 1 for
everyk=1,...,n.

For a choice of the quadruple {17, T;, T;+1, Tp+1} (this set could collapse to
a quadruple in which two elements coincide but it does not make any difference
in the sequel and we still refer to it as a quadruple) there are xe([1,?]) choices
for {T»,...,T;—1} and xe([t + 1, p + 1]) choices for {T;i2,...,Tp} such that
{T1,...,Tp11} is a desired tuple.

We hence prove that the number of quadruples {T1, T}, T +1, Tp+1} equals:

<e1—1><n+l—e[)(n+l—e,+1>< n—epti ) (13)
€p+l1 el —ér €t — €141 €t+1 — €p+1

from which (6) follows. We hence have to count the number of quadruples
{T1, Ty, Ti+1, Tpy1} of subsets T, C Ty C [1,n + 1], Tpy1 C Ty41 C [1, n] such that

ITi| =ei, p1(Ti+1) C Ty and @2(Tp41) C Ty
We need the following lemma.

Lemma S Let n and e be positive integers such that 1 < e < n. As before, we denote
by c(J) the number of connected components of an e-element subset J of [1, n]. For
every integer c, we have

(1) the nulmber of e-element subsets J of [1, n] such that c(J) = ¢ and J contains n,
is (1) (C20)s
(2) the numl;er of e-element subsets J of [1, n] such that c(J) = c and J does not

contain n is (i:%)("ze);

(3) forevery0<r =g =p. (§)(7) = ()(G)-
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Proof The proof of Lemma 5 follows from Lemma 3 by an easy induction. U
1
ke [1,n+1]DZz o
AN T
Ktk Tiv1 C[1,n]
\ A
i A
MR([L1]) = K <K' (14115 Ty < Tppr ClLnl
2

Let 7)1 be an e, 1-element subset of [1, 7] and let us count the number of de-
sired quadruples {71, T;, T;+1, Tp4+1} containing Tp41. We notice that 77 contains
both ¢1(Tp+1) and @2(Tp41). In particular, if ¢ denotes the number of connected
components of T}, then 71 must contain ¢ + e 1 elements of [1,n + 1]. We dis-
tinguish the two cases: either 7,41 contains n or it does not.

(1) If T,y contains n (by Lemma 5 there are (e”:ll_l) (”;i”l”") choices for such
subsets) then every possible 7} contains the element @(n) = (n + 1). Then there are

(”:::e’:l") choices for T7. Now either 7, contains (n + 1) or it does not. If it con-
P

tains (n + 1) (there are (e] _l_e”“) choices for such sets) then there are (E’_l_eerl)
elflfeerl €r+1—€p+1
choices for T;41; if Ty does not contain (n + 1) (there are (ele:l;ef;”) choices for
P

such sets) then there are (eejr l_ele’tlr 1) choices for T} 4.
+1—¢p

The number of quadruples {77, 7;, T;4+1, Tp+1} such that T, contains n is hence
given by:

Z (€p+1 - 1) <n - ep+1) (ﬂ —epy1—(c— 1))
- c—1 c—1 el —epy1 —¢
g |:(el -1 —ep+1> <et —1- e,,_H) N (61 —1- ep+1>< e —epyl )i|
er—1—epi1/)\ err1 —epti er—epyl ert1—eptl
_ Z <€p+1 - 1) (n - €p+1> (ﬂ —epy1—(c— 1)>
- c—1 c—1 e|—epp1—¢C
8 [(61 -1 —€p+1><€1 -1 —€z+l> 4 <€1 -1 —€p+1><61 -1 —€r+1>:|
eyl —€epil et —1—e4 eyl —€pii e —erq
_ Z (ep+1 - 1) (el —ept1 — 1)( n—epti )
- c—1 c—1 el —epr1—1
y (61 -1- ep—H) (61 - €z+1)
€r+1 — €p+1 € — €41
=( e] —2 >< n—epi )(61—6z+1><€1—1—€p+1>. (14)
et —epr1—1)\e1—epr1—1/\er—er11/) \ erv1 —epy1
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In the first and third equality we have used part (3) of Lemma 5; in the last equality
we have used the Vandermonde’s identity.
(2) If Tj+1 does not contain n (by Lemma 5 there are (7! 1_1) ("¢+1) choices for

such sets) then either 77 contains (n + 1) or it does not. Since T)+1 does not contain
n—c—ept1

n, there are( 1o
1= l—c—epi1

) choices of sets T containing (n + 1). In this case either
T, contains (n + 1) (there are ( ; 2”*1‘) choices of such sets) or it does not (there
P+

are ( -l- e”“) choices of such sets) If T; contains (n + 1) then there are ( i—l=epy 1)
er—€pt1 €r+1—€p+1

choices for T;41. If T; does not contain (n + 1) then there are (eilfgﬂrl) choices for
p

Tit1.
The number of quadruples {71, 77, T;41, Tp+1) such that T, | does not contain n
and 77 contains (n + 1) is hence given by:

Z epr1 — 1\ (n—epyy n—epy1—¢
- c—1 c ep—1—epr1—c
N |:<61 -1 —ep+1><e, -1 —ep+1) n (el -1 —ep+1>( e —epti ):|
er—1—epr1/\ err1 —epy1 e —eptl e+l — €ptl
_ Z (ep+1 - 1)<e1 —epyl — 1)( n—epi )
- c—1 c el —epr1—1
y (61 —-1- €p+1> <€1 - ez+1)
€r+1 — €p+1 €r — €41
_( e —2 )( n—eptl )(81—1—8p+1)(€1—6t+1> (15)
e1—epr1—2)\e1 —epr1 — 1)\ erp1 —epy1 J\er —erq1)
By summing up (14) and (15) and by applying Lemma 3 we get
LI
€p+1 el —et1 — 1) \err1 —epr1/) \er — et ’

If T} does not contain (n + 1) (there are (e"1 o ef"* ') choices of such sets) then there
p+

are (” ‘”“) choices for T; and ( e eptl ) choices for T, . The number of quadru-
€r—€pt €r+1—€p+1

ples {T1, T;, Ty+1, Tp+1} such that T, does not contain n and 77 does not contain
(n + 1) is hence given by:

Z (e,,+1 - 1) <n - e,,+1)(n —ept1 — c)(el - e,,+1)( e —eptl >
- c—1 c el —ept1 —Cc)\e —epy1) \ery1 — epti
B Z <€p+1 - 1) (61 - €p+1> <n —epil > <€1 - €t+1)< el —ept1 )
- c—1 c el —epr1) \e —er1) \er+1 — €ept1
B (el . 1)(” _ep+1)(el _6t+1>( | _ep+1 >
€p+1 €1 —é€p+1/) \€ — €1/ \€r+1 — €p+1

@ Springer



J Algebr Comb (2011) 33: 259-276 275

e
€p+l1 er—ert1) \ert1 —epr1/\er — 1)
By summing up (16) and (17) and by applying Lemma 3 we get the desired (13).
We now prove (8). As for the case p = 1 (see Lemma 4), the variety Gre (Reg’;7 (1))
equals the variety Gre(Reg),(0)) for every A € k. Indeed let us denote by o and by
* respectively the action of A =kQ, 1 on Reg?7 (1) and on Reg’[; (0). We consider
the automorphism v of the path algebra kQ, ; which sends gy to Aw + &9 where
7 =g o---0¢p is the longest path of Q) 1. As vector spaces, Reg), (0) and Reg/, (1)
are isomorphic. Then for every 7 in A and every m in Reg}’7 ©), Y(r)*m=mom.
This proves that they are right-equivalent in the sense of [15].

Al
A

k}’l PPN
=y
Reg';,(k) = k" <J— k"
n(A)

Kk
A=

We thus assume that A = 0. In this case the representation Reg) (0) is an ori-
entable string module by Lemma 2 and we can therefore apply Theorem 1. The
Euler—Poincaré characteristic of Gre (Regz (0)) is hence the number of (p + 1)-tuples
{T1,...,Tpt1} of subsets T; C [1,n] of cardinality |T;| = ¢; such that T;11 C T;
fori=1,...,p and J,(0)(Tp41) C T1 where J,(0) : [1,n] — [1,n] U {0} is the
map which sends k to kK — 1, k € [1, n]. The choice of the couple {71, 7)1} de-

termines the choice of (¢! ~°»*!) choices for 7»>. For every such choice there are
€2—=€p+1
P

(2:5”11) choices for T3, and so on. For every choice of {T1, T41} there are hence
4
xe([1, p+1]) = ]_[lf;ll (e:inZ;ll) choices for {T>, ..., T)}. The number of couples

{T1, Tp+1} equals xe, ,epﬂ)(Reg'l’ (0)). It remains to prove that:

et\[(n—ep
o= (2)(172)

which has already been noticed in Proposition 4.
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